Boot1.108

Introduction to the bootstrap

The BIG picture for frequentist-based statistics

Suppose we want to estimate the mean GPA of all UNL students. In order to do it formally, we would define the following quantities:

1) Population: All objects of interest

All students at UNL

2) Random variable: A characteristic of the population

Let Y be a random variable denoting GPA

3) Parameter: Numerical summary measure of a population characteristic

Let denote the population mean. This is a fixed quantity

4) Probability distribution for the population: Provides a function to show how the values of the random variable are distributed

PDF is f(y) and CDF is F(y)

Notation: We will often simply use “F” to denote the CDF and this will be a general way to give the distribution. For example, we can say Y ~ F.

5) Simple random sample

Suppose a sample of size n is taken from the population in a representative manner and every object has an equal probability of being selected. 	Comment by Bilder: Assume infinitely size population

6) Sample: Subset of the population

Random variables – Y1, Y2, …, Yn
Observed values – y1, y2, …, yn

7) Statistic: Numerical summary measure used to describe a sample characteristic

Let T be the sample mean. Remember that T is a random variable and has an observed value of t.

Note that T is an estimator of and t is an estimate of

8) Based upon the statistic(s) in the sample, we will make inferences about the parameter in the population with a certain level of accuracy

Where does this level of accuracy come from?

Sampling distributions of statistics

9) What is the true sampling distribution?

Suppose the population has a size of N and a sample of size n is taken from it. There are NCn different samples with equal probabilities of being obtained. The corresponding fixed number of values for T can then be found with the corresponding probabilities of being observed.

Suppose the population has an infinite size. There are an infinite number of samples of size n. The distribution of T cannot be truly characterized unless something is said about the population probability distribution.

[bookmark: dist_app]Here are three ways to obtain or approximate the sampling distribution of T:
a) Assume a probability distribution for the population

Let Y1, Y2, …, Yn F. This will lead to the derivation of a distribution for the statistic T, call this G.

Problem: How often can one be absolutely sure that Y1, Y2, …, Yn F?

Thus, this method usually ends up being an approximation.

b) Find the asymptotic distribution for the statistic.

For example, where X has a particular distribution. If the Central Limit Theorem works, X~N(0,2) and Var(Yi) = 2.

Problems:
· How often does one take a sample of size ?
· What happens at a fixed sample size of n?
· How do we obtain 2?
· There may be times when we want the distribution of some function of T, say h(T). We can use a -method approximation for h(T) using a first-order Taylor series approximation. How good is this approximation?

c) Use the bootstrap!

Because F is unknown, the bootstrap replaces it with an estimate denoted by and essentially tries to do the same types of things as you would in part a). This estimated CDF could be

· The EDF (nonparametric bootstrap)
· The CDF with observed estimates replacing the parameters (parametric bootstrap)

Variations on this “plug-in principle” – substitute estimates for their true values – include a semiparametric bootstrap (some assumptions about F, but not as many as with a parametric bootstrap) and altering so that an assumption is true (hypothesis testing).

Once you have the sampling distribution, what can you do with it?

· Estimate bias and variance
· Confidence intervals and hypothesis tests

History of the bootstrap

Bradely Efron from Stanford (https://statistics.stanford.
edu/people/bradley-efron) is usually credited with the idea, although others had proposed parts of it before. Some places where the bootstrap was discussed initially by Efron include:

· 1977 Reitz Lecture at IMS meetings
· 1979 Annals of Statistics and SIAM Review papers

Efron usually attends JSM, but he missed JSM 2007 for an important reason:

[image: http://www.amstat.org/images/bush_efronfull.jpg]

Efron received the National Medal of Science from President Bush! From the ASA website in 2007:

In presenting the medal to Efron on July 27, President Bush cited Efron's "momentous" intellectual achievements, mentioning in particular Efron's "bootstrap re-sampling technique."

Efron is a good speaker, and I recommended attending one of his JSM presentations.

Where did the “bootstrap” name come from? Because one uses rather than F, one may initially think you are abusing your data.

The parametric bootstrap uses “statistics” as “parameters”. The nonparametric bootstrap leads to the taking “samples” from your original “sample”.
[image: fronta]
This motivated John Tukey to relate the statistical procedure to the classic book The Adventures of Baron Munchausen by Rudolph Erich Raspe. In the book, Baron Munchausen was at the bottom of a lake. In order to get out, he pulled himself up by his bootstraps. Tukey thought that using the sample to generate more data is like the trick by the Baron. Thus, Tukey named it the “bootstrap”.

