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Section 2.5 – Reducing error
Simulation error

As we saw in Section 2.3, we will not be able to calculate an exact bootstrap estimate most of the time, but rather use Monte Carlo simulation through taking R resamples.  Since R is not going to be ALL possible resamples, there will be some simulation error.  How large of an R to use depends on the statistic.  As BMA says, “it is not possible to give a completely firm and general answer.”  
Here are some general guidelines for choosing R:

· If computation time is short on a computer, take a large R!  

· When estimating extreme quantiles of G, take a large R.  For example, suppose you would like the 99th percentile of G.  How well would R = 99 work?
  How well would R = 499 work?  How well would R = 999 work?  How well would R = 9999 work? 

· When estimating the center of G, taking a smaller R will often work well.

· Chapter 9 discusses methods than can be used to take less resamples when estimating quantities. 

Here are a few notes to help you when you are reading this section.   

· Don’t worry about verifying the 
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 calculations in this section (
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 means approximately equal to; usually corresponds to asymptotic equivalence as the sample size goes to infinity).

· The second part of equation 2.15 partially corresponds to 
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We did this proof previously for the AC data example using a parametric bootstrap.  The proof here for the nonparametric bootstrap case is very similar. 
· The unconditional variance calculations (p. 35) use the general identity of 
Var(X) = E[ Var(X|Y) ] + Var[ E(X|Y) ] 
for any two random variables X and Y; this is Theorem 4.4.7 in Casella and Berger (2002, p. 167).  

· Notice in equation 2.16 that the variance in BR will decrease as R increases. 
· I was not able to reproduce Table 2.3 
for Example 2.14. 
Statistical error

This type of error is due to using 
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 to estimate F and the choice of the item one is bootstrapping (i.e., T, T – (, or some other quantity).  Statistical error is more serious than simulation error.  In BMA’s notation, we want to estimate a quantity c(F) by c(
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), where c( ) is a statistical function.  The statistical error is the difference between c(F) and c(
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).  

Regarding the statistical error, 

1. The best bootstrap estimates result from using the parametric bootstrap with the correct model for F.

2. The worst bootstrap estimates result from using the parametric bootstrap with the incorrect model for F.

3. The nonparametric bootstrap is generally good, but not as good as 1.; of course, you need the correct model for 1.!

One way to reduce the statistical error is through choosing a particular statistic to bootstrap.  For example, we may work with a function of T, say Q, instead of just T itself, to get what we desire in the end.  Q is usually chosen to be nearly as pivotal as possible.  This means that Q will have the same distribution under sampling from F or 
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.  

Why is it good to work with a pivotal statistic?

· The distribution is not dependent on a parameter.
· Whether the parameter is ( for F or 
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 (or t) for 
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, the distribution is the same!  

Does this make some intuitive sense then why one wants a pivotal statistic?  

Example: AC data and Y ~ F = Exp(()

Remember from earlier work that 
[image: image10.wmf]Y

/( ~ Gamma(n, 1) is a pivotal quantity since n is known.  

Suppose a large number of samples are taken from F where ( = (1 and 
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/(i for each sample of size n is calculated.  Also, suppose this is duplicated for ( = (2, …, ( = (7 with (1 < (2 < … < (7, what would the plot below look like?  
I have drawn an example for the (1 case 
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What would the plot look like for a non-pivotal statistic on the y-axis?  Suppose it was just 
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Using the plug-in principle (Section 2.1), we can work with 
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 ~ Gamma(n, 1), which is a pivotal quantity.  Remember how the bootstrap C.I.s found for the AC data example were the same as the confidence intervals found without the bootstrap.  
Pivotal quantities in the nonparametric setting

This is more difficult because there is not a distribution for F.  For the studentized bootstrap C.I., the interval worked with a sort of pivotal quantity, 
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Also, the bootstrap itself can be used to help determine what would work as a pivotal quantity (see Example 2.10 on p. 33).  Section 3.9.2 discusses this more.   

In the asymptotic parametric case, we can often use a variance stabilizing transformation of our statistic of interest to get it to be asymptotically pivotal.  Suppose 
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 where X has a particular distribution.  Often, X ~ N(0, k(()).  Notice that the variance is changing as a function of the parameter that we may be trying to estimate (unstable variance).  A (1-2()100% large sample C.I. for ( is 
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where z( is the ( quantile from a standard normal.  Of course, this interval can not be used directly since ( is in the lower and upper bounds!  Here’s an example of where this occurs: 
Suppose p is an estimated proportion (P is the random variable version) that estimates a population proportion (.  Then
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by the CLT.  The (1-2()100% large sample C.I. for ( is 
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What is often done in this case to solve the problem with the lower and upper bounds?  
By the (-method, we know that 
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for some differentiable function h(() and 
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 denotes the derivative of h(() with respect to (.  If X ~ N(0, k(()), then 
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.  A h(() can be chosen such that the variance is no longer a function of (; this is called a variance stabilizing transformation.  Thus, we want to find an h(() such that 
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 = N(0, c2) for some positive constant c without ( present in it.  Most often c is just taken to be 1.  Solving for h(() produces, 
c2 = 
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Back to the previous example with (:  

Note that 
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; this is our “h(()”
You can use a ( = sin2(x) substitution to get this arcsin result
  Then 
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The (1-2()100% large sample C.I. for h(() is
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Since we really want an interval for (, not h((), we can use the inverse of h((), 
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provided h(() is a monotone function of (.  Back to the previous example with (,
Note that 
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What is the interval just for (?  
Some textbooks that cover variance stabilizing transformation include:
· P. 87 of Lehmann (1999)