There was a 1989 movie based on the book as well. Interestingly, the Baron uses his pony tail rather than his bootstraps:

[image:]

[image:]
[image:]

Here are some links regarding the book:

· http://authorama.com/book/adventures-of-baron-munchausen.html
· http://homepage.ntlworld.com/forgottenfutures/munch/munch.htm

Below is an excerpt from Efron (Annals of Statistics, 1979) concerning other names that he considered:

[image: Sprite 7]

A few things happened in the 1990s that led to the acceptance of the bootstrap for not just statisticians but also non-statisticians to regularly use:
· Increase in computer speed: Most actual applications of the bootstrap require the use of Monte Carlo simulation.
· Books: Efron and Tibsharini (1993) and Davison and Hinkley (1997). Both books came with a set of S-Plus functions that could automatically implement the bootstrap.

What is the current state of research in this area?

Much of the main research on the bootstrap was done in the 1980s and 1990s.

Most of the research into the bootstrap itself is now done in the very mathematical statistics journals like the Annals of Statistics. The use of the bootstrap to solve statistical problems is very active in the statistical literature and now in the non-statistical literature!

What are we going to do?

The bootstrap is most helpful in problems where standard inference procedures do not work well. These procedures can be from a diverse set of areas that often take a large introduction before a student can even get to the bootstrap part. For this reason, I will focus on settings where standard inference procedures do work well because all of you will already be familiar with them.

Much of my notes are developed from my STAT 950 course. I used Davison and Hinkley’s (1997) textbook in the course. There were a few quirks in their book, such as “(1 – 2)100%” confidence levels rather than
“(1 –)100%” levels. I decided to keep these quirks in case you want to use this book for more detailed explanations.

Nonparametric bootstrap

Consider the following set-up:
· Y1, …, Yn are iid with CDF F.
· We are interested in estimating a parameter by a statistic T.
· The CDF of T – is denoted by G. More formally, we can denote this by G(t|F) to emphasize that the Yi’s, which T is a function of, come from a distribution F.
· The 1 – quantile of the distribution for T – is denoted as G-1(1 – |F).
·
 is the EDF

We can derive a “basic” confidence interval for as follows:

Thus, the (1 – 2)100% confidence interval for is calculated as

Notice that the “lower” distribution quantile is in the upper limit and the “upper” distribution quantile is in the lower limit. This happens with other confidence intervals too, but you just may have never noticed it. For example, derive the t-based confidence intervals for a population mean. The same quantile reversal happens. Because the t-distribution is symmetric, you may have not noticed it!

We need to know F in order to calculate the previous interval due to the needed distributional quantile. Instead, we can use the bootstrap to estimate this quantile! This is simply done by replacing F with . The (1 – 2)100% basic bootstrap confidence interval for (a.k.a., “hybrid confidence interval”) is
	

t – < < t –

What do these quantiles represent?

Let be a RANDOM SAMPLE from . Observed values of this random sample are denoted as . Let be the statistic of interest calculated from with an observed value of . The CDF is the CDF of .

How do you actually calculate the quantiles in the interval? We will estimate these quantiles using a special type of MC simulation!

Think about how you would estimate a quantile G-1(1 – |F) if you knew the actual parametric distribution represented by F. First, take a large number of random samples from F of size n. Second, for each sample, find the statistic. Below is a diagram demonstrating this process:

where yri represents the ith observation in the rth sample. For a large R relative to , the (1 –)th observed quantile from the t1 – , …, tR – values will be a good estimate of G-1(1 – |F).

Because we do not actually know F, we take our samples from . Below is a diagram demonstrating this process:

where represents the ith observation in the rth resample. For a large R relative to , the (1 –)th observed quantile from the values will be a good estimate of . Again, remember that the whole purpose of using was to estimate G-1(1 – |F).

Why do we have rather than t1 – , …, tR – ?

Of course, would be unknown in a real application so it make sense that we are replacing with its estimator t. However, there is actually a more in depth reason for it. One could say “ is to F as t is to .” Essentially, t is like the “parameter” for .