· P. 54 of Ferguson (1996)
· P. 139 of Sen and Singer (1994)

· P. 120 of Serfling (1980)
Only if F is known, can we “possibly” find a pivotal quantity.  However, notice that 
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 are asymptotically pivotal for a suitable choice of h( ).  Thus, with using the variance stabilizing transformation, we can often find an asymptotically pivotal quantity.  Without knowing F, the asymptotically pivotal quantity is often better to work with than working with just T (better could mean more accurate confidence intervals)
Section 2.6 – Statistical issues

There are two main ways to assess a statistical procedure for statistical research:
· Examine the procedure asymptotically to see how it works as n((
· Examine the small-sample properties usually via Monte Carlo simulation 

In order for fully understand this section of BMA, you need to have a class in asymptotics to fully understand it.  Since this class is not a requirement for this course, I would like you to read the section for its main points.  You should come away with an ability to understand the asymptotic results, but not prove them.  

Here is a good quote from BMA:
Under what idealized conditions will a resampling procedure produce results that are in some sense mathematically correct?  Answers to questions of this sort involve an asymptotic framework in which the sample size n ( (.  Although such asymptotics are ultimately intended to guide practical work, they often act as a backstop, by removing from consideration procedures that do not have appropriate large-sample properties, and are usually not subtle enough to discriminate among competing procedures according to their finite-sample characteristics.  Nevertheless it is essential to appreciate when a naïve application of the bootstrap will fail.  

Estimation for Q(Y1, …, Yn; F) 
Suppose the quantity of interest is Q(Y1, …, Yn; F).  This quantity may contain some unknown elements from F (for example, this simply could be 
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).  The true  sampling distribution of it is 


GF,n(q) = P{Q(Y1, …, Yn; F) ≤ q | F}.  
Be careful with BMA’s small change in notation.  The subscript on G is to emphasize this is with respect to F and a sample size of n.
The bootstrap estimate of G is 
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Again, be careful with the notation here.  

We want 
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 as n ( ( for all q and ( > 0 (i.e., bootstrap results in a consistent estimator).  For this to work, we need
· 
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 to converge to F – This comes about through the Glivenko-Cantelli Theorem: 
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 = 1 (see p. 23 of Ferguson (1996)).
· A limit 
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 has to exist for the true 
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 is close to F.  
· Small changes in F do not cause large changes in 
[image: image46.wmf],

G(q)

·¥


Example 2.15
: Sample maximum (example2.15.R)
Suppose F is the CDF of a U(0,().  The MLE of ( is Y(n).  The parametric bootstrap takes resamples using Y( ~ U(0,y(n)), and the nonparametric bootstrap takes resamples the usual way.  Notice that in both of these cases, the largest possible value occurring in a resample is y(n).  
Suppose ( = 1 so that we can see what happens using the R software package.  An asymptotically pivotal statistic is Q = n(( – Y(n))/( = n(1 – T/() 
[image: image47.wmf]d

¾¾®

 Exp(1) where ( = 1 and T = Y(n).  This can be shown using methods described in Section 14 of Ferguson (1996); you are not responsible for it.  Note that 
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 is Exp(1) and this is obviously a continuous distribution.   
Now, Q = n(t – T)/t.  Under the nonparametric bootstrap case, the distribution of Q is going to be really discrete no matter the original sample size.  The nonparametric bootstrap with n = 50 results in the following: 
> set.seed(1203)

> y<-runif(n = 50, min = 0, max = 1)

> t<-max(y)

> n<-length(y)

> cat("t is", t, "\n")

t is 0.9519859 

> #Nonparametric bootstrap – see the program for how to use 

     the boot() function to do this as well
> R<-2000

> set.seed(2311)

> y.star.npar<-matrix(data = sample(x = y, size = n*R, 
   replace = TRUE), nrow = 2000, ncol = n)

> t.star.npar<-apply(X = y.star.npar, MARGIN = 1, FUN = 
    max)

> par(pty = "s", mfrow = c(1,2))

> #Default margins for y and x-axis are 4% larger than 
     specified.  This code turns that off - turn back on 
     again with par(xaxs = "r") where r stands for 
     "regular"

> par(xaxs = "i") 

> hist(x = t.star.npar, main = "Histogram for t*", xlab = 
    "t*", xlim = c(0.9,1))

> hist(x = n*(t-t.star.npar)/t, main = "Histogram for q*", 
    xlab = "q*", freq=FALSE, xlim = c(0,3))

> curve(expr = dexp(x = x, rate = 1), col = 2, add = TRUE)

> table(t.star.npar)

t.star.npar

0.899428518 0.902556082  0.91358537 0.915563104 0.929453681 0.936340136 
          1           1           4          16          64         161 

0.94145213068 0.95198589703 

474        1279
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We can see the distribution is very discrete!  Q is obviously not Exp(1); however, maybe this is due to just not having a large enough n, so let’s examine a larger n!  Using about the same code with n = 5000, look what happens:
> cat("t is", t, "\n")

t is 0.9998877
> table(t.star.npar)

t.star.npar

0.999017739  0.99902672 0.999231179 0.999279546 0.999310742  0.99934810 

         1           2           3          11          20           69 

0.99974920787 0.99976312020 0.99988765050 

165           497           1232
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Here’s the EDF for Q with an Exp(1) overlay:
> par(mfrow=c(1,1))