In a more mathematical way, we can think of as a statistical function t(F). Essentially the function t() gives an “algorithm” of how to calculate when F is known. For example, perhaps is simply the mean:

 if y is continuous random variable

or

 if y is discrete random variable

[bookmark: stat_func]When the distribution is , we calculate as

because the EDF assigns a probability of 1/n to each value in the sample.

Also, you can think of , where is the EDF for a resample . Therefore, to emulate

t – = –

we use

t – t = –

How do we actually perform resampling?

Remember that y1, …, yn are the observed values from a RANDOM SAMPLE of size n from F. Thus, every value has an equal probability of being chosen from the population.

For a sample from to form a resample, you can think of y1, …, yn as forming n categories used with a multinomial distribution involving n trials. Each category with the multinomial distribution has an equal probability of being chosen (1/n). Thus, you could observe

(0, 0, 2, 1, 1, …, 1)

as the counts in a multinomial vector of length n. In this case, this means that y1 was observed 0 times, y3 was observed 2 times, and yn was observed 1 time. Thus, the resample may have

Equivalently, a resample results from one simply “sampling with replacement” from y1, …, yn without thinking about the multinomial connection.

The (1 – 2)100% basic bootstrap interval for is again

t – < < t –

where we use MC simulation to estimate and . Define as the R ordered values from this simulation. Then the quantiles are estimated by

 for

and

 for

For example, if R = 999 and = 0.05, I would find and for a (1 – 20.05)100% = 90% confidence interval.

Why are we using R + 1 rather than just R?

There are many ways to define a quantile. In fact, the R software package provides 9 different ways in the quantile() function! I am using type = 1 in the function which is the way defined in Davison and Hinkley (1997, p. 18-19).

What if (R + 1) is not an integer?

One could use interpolation, but it is easier to just choose an R and so that this does not happen!

Notice that the (1 – 2)100% basic bootstrap confidence interval becomes

t – and t –

which is equivalent to

2t – and 2t –

Other bootstrap intervals will be discussed later.

Example: Air conditioning data (AC.R)

The data for this example is taken from p. 4-5 of Davison and Hinkley (1997), and it is used throughout their Chapter 2. The data consists of n = 12 failure times (number of hours) of air-conditioning equipment on a jet. It is of interest to estimate mean failure time.

Below is the data and a few plots:

> y <- c(3,5,7,18,43,85,91,98,100,130,230,487)
> t <- mean(y)
> t
[1] 108.0833

> #EDF
> par(pty = "s", mfrow = c(1,2), lend = "square")
> plot.ecdf(x = y, verticals = TRUE, do.p = FALSE, main =
 "EDF for AC failure times", lwd = 2, xlim = c(0,600),
 panel.first = grid(), ylab = expression(hat(F)), xlab =
 "y")
> #Notice the "rate" parameter is 1/scale parameter – I am
 using MLE which is sample mean
> curve(expr = pexp(q = x, rate = 1/t), xlim = c(0, 600),
 col = "red", add = TRUE)

> #QQ-Plot
> exp.quant <- qexp(p = seq(from = 1/(length(y)+1), to = 1-
 1/(length(y)+1), by = 1/(length(y)+1)), rate = 1/t)
> plot(y = sort(y), x = exp.quant, main = "QQ-Plot for AC
 failure times", ylab = "y", xlab = "Exp. quantiles",
 panel.first = grid(), ylim = c(0,600))
> data.frame(exp.quant, y)
 exp.quant y
1 8.651283 3
2 18.055762 5
3 28.357204 7
4 39.744920 18
5 52.475303 43
6 66.907821 85
7 83.568940 91
8 103.274862 98
9 127.392961 100
10 158.486598 130
11 202.310619 230
12 277.228276 487

> abline(a = 0, b = 1, col = "red")
[image:]

The authors hypothesize that an Exponential distribution may model the data well, so that is why I included one on the plot. What do you think about using this distribution to model the data?

The goal is to calculate a confidence interval for the mean number of hours the equipment lasts until failure. Let’s take some resamples!

> #One resample
> set.seed(8912)
> y.star <- sample(x = y, replace = TRUE)
> y.star
 [1] 98 7 487 91 43 85 7 487 100 3 230 91

> table(y.star)
y.star
 3 7 43 85 91 98 100 230 487
 1 2 1 1 2 1 1 1 2

> mean(y.star) # t*
[1] 144.0833

 = y8 = 98, = y3 = 7, …, = y7 = 91, and = 144.08

Below is another way to find this same resample which will be important later.