> plot.ecdf(x = n*(t-t.star.npar)/t, verticals = TRUE, do.p 
    = FALSE, main = "Boot. estimate of G", lwd = 2, xlab = 
    "q*", panel.first = grid(nx = NULL, ny = NULL, 

     col="gray", lty="dotted"), ylab = "EDF or asymp app. 
     of CDF")

> curve(expr = pexp(q = x, rate = 1), col = 2, add = TRUE)
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Even with such a large sample size, 
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 does NOT converge to 
[image: image53.wmf],

G(q)

·¥

.  Working with fixed order statistics violates the needs for this convergence.  The parametric bootstrap with n = 50 produces the following: 
> set.seed(8102)

> y.star.par<-matrix(data = runif(n = n*R, min = 0, max = 
    t), nrow = 2000, ncol = n)  

> t.star.par<-apply(X = y.star.par, MARGIN = 1, FUN = max)

> par(mfrow = c(1,1))

> plot.ecdf(x = n*(t-t.star.par)/t, verticals = TRUE, do.p 
    = FALSE, main = "Boot. estimate of G", lwd = 2, xlab = 
    "q*", panel.first = grid(nx = NULL, ny = NULL, 

    col="gray", lty="dotted"), ylab = "EDF or asymp app. 
    of CDF")

> curve(expr = pexp(x, rate = 1), col = 2, add = TRUE)
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Under the nonparametric bootstrap, P(Q = 0 | 
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) can be found to be not equal to 0.  Here are some notes about finding it.  

· P(Q = 0 | 
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) = P(T = t | 
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) = 1 – P(T ( t | 
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).  

· Remember that t = y(n) so the only way T does not equal t is if y(n) does not appear in the resample.  When there are n observations, the probability any single of them is not Y(n) is (n – 1)/n.  Thus, 
1 – P(T ( t | 
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) = 1 – [(n – 1)/n]n = 1 – [1 – 1/n]n 
( 1 – e-1 as n(( (just using a calculus II result).  
· Therefore, P(Q = 0 | 
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) does not go to 0 as n((.  This is the cause of the problem with the nonparametric bootstrap.  Remember that we need
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and we know that 
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 is Exp(1) (since this is continuous, P(Q = 0 | F) = 0).  
· P(Q = 0 | 
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) = 0 in the parametric setting.      
Note that these types of problems do not occur when estimating a quantile of a distribution (needed when constructing C.I.s).  The numerical position of the quantile changes as n changes.  For example, suppose you were interested in the pth quantile.  This would correspond to Y(k) where k = pn.  
Edgeworth expansions

One can think of Edgeworth expansions as like a Taylor series expansion for a statistic.  However, instead of statistics, Edgeworth expansions are used to approximate the probability distributions in terms of a standard normal.  These Edgeworth expansions are used to prove the asymptotic accuracy of the resampling distribution.    
Pages 32-3 of Ferguson (1996) provide a good and brief example of Edgeworth expansions in a non-bootstrap setting.  I am going to follow Ferguson’s explanation here to introduce these expansions.    

Let X1, X2, …, Xn be i.i.d. with E(Xi) = ( and Var(Xi) = (2.  By the Central Limit Theorem, we know that the approximate distribution for 
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 is N(0,1) where Tn = 
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.  The n subscript on Tn is used to emphasize a sample size of n.  We could denote the CDF for 
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 at a value t by Gn(t).  Through the Central Limit Theorem, this CDF is approximated by a standard normal CDF, ((t).  

Using a three-term Edgeworth expansion, we can approximate Gn(t) by 
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where
(1 = E[(Xi - ()3]/(3 is the skewness for Xi
(2 = E[(Xi - ()4]/(4 – 3
 is the kurtosis for Xi
((t) is the density of the standard normal distribution

You can see this expansion results in the usual standard normal, but with two additional terms to help adjust for skewness and kurtosis.  Notice that the usual standard normal approximation occurs when the skewness and kurtosis are 0.  

As you see in the Edgeworth expansion here, higher order moments are used.  Due to these moments, one will often see Edgeworth expansions written in terms of cumulants.  Remember that the cumulant generating function is the log of the moment general function.  Page 83 of Casella and Berger (2002) gives a brief review of this function and Appendix A of BMA goes into some details.  

Example: Sample from exponential distribution (edgeworth.R)
Suppose X1, X2, X3, X4, X5 is a i.i.d. sample from an exponential distribution of 
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 for xi > 0 and f(xi) = 0 otherwise.  Doing some quick work in Maple results in

> assume(x>0);
> f(x):=exp(-x);
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> mu:=int(x*f(x),x=0..infinity);
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> sigma_sq:=int((x-mu)^2*f(x), x = 

       0..infinity);
[image: image71.wmf] := 
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> beta[1]:=int((x-mu)^3*f(x), x = 

       0..infinity)/sigma_sq^(3/2);
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> beta[2]:=int((x-mu)^4*f(x), x = 

      0..infinity)/sigma_sq^2-3;
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Next, my R program shows the Central Limit Theorem approximation, Edgeworth expansion approximation using two terms, and Edgeworth expansion approximation using three terms for the CDF of 
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 where Tn = 
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.  I also included the exact value of the CDF through the result of 
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 ~ Gamma(n, 1).  
> t<-seq(from = -2, to = 2, by = 0.2) # Number of 

                                       stand. from mean

> beta1<-2

> beta2<-6

> n<-5

> #CLT approximation

> clt.app<-pnorm(q = t, mean = 0, sd = 1)