> set.seed(8912)
> index.star <- sample(x = 1:12, replace = TRUE)
> y[index.star]
 [1] 98 7 487 91 43 85 7 487 100 3 230 91

Let’s take 4,999 resamples. This large of a number of resamples is taken so that we can obtain a good estimate of the extreme quantiles needed for the interval.

> #Large number of resamples and calculate t* for each
> R <- 4999
> t.star <- numeric(R)
> set.seed(8912)

> for (r in 1:R) {
 y.star <- sample(x = y, replace = TRUE)
 t.star[r] <- mean(y.star)
 }

> #EDF
> plot.ecdf(x = t.star - t, verticals = TRUE, do.p = FALSE,
 main = "EDF for t* - t", lwd = 2, panel.first = grid(),
 ylab = “EDF”, xlab = "t* - t")
> hist(x = t.star - t, xlab = "t* - t", main = "Histogram
 for t* - t")

[image:]

> alpha <- 0.025
> order.val <- c((R+1)*alpha, (R+1)*(1-alpha))
> sort(t.star)[order.val]
[1] 46.41667 189.16667
> quantile(x = t.star, type = 1, probs = c(alpha, 1-alpha))
 #type = 1 is inverse of EDF
 2.5% 97.5%
 46.41667 189.16667

> #(1-2*alpha)100% basic bootstrap interval
> low <- 2*t - sort(t.star)[(R+1)*(1-alpha)]
> up <- 2*t - sort(t.star)[(R+1)*alpha]
> data.frame(low, up)
 low up
1 27 169.75

The 95% interval is 27.00 < < 169.75.

Question: Based on the histogram, do you think the central limit theorem would work this data?

The boot package provides an easier way to handle the resampling process and to perform the necessary calculations. This package was originally a library of S-Plus functions written for Davison and Hinkley (1997). Later, the code was updated for R and put into a package. This package comes with the default installation of R, but you need to still put the package on the search path in order to use it. Below is how you use the boot() function within the package:

> library(boot)

> #Function to calculate statistic
> calc.t <- function(data, i) {
 d <- data[i]
 mean(d)
 }

> #Try it
> calc.t(data = y, i = 1:length(y))
[1] 108.0833

> #Try it again
> set.seed(8912)
> calc.t(data = y, i = sample(x = 1:length(y), size = 12,
 replace = TRUE))
[1] 144.0833

> #Do bootstrap
> set.seed(8912)
> boot.res <- boot(data = y, statistic = calc.t, R = 4999,
 sim = "ordinary")
> boot.res

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = y, statistic = calc.t, R = 4999, sim = "ordinary")

Bootstrap Statistics :
 original bias std. error
t1* 108.0833 -0.1996899 38.16035

Comments:
· The boot() function always needs a function to calculate the statistic of interest. This is the purpose of the calc.t() function.
· The boot() function will pass into the calc.t() function data as the first argument and a set of indices for the data as the second argument. This process is repeated R + 1 times. The “R” corresponds to the number of resampled index sets and the “+1” is for the observed data itself with the indices 1, 2, …, n. On your own, put some print() functions in calc.t() and try running boot() with a small R to see this.
· Sometimes you will need to pass into calc.t() additional arguments beyond data and i needed for the calculation. When this occurs, simply define the arguments in calc.t() as you would normally with any function and pass in the values through boot() which has a … component.
· Suppose y was a one column data frame instead of a vector. How would you change the calc.t() function to get everything to work?
· The default printing of an object created with the boot() function produces:

	original
	bias
	std. error

	t
	

	

where . We will discuss the last two columns shortly.

Further exploration of the resulting object leads to the following:

> names(boot.res)
 [1] "t0" "t" "R" "data" "seed"
 "statistic"
 [7] "sim" "call" "stype" "strata"
 "weights"
> boot.res$t0 # t
[1] 108.0833

> head(boot.res$t) # t*
 [,1]
[1,] 96.7500
[2,] 106.2500
[3,] 236.3333
[4,] 152.1667
[5,] 51.7500
[6,] 191.4167

> boot.res$statistic
function(data, i) {
 d <- data[i]
 mean(d)
 }

> class(boot.res)
[1] "boot"
> methods(class = boot)
[1] c.boot* HTML.boot* plot.boot* print.boot*

> plot(boot.res)
[image:]

You can also obtain the actual indices used with each resample:

> save.ind <- boot.array(boot.out = boot.res, indices =
 TRUE)
> head(save.ind)
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 8 11 11 7 3 2 10 2 10 10
[2,] 3 11 7 12 5 10 2 2 5 9
[3,] 12 10 5 10 11 4 12 12 3 12
[4,] 7 10 9 8 5 2 11 7 7 12
[5,] 5 3 1 5 7 5 5 7 4 4
[6,] 6 4 7 12 4 5 10 7 10 12
 [,11] [,12]
[1,] 9 2
[2,] 7 5
[3,] 9 11
[4,] 11 11
[5,] 7 10
[6,] 12 11

While we could again find the necessary quantiles from in order to calculate the basic interval, the boot.ci() function does all of the calculations automatically:

> #CI - Different resamples were taken than with my for()
 function implementation, so that's why the interval is
 different than earlier.
> boot.ci(boot.out = boot.res, conf = 0.95, type = "basic")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = boot.res, conf = 0.95, type = "basic")

Intervals :
Level Basic
95% (23.2, 169.6)
Calculations and Intervals on Original Scale

The 95% interval is 23.2 < < 169.6. For comparison purposes, the standard t-distribution based interval is

> n <- length(y)
> alpha <- 0.025
> mean(y) + qt(p = c(alpha/2, 1 - alpha/2), df = n - 1) *
 sd(y)/sqrt(n)
[1] 21.52561 194.64105

The basic interval may not perform as well as desired (in terms of true confidence level) when the variance of T – is a function of . One solution to this problem is the use of a variance stabilizing transformation with T – . For example, suppose h() is a monotone transformation and Var(h(T) – h()) is a constant. We can find the interval for h() first and then find the interval for by using an inverse transformation h-1() on the limits. The basic interval becomes

How do you find h()?

Section 3.9 of Davison and Hinkley (1997) discuss ways that one can do this with the bootstrap. Please see Chapter 3 of my notes for STAT 950 if you are interested.

One can use an asymptotic variance stabilizing transformation. Please see Chapter 2 of my notes for STAT 950 if you are interested.

One can use the studentized interval or the BCa interval instead of the basic interval so that one does not need to find the transformation.

Bias estimation

Two additional common uses of the bootstrap are to estimate the bias of a statistic and the variance of a statistic. The bias of a statistic is

 = E(T) –

In a statistical function form, the bias becomes

 = E(T | F) – t(F)

The bootstrap estimate of the bias is then

B = E(T |) – t() = E(T |) – t

We can estimate E(T |) using MC simulation to obtain

b = – t

using R resamples. This is what was given in the output from boot.res in the last example.

We can take advantage of this bias estimate then to obtain a “better” estimate of ! Notice that

 = E(T) –

so a better estimate of is t – b = 2t – .

Bootstrap variance estimation

Suppose we were interested in the variance of Y, Var(Y) = 2, for a simple random sample. We know that an unbiased estimator of 2 is simply

for a sample of size n. Using this same process, we know that an unbiased estimator of Var(T) is

IF we had a sample of R t’s. Of course, we do not have this sample so we use the bootstrap via MC simulation to obtain

as an estimate Var(T).

Why not use the MC simulation estimate for

?

The simulation estimate is

which is the usual biased estimate of a variance. Of course, we prefer unbiased estimators!

Early recommendations for the size of R were often only a few hundred when estimating a variance. This includes Davison and Hinkley (1997). Later, Booth and Sarkar (1998) showed that a larger number of resamples are needed for vboot.

Jackknife variance estimation

The jackknife is closely related to the bootstrap. Rather than resample all observations with replacement, resamples of size n – 1 are taken without replacement. Because there are only n possible resamples, all possible resamples are generally taken.

I have seen three different versions of a jackknife estimate for a variance used. The first version is given by Davison and Hinkley (1997):

where t-i is t but the ith observation is not included in its calculation. This variance estimate comes about through using the nonparametric -method. 	Comment by Bilder: I suppose you could call this t*_-i, but I am using the most common notation here.