> #Edgeworth with 2 terms

> E1<-pnorm(q = t, mean = 0, sd = 1) - beta1*(t^2-1)/ 

    (6*sqrt(n))*dnorm(x = t, mean = 0, sd = 1)

> #Edgeworth with 3 terms

> E2<-E1 - ( beta2*(t^3-3*t)/(24*n) + beta1^2*(t^5 – 

    10*t^3 + 15*t)/(72*n) )*dnorm(x = t, mean = 0, sd = 

    1)

> #X_bar ~ Gamma(n,1) in BMA's notation.  Therefore, 

    use mu +- (# stand. dev. from mean)*(stand. dev.) = 

        mu +- t*sqrt(1/n) 

> exact<-pgamma(q = 1+t/sqrt(5), shape = n, scale = 
   1/n)  

> #Table 1 of Ferguson on p. 33 - compare the 
     approximations

> round(data.frame(t, clt.app, E1, E2, exact),3)

      t clt.app     E1     E2 exact

1  -2.0   0.023 -0.001 -0.007 0.000

2  -1.8   0.036  0.010  0.000 0.003

3  -1.6   0.055  0.029  0.017 0.015

4  -1.4   0.081  0.059  0.047 0.042

5  -1.2   0.115  0.102  0.091 0.086

6  -1.0   0.159  0.159  0.151 0.147

7  -0.8   0.212  0.227  0.223 0.221

8  -0.6   0.274  0.306  0.305 0.305

9  -0.4   0.345  0.391  0.392 0.392

10 -0.2   0.421  0.477  0.478 0.478

11  0.0   0.500  0.559  0.559 0.560

12  0.2   0.579  0.635  0.634 0.634

13  0.4   0.655  0.702  0.700 0.701

14  0.6   0.726  0.758  0.758 0.758

15  0.8   0.788  0.804  0.808 0.807

16  1.0   0.841  0.841  0.849 0.847

17  1.2   0.885  0.872  0.883 0.881

18  1.4   0.919  0.898  0.910 0.908

19  1.6   0.945  0.919  0.931 0.929

20  1.8   0.964  0.938  0.947 0.946

21  2.0   0.977  0.953  0.959 0.959

> #Max differences:

> round(data.frame(max.clt = max(abs(clt.app - exact)), 

    max.E1 = max(abs(E1 - exact)), 

    max.E2 = max(abs(E2 - exact))),3)

  max.clt max.E1 max.E2

1    0.06  0.018  0.007

> #CDF plot - remember that the expr part of curve() 

    needs to have an "x"

> curve(expr = pgamma(q = 1+x/sqrt(5), shape = n, scale 

    = 1/n), xlim = c(-2, 2), col = "black", ylab = 

    "G(t)", lwd = 1, ylim = c(0,1), xlab = "t",

    panel.first = grid(nx = NULL, ny = NULL, 

    col="gray", lty="dotted"), main = "Normal and 

    Edgeworth approximations")

> curve(expr = pnorm(q = x, mean = 0, sd = 1), xlim = 

    c(-2, 2), col = "red”, add = TRUE)

> curve(expr = pnorm(q = x, mean = 0, sd = 1) – 

    beta1*(x^2-1)/(6*sqrt(n))*dnorm(x = x, mean = 0, sd 

    = 1), xlim = c(-2, 2), col = "blue”, add = TRUE)

> curve(expr = pnorm(q = x, mean = 0, sd = 1) – 

    beta1*(x^2-1)/(6*sqrt(n))*dnorm(x = x, mean = 0, sd 

    = 1) - ( beta2*(x^3-3*x)/(24*n) + beta1^2*(x^5 – 

    10*x^3 + 15*x)/(72*n) )*dnorm(x = x, mean = 0, sd = 

    1), xlim = c(-2, 2), col = "darkgreen”, add = TRUE)

> legend(locator(1), legend = c("Exact", "CLT", 

    "Edgeworth 1", "Edgeworth 2"), col=c("black", 

    "red","blue", "darkgreen"), bty="n", lwd = 

    c(1,1,1,1), cex=0.75)
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Notice that the Central Limit Theorem approximation does not always do a good job of approximating the exact distribution.  The two and three term Edgeworth expansions do a better job.  

What role do Edgeworth expansions serve with the bootstrap?

Remember the bootstrap is trying to estimate the sampling distribution of a statistic T.  This estimate comes about through using 
[image: image78.wmf]ˆ

F

 instead of F.  Thus, in the calculations performed previously where we use X ~ F, we would now use X
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F

 and proceed with the Edgeworth expansions. We can then mathematically compare the true distribution of T, G(t), to the distribution found from the bootstrap, 
[image: image80.wmf]ˆ
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, with the help of the expansion.   
Resources to find out more about Edgeworth expansions:

· P. 517 of Casella and Berger (2002).  This one page is a nice, quick introduction.  

· Hall’s (1992) Chapter 2 is an introduction to it and then he uses it to prove why the bootstrap works as n((
· David Hunter at Penn State has a good set of lecture notes at http://www.stat.psu.edu/~dhunter/asymp for an asymptotics course.  Chapter 4 contains his notes on Edgeworth expansions.  Note that these notes combine understanding characteristic functions, Taylor series expansion, and Hermite polynomials.  