Without going into all of the details, a statistical function can be approximated in a similar manner as a first-order Taylor series expansion (thus, a “linear approximation”). This leads to a variance given by

where is an empirical influence value for the ith observation. Empirical influence values are often used in nonparametric statistics to understand the influence an outlier has on a statistic. One way to estimate is with the jackknife:

Including this estimate in vL leads to vjack. If you would like to know more about the nonparametric -method and empirical influence values, please see Chapter 2 of my STAT 950 lecture notes and Section 2.7.1 of Davison and Hinkley (1997).

[bookmark: boot_est_emp_inf]There are other ways to obtain including direct calculation. Davison and Hinkley (1997, p. 51) provide an interesting bootstrap-based estimate by relation to a regression model. Davison and Hinkley (1997, p. 53) say that the jackknife and regression-based estimates tend to overestimate the variance, while the direct calculation method tends to underestimate the variance.

There are two other versions of a jackknife estimated variance which are often used

where (see p. 141 and 301 of Efron and Tibsharini, 1993) and

Some of the reasoning for the different formulas is given by Efron and Tibshirani (1993, p. 142) as “it is somewhat an arbitrary convention.” Notice as the sample size gets large, there will be little difference between the three estimates.

Example: Air conditioning data (AC.R)

Below is some of the output from earlier:

> set.seed(8912)
> boot.res <- boot(data = y, statistic = calc.t, R = 4999,
 sim = "ordinary")
> boot.res

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = y, statistic = calc.t, R = 4999, sim = "ordinary")

Bootstrap Statistics :
 original bias std. error
t1* 108.0833 -0.1996899 38.16035

The bias is = -0.1997. Is this a biased statistic?

The bias corrected estimate of the mean is

> b <- mean(boot.res$t[,1]) - boot.res$t0
> b
[1] -0.1996899
> boot.res$t0 - bR
[1] 108.283

The bootstrap estimated variance (vboot) and standard deviation are

> var(boot.res$t[,1])
[1] 1456.213
> sd(boot.res$t[,1])
[1] 38.16035

Thus, .

Compare the above standard deviation to the usual estimate .

> sd(y)/sqrt(length(y))
[1] 39.32681

The jackknife estimate of the variance can be found automatically through the empinf() and var.linear() functions in the boot package:

> l.jack <- empinf(data = y, statistic = calc.t, stype =
 "i", type = "jack")
> var.linear(L = l.jack)
[1] 1417.715
> sum(l.jack^2)/length(y)^2
[1] 1417.715

Question: How would you program the jackknife variance estimation without empinf() and var.linear()?

Studentized bootstrap interval

This interval, also known as the bootstrap-t interval, was developed by Peter Hall. 	Comment by Bilder: U. of Melbourne

In the formulation of the interval, a statistic is used to try to mimic the Student’s t statistic (pivotal quantity for normally distributed data when estimating the population mean). A “studentized” version of T – is

where V is a convenient way to denote . Note that T and V are both random variables. A (1 – 2)100% C.I. for is

where z1- is the (1 –) quantile from the distribution for
Z; z1- is NOT necessarily a normal distribution quantile. Notice the use of “v” in the interval means that this is the observed value of V based on the original sample. The bootstrap version of Z uses

to produce the studentized bootstrap interval:

Be very careful with what has the on it! ONLY the z part does because this distribution is the only item unknown. The original sample is used to calculate t and v1/2. The notation denotes the estimated 1 – quantile from the distribution for Z.

Because only distributional quantiles from the resampling distribution are used for this interval, some people like to think of this as finding a new “t-table” for the specific problem of interest! Instead of using a t-distribution quantity, the bootstrap provides a new distribution table. One finds the (R+1)(1-) and (R+1) ordered values from the “table” in order calculate the interval.