· Section 4.1 of Welsh (1996) which talks about asymptotics in general and provides a small example with Edgeworth expansions. 
· Michael Wichura at U. of Chicago has a set of lecture notes on Distribution Theory that contain a section on Edgeworth expansions at http://www.stat.uchicago.edu/~wichura/stat304.html  (go to bottom of page).  Also, there is a section on cumulants, which is helpful to examine first.   
· Chapter 5 of Ronald W. Butler’s book “Saddlepoint Approximations with Applications”   

See Rates_of_convergence.doc file next. 

Section 2.6.1 – When does the bootstrap work?

How far off is the resampling distribution of a statistic in comparison to its true distribution? 
For many problems, 

· If Q is pivotal: P(Q ≤ q | 
[image: image81.wmf]ˆ
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) – P(Q ≤ q | F) = Op(n-1)
· If Q is not pivotal: P(Q ≤ q | 
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) – P(Q ≤ q | F) = 
Op(n-1/2)
Thus, convergence is faster through the use of a pivotal quantity, and one should try to use a pivotal quantity if possible.  These results come about through Edgeworth expansions.    
The Cornish-Fisher expansion allows one to work asymptotically with quantiles.  Suppose q( is the (th quantile from the distribution of Q (pivotal statistic).  Then 
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 can be shown through using these expansions.  

Since quantiles are used in the construction of confidence intervals, this leads to examining their coverage properties.  Coverage for a bootstrap interval differs by O(n-1) from the specified level provided a pivotal statistic is used.  When a pivotal statistic is not used, the difference is O(n-1/2)

Remainder of Section 2.6

· The bootstrap works well for a smooth statistical functions.  This means we want functions where small changes in F result in small changes in t(F).  Imagine what may happen to 
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 if the function t(F) jumped around due to small changes in F.  How could you estimate a sampling distribution for 
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 if a slightly changed sample results in a different value of 
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?  Remember the largest order statistic example from earlier.    
· When might the bootstrap fail? 
· Example 2.15 already showed an example
· Need i.i.d. because dependent Y’s can cause problems.  Chapter 8 discusses what to do with time series data.  Sampling from finite populations where Yj’s are dependent is discussed in Section 3.7.   

Section 2.7: Nonparametric approximations for variance and bias
Section 2.7.1: (-method
Some people will call this “linearization” because a linear approximation is being made.  
Next is a simpler presentation of the (-method than BMA gives, and it is presented using a resulting normal distribution.  Suppose we have the following result for a statistic U and parameter (,   
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Suppose g(() is some function of U; please do not get confused with G being the distribution of T (this is all BMA’s notation).  Let T = g(U) and g(() = (.  Then 
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This result comes about through a Taylor series expansion.    
A simple first-order Taylor series expansion leads to 
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Since 
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.  See p. 240-245 of Casella and Berger (2002) for more.  
Sections 2.7.2-2.7.5

It would really help to have a course on asymptotics here!  Even with the course, it may be difficult.  A PhD level nonparametrics course would also be helpful!  
Next is my best explanation of these sections given the prerequisites for our course.  One of the main items discussed here is the “influence function” and how it will allow us to obtain an estimate of a statistic’s variance.  I will discuss enough of the basics here so that you can derive some simple functions and apply results to these simple and more complex settings.  For more information about influence functions, I recommend Section 6.3 of Lehmann (1999).
  Page 517 of Casella and Berger (2002) provides some details too.  
The basic idea is to perform a first-order Taylor series like expansion with statistical functions.  In this expansion a function called the “influence function” will be included.  The influence function measures what happens to the statistical function due to a small change in F.  Similar to the (-method, the first-order approximation is used to derive a variance for the statistical function based on 
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.  The influence function will play a large role in the resulting variance.  In fact, this influence function will actually make our bootstrap daily lives easier (.  

Below is the first-order (linear approximation) of 
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.  You are not responsible for its derivation (pages 393-4 of Lehmann (1999) gives some justification for it).  
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where Lt(y; F) is called the influence function of T and 
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 is the EDF.  More on this shortly, but for now think of it as a rate of change measure of t(F) at a point y.  We can rewrite this as 
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Through an application of the central limit theorem, one obtains 
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The “L” in the subscript is used to denote the variance is derived through a linear approximation. 

Lt(y; F) is called the influence function of T.  Lt(y; F) is the first derivative of t( ) at F defined by 
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where Hy is the Heaviside function that takes the jump from 0 to 1 at y.     
Notes:

· 
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 is a mixture distribution. The 
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 here can be thought of as a CDF that simply puts a probability of 1 at some point y.  For example, suppose F = N(0,1)  and Hy is another CDF with all its mass at a point y (maybe 2 or -1 or 3.5 or …). As ( ( 0, you can see that 
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 is going to play a decreasingly important role. We want to know how the statistic of interest changes due to using this new mixture distribution  
· In terms of the sample’s statistic, we are looking at the rate of change for the statistic when one value in the sample changes

1. For example, what happens to the sample mean when a very, very large value is inserted?  

2. For example, what happens to the sample median when a very, very large value is inserted?  
· The influence function measures the rate at which t( ) changes when F is contaminated by a small probability of obtaining an observation y (p. 395 of Lehmann, 1999).
· P. 518 definition in Casella and Berger (2002): For a sample Y1, Y2, …, Yn from a population with CDF F, the influence function of a statistic t(
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IF(T,y) = 
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that is, F( is a mixture of F and a point y
Most often, F is unknown so we will need to calculate the sample version of Lt(y; F), denoted by Lt(y; 
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) = l(y) and called the empirical influence function.  This leads to the nonparametric (-method variance estimate:   
vL = vL(
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Often, BMA replace l(yj) with just lj.  These are called the empirical influence values.  Note that BMA will drop the 
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 from vL(
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) and just call the variance vL because this is the actual variance we will be able to calculate.   
Example 2.17: Average
( = t(F) = ( y dF(y) and t(
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Why is ( y dH(y) = y?

Examining (1-()( + (y you can see how F is contaminated by a small probability of obtaining an observation y.  

Finding the influence function results in  
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We can see the influence function is a linear function of y.  As y increases, the influence of it on the statistic increases without bound.  Similarly, as y decreases, the influence of it on the statistic decreases without bound.  
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Compare this result to the influence function of the median, m: 
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where f() is the density evaluated at m.  Notice the influence function does not increase or decrease without bound.  
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Thus, the median is less influenced by y.  The above result is a special case of Example 2.19.  

Working with the mean again, note that l(y) = y ( 
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 since the parameters are just replaced with their estimators.  Also, l(yj) = yj ( 
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vL = vL(
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Remember that the unbiased estimator of Var(
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vL = 
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Example: AC data (emp.inf.R)
The statistic of interest is the mean.  In summary,

	Name
	Equation

	Influence function
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	Empirical influence function
	l(y) = y ( 
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	Empirical influence values
	l(yj) = yj ( 
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	Nonparametric ( method estimate of the variance
	vL = 
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In order to get the empirical influence values automatically from R, the function that calculates the statistic needs to be written in terms of weights.  Notice the default written in my function here gives a weight of 1/n for each observation.  If the boot() function was told to use weights in a bootstrap setting, it would give weights of 0/n, 1/n, …, or n/n to each y1, …, yn in order to calculate t
> library(boot)

>   #AC data

>   y<-c(3,5,7,18,43,85,91,98,100,130,230,487)

>   t<-mean(y)

>   n<-length(y)

>   cat("My sample is", sort(y), "\n which produces an 
      observed statistic of", t, "\n")

My sample is 3 5 7 18 43 85 91 98 100 130 230 487 

 which produces an observed statistic of 108.0833 

>  #Write the statistic of interest in terms of weights 
    (default here is 1/n)

>   calc.tw<-function(data, w = rep(x = 1, times = 

      length(data))/ length(data)) {

       d<-data

       sum(d*w) 

   }

>   calc.tw(y)

[1] 108.0833

>   t

[1] 108.0833

>   #This function takes numerical derivatives to find the 
      l_j values and NEEDS the statistic's function to be 
      written in terms of weights

>   l.j<-empinf(data = y, statistic = calc.tw, stype = "w") 

>   l.j

 [1] -105.083333 -103.083333 -101.083333  -90.083333  
     -65.083333  -23.083333

 [7] -17.083333  -10.083333   -8.083333   21.916667  
     121.916667  378.916667

>   y - mean(y) #Verify above result is correct

 [1] -105.083333 -103.083333 -101.083333  -90.083333  
     -65.083333  -23.083333

 [7]  -17.083333  -10.083333   -8.083333   21.916667  
      121.916667  378.916667

>   #Usual estimated variance

>   var(y)/n             #usual unbiased estimator

[1] 1546.598

>   (n-1)*(1/n^2)*var(y) #usual biased estimator

[1] 1417.715

>   var.linear(l.j)

[1] 1417.715

>   sum(l.j^2)/n^2 

[1] 1417.715

Example: Variance 

Find the influence function and nonparametric (-method estimate of the variance for the variance function.    
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Now, 
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This leads to an influence function of 
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The empirical influence function is 
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where 
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. Also, the empirical influence values are

l(yj) = lj = 
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How does this compare to Var(S2)?

#5.8 of Casella and Berger (2002) gives Var(S2) as 
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An estimate of the variance is then 
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Note that I could have used s2 too as an estimate for (2. 

If we multiply out terms in square part of vL, we have 
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Thus, the estimates of Var(S2) are practically the same as n grows larger in size. 
How does this compare to the variance from the (-method?
One can show that 
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where, (4 = 
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The estimated asymptotic variance is then
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Make sure you can program this empirical influence function into R and obtain the nonparametric (-method estimate of the variance.  Compare your results to those obtained through using empinf() and var.linear() functions.  

Sometimes, a statistical function can be written in terms of other statistical functions.  Let t(F) = a{t1(F), …, tm(F)}.  When working with the coefficient of variation, this becomes 


[image: image148.wmf]1

2

t(F)

t(F)

t(F)

s

==

m


Equation 2.38 on p. 48 gives a nice way to find the influence function in these cases.  The influence function for t(F) is 


[image: image149.wmf]i

m

tt

i1

i

a

L(y;F)L(y;F)

t

=

¶

=

å

¶


Example: Coefficient of variation

For this case, 


[image: image150.wmf]12

ttt

12

aa

L(y;F)L(y;F)L(y;F)

tt

¶¶

æöæö

=+

ç÷ç÷

¶¶

èøèø


where 
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 with t1(F) = (2 and t2(F) = (.  We had just found 
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This results in 
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Make sure you can program this empirical influence function into R and obtain the nonparametric (-method estimate of the variance.  Compare your results to those obtained through using empinf() and var.linear() functions.  

Other approaches to obtaining the empirical influence values 
1) Jackknife estimates

For a longer discussion about the jackknife, see Chapter 11 of Efron and Tibshirani (1993).  
Remember how the influence function looks at a statistic if a small change is made to F.  The jackknife serves a similar role by calculating statistics if one observation is removed.  The jackknife approximation to lj is ljack,j = (n – 1)(t – t-j) where t-j is t calculated with yj removed from the data set.  Think about when ljack,j would be small or large to see why this is a measure of influence.  Note that ljack,j serves as a numerical approximation to lj with ( = -(n – 1)-1; of course, this approximation gets better as n grows (see #18 on p. 65 and equation 2.37 for more on the formula for ljack,j).    The variance estimate is then 
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BMA express the variance as 
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where 
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 is the estimated bias.  

Notes:

· Notice the estimated bias is close to being an average of all of the deviations that t-j is from t.  Usually, one does not see the bias represented in a jackknife estimated variance formula.  Of course, if you choose an estimator with little if any bias, the bias is not going to play much of a role.  
· The jackknife is often thought of as a special type of bootstrap.  In this case, resamples of size n – 1 are taken without replacement.  Note that there are only n possible resamples.    

· The reason for the (n – 1) in BMA’s variance equation instead of just n is to make sure the variance is an unbiased estimator when working with the variance of the sample mean.  As Efron and Tibshirani (1993) say on p. 142 of their book, “it is somewhat an arbitrary convention.”  BMA say in Example 2.21 that “the denominator n – 1 in the formula for vjack was chosen to ensure that this happens (get unbiased estimate for the mean).”  Notice as the sample size gets large, there will be little difference between the two.  I will usually just use 
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 in order to be consistent with using ljack,j as an estimate of lj.  
· You will often see (maybe more frequently?) the following formula used to estimate a variance with the jackknife: 
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 (see p. 141 and 301 of Efron and Tibsharini, 1993) or 
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When n is large, there will be little difference between the estimators. 
Example 2.21: Average

This provides a nice example of how to work with the jackknife.  Suppose t = 
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Thus, 
ljack,j = (n – 1)(t – t-j) = 
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which is the same as lj found earlier in Example 2.17.  The variance is then 
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Remember that this is a biased estimate of the variance.  Notice the variance given in example 2.21 is 
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, the unbiased version of the variance, which comes about through using BMA’s vjack.  
2) Empirical influence values via regression
Earlier, we saw that 
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If the EDF for the bootstrap resample is denoted by 
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, look what happens when we use the plug-in principal again, 



[image: image171.wmf]n

tj

j1

1

ˆˆˆ

t(F)t(F)L(y;F)

n

**

=

=+

å

&


BMA rewrite this expression so that one focuses on the frequency that a y is a yj to obtain
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where the 
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 are the number of times that y equals yj for j = 1, …, n in a single resample.  Remember the way to think about the multinomial distribution with respect to resampling.  The 
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 are like the observed frequencies for each yj category from a multinomial with all its probabilities equal to 1/n.  
This approximation produces a way to use a regression model to estimate the lj.  Thus, take R resamples and use these as your regular “data” in a regression analysis.  Fit a regression model to a response variable of 
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where the jth “explanatory variable” value is 
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 are the “parameter” coefficients to be estimated. 
Notes: 

· Only n-1 
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 values are used since they sum to n (don’t need them all).  
· 
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 so the last lj can be found (not responsible for showing this sum result).  

With the 
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, one can find the variance to be 
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where 
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 as the estimated values from the regression analysis.   
General comments by BMA

· The variance procedures using the regression model and using the jackknife tend to overestimate. 
· vL = 
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 will typically underestimate.  
Example: AC data (emp.inf.R) 

The purpose here is to show how the jackknife and regression method can be used to estimate the empirical influence values, lj, and then get an estimated variance.  

>   #Usual estimated variance

>   var(y)/n             #usual unbiased estimator

[1] 1546.598

>   (n-1)*(1/n^2)*var(y) #usual biased estimator

[1] 1417.715
>  calc.t<-function(data, i) {

      d<-data[i]

      mean(d) 

    }

>   #Do bootstrap

>   set.seed(9182)

>   boot.res<-boot(data = y, statistic = calc.t, R = 999, 

      sim="ordinary") 

>   #jackknife - Equation 2.42

>   l.jack<-empinf(data = y, statistic = calc.t, stype = 
      "i", type = "jack") 

>   #regression estimates - Equation 2.46

>   l.reg<-empinf(boot.out = boot.res)

>   data.frame(l.reg, l.jack)

         l.reg      l.jack

1  -105.083333 -105.083333

2  -103.083333 -103.083333

3  -101.083333 -101.083333

4   -90.083333  -90.083333

5   -65.083333  -65.083333

6   -23.083333  -23.083333

7   -17.083333  -17.083333

8   -10.083333  -10.083333

9    -8.083333   -8.083333

10   21.916667   21.916667

11  121.916667  121.916667

12  378.916667  378.916667

>   #Finding variance using var.linear() or simply equation 
      2.36 with app. empirical influence values

>   var.linear(l.jack)

[1] 1417.715

>   var.linear(l.reg)

[1] 1417.715

>   sum(l.jack^2)/n^2 

[1] 1417.715

>   sum(l.reg^2)/n^2  

[1] 1417.715
Question: Why is it important to find these variances?
  

Double bootstrap for variance estimation

The double bootstrap provides one more way to estimate a variance.  Section 3.9 discusses the double bootstrap in more detail, but we will start discussing here to help with variance estimation.  
In Section 2.4, we examined 
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where V is an estimator of Var(T|F) (see next line after equation 2.11)
.  We can estimate V with 
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where now M is the number of resamples from 
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.  Notes: 

· We did not use any particular functional form of V in terms of the SAMPLE itself.  Only the bootstrap is used to estimate V through RESAMPLES.  
· This result does not rely on a linear approximation unlike for vL. 
Often, we will want to calculate 
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where 
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.  If we did not have a functional form for V to begin with, you would not have a functional form for V (unless you used the nonparametric (-method ().  So, let’s repeat the idea we had when working with 
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Suppose for r = 1, …, R resamples, we want to calculate 
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In order to get the variance part, take m = 1, …, M resamples (say, re-resample if you want to) from the rth resample to calculate 
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where 
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.  I use the double  on trm to emphasize that it is the statistic’s value calculated on the “re-resample” (similar to Section 3.9 notation).  Thus, the resamples are taken from 
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There are R(M+1) = RM + R total resamples needed.  The R is for the original resample, and the RM is for the total number of re-resamples taken.  BMA caution about the time needed to implement the double bootstrap here; however, remember this book was written in 1997 when 100MHZ processors were fast!  

Example: AC data (double_boot.R) 

The usual calc.t() function will call a new boot() itself to implement the double bootstrap part.  The calc.t2() function calculates the usual statistic again, but this is used to help with the variance calculation through the double bootstrap.   

>   #Find start time

>   start.time<-proc.time()

>   M<-100 #BMA recommend 50-200

>   R<-999

>   calc.t2<-function(data, i) {

       d2<-data[i]

       mean(d2) 

    }

>   calc.t<-function(data, i) {

       d<-data[i]

       boot.res.M<-boot(data = d, statistic = calc.t2, R = 

         M, sim="ordinary")

       #Testing

       #cat("Show d: ", d, "\n")

       #cat("Show v:", var(boot.res.M$t), "\n")  

       v.boot<-var(boot.res.M$t
)     

       c(mean(d), v.boot)

    }

>   #Testing

> calc.t(data = y, i = 1:length(y)) 

[1]  108.0833 1440.3379

>   set.seed(9182)

>   boot.res<-boot(data = y, statistic = calc.t, R = R, 

      sim="ordinary") 

>   z.star<-(boot.res$t[,1]-t)/sqrt(boot.res$t[,2])

>   #Examine the standard deviations produced by the double 

       boot

>   summary(sqrt(boot.res$t[,2]))

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  5.322  20.310  36.130  33.450  43.420  67.780 

>   hist(x = sqrt(boot.res$t[,2]), main = "S.D. produced by 
      double bootstrap", xlab = expression(sqrt(v[r]^"*")))

>   abline(h=0)

>   segments(x0 = sqrt(var(y)/n), y0 = -5, x1 = 

      sqrt(var(y)/n), y1 = 10, col = "red", lwd = 2)
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>   #Actual standard deviation of y_bar using usual formula 
       of s/sqrt(n)

>   sqrt(var(y)/n)

[1] 39.32681

Compare the usual sample variance to that obtained from the double bootstrap part.  Notice how I was able to keep these 
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Questions:

· Why do you think the histogram is bimodal?

· Was this really that time consuming? ( 
>   #Find end time and total time elapsed

>   end.time<-proc.time()

>   save.time<-end.time-start.time

>   cat("\n Number of minutes running:", save.time[3]/60, 
         "\n \n")

 Number of minutes running: 0.1211667 

Booth and Sarkar (1998) has shown that a larger number of resamples are needed for V.  I would expect the same would hold here through using the double bootstrap to estimate a variance at each resample.  Here is part of my same output through using M = 800.  The same seed number as before is used here for simplicity reasons.      

>   summary(sqrt(boot.res$t[,2]))

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

  6.035  19.820  36.800  33.540  44.960  66.320

>   cat("\n Number of minutes running:", save.time[3]/60, 
         "\n \n")

 Number of minutes running: 0.8866667
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Section 2.8: Subsampling Methods 

Read this section on your own.  You are not responsible for the material in this section.
�Hard to estimate the 99th percentile when have only 99 values of t* - think of how variable this would be from set of R = 99 resamples to another set of R = 99 resamples; this thought process is a key to deciding on R


�Not totally sure what they are doing


�Does not matter what you put in a statistical functional then - F or F_hat 


�The same as for (1 since this is a pivotal statistic


�p = sin2(x) means 1 - p = cos2(x); dp = 2sin(x)cos(x) dx and then do the integral INT(2 * dx) = 2x; subsitute back sin(x) = sqrt(p) which implies x = arcsin(sqrt(p))


�I also incoporated some ideas from Efron and Tibshirani (1993, p. 81)


�The -3 part makes the kurtosis of a normal random variable equal to 0


�p. 393-397 give students


�SUM y * P( ) = y ( P( ) since only one possible value =  y(1 = y; Also, see #2.1 on p.438 int(a(y) dH_x) = a(x).  


�Page 398-9 of Lehmann (1999) has a nice derivation for the general kth central moment case, and he does not multiply everything out first (need to be careful with the mu in (y-mu)^k)


�Use in an approximately pivotal statistic.  Discuss how to incorporate code inside of a calc.t() function - similar to the upcoming double boot example (will see examples in Chapter 3)


�On p. 53, BMA say V = v(F_hat) is an estimate of Var(T|F_hat).


�Could use the plug-in estimate (biased estimate of the variance)


�Probably due to the large y value (487) being in the re-resamples sometimes
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