What can be used for v in the interval? Remember there are no parametric assumptions about F! Possible choices include:
· Simple derivations of the variance may be possible – For example, s2/n could be used when t is the sample mean.
· Parametric -method approximation – For example, one could derive the asymptotic distribution for T (which would then include a variance) and use a sample-based estimate of the asymptotic variance.
·
Nonparametric -method approximation – In our class, we would only use .
· A bootstrap estimate – vboot

What can be used for the v part of z that is needed to calculate the interval? This is more difficult than perhaps what you would expect due to their being no parametric model for F. Possible choices include:
·
Simple derivations may be possible – For example, could be used when t is the sample mean.
· Parametric -method approximation
·
Nonparametric -method approximation –.
·
A bootstrap estimate –

It is important to understand that these v quantities need to be calculated for EACH resample! Thus, when using the jackknife variance estimate, we have

calculated for resamples r = 1, …, R. The interval is

You can see that the computational time can be somewhat long due to the “2nd layer” of resampling that needs to be done.

When using the bootstrap, we have

calculated for resamples r = 1, …, R. What is ? This is the variance calculated by taking M resamples from the rth resample (resamples are taken from):

where . Because the bootstrap is being applied within a resample, this is an implementation of the double bootstrap! There are R(M+1) = RM + R total resamples needed. The R is for the original resample, and the RM is for the total number of “re-resamples” taken.

The interval resulting from the double bootstrap is

Example: Air conditioning data (AC.R)

First, we need to write a calc.t() function that calculates the statistic and the jackknife estimated variance.

> calc.t2 <- function(data, i) {
 d <- data[i]
 mean(d)
 }

> calc.t <- function(data, i) {
 d <- data[i]
 l.jack <- empinf(data = d, statistic = calc.t2, stype =
 "i", type = "jack")
 v.jack <- var.linear(L = l.jack)
 c(mean(d), v.jack)
 }

> #Try it
> calc.t(data = y, i = 1:length(y))
[1] 108.0833 1417.7147

Notice the use of calc.t2() which is needed for the jackknife part. The statistic and variance for the original data are the same as we calculated previously.

When we run boot(), the function takes a little longer and returns information for two statistics:

> set.seed(8912)
> boot.res <- boot(data = y, statistic = calc.t, R = 4999,
 sim = "ordinary")
> boot.res

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = y, statistic = calc.t, R = 4999, sim = "ordinary")

Bootstrap Statistics :
 original bias std. error
t1* 108.0833 -0.1996899 38.16035
t2* 1417.7147 -122.8395254 876.28038

> head(boot.res$t)
 [,1] [,2]
[1,] 96.7500 501.2656
[2,] 106.2500 1414.6406
[3,] 236.3333 2987.8935
[4,] 152.1667 1258.5671
[5,] 51.7500 122.9740
[6,] 191.4167 2672.2703

> boot.res$t0
[1] 108.0833 1417.7147

Below are two ways that I can now find the 95% studentized interval:

> z.star <- (boot.res$t[,1] - boot.res$t0[1]) /
 sqrt(boot.res$t[,2])
> alpha <- 0.025
> z.quant <- quantile(x = z.star, type = 1, probs =
 c(alpha, 1-alpha))
> z.quant
 2.5% 97.5%
-4.845389 1.653259
> qt(p = c(alpha, 1 - alpha), df = length(y) - 1)
[1] -2.200985 2.200985

> low <- boot.res$t0[1] - z.quant[2]*sqrt(boot.res$t0[2])
> up <- boot.res$t0[1] - z.quant[1]*sqrt(boot.res$t0[2])
> data.frame(low, up)
 low up
97.5% 45.83392 290.5246

> boot.ci(boot.out = boot.res, conf = 0.95, type = "stud")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = boot.res, conf = 0.95, type = "stud")

Intervals :
Level Studentized
95% (45.8, 290.5)
Calculations and Intervals on Original Scale

The interval is 45.8 < < 290.5. The boot.ci() function automatically calculates the studentized interval, but you need to make sure you understand how it works! The function looks at boot.res$t to find and . The first column is always used as the statistic and the second column is always used as the variance. Similarly, the function looks at boot.res$t0 to obtain t (first element) and vjack (second element). Obviously, if you do not have everything in the correct order, you could make an error! Sometimes, a safer coding alternative is to specify where the statistics and variances are located:

> boot.ci(boot.out = boot.res, conf = 0.95, type = "stud",
 var.t0 = boot.res$t0[2], var.t = boot.res$t[,2], t0 =
 boot.res$t0[1], t = boot.res$t[,1])

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = boot.res, conf = 0.95, type = "stud", var.t0 = boot.res$t0[2],
 var.t = boot.res$t[, 2], t0 = boot.res$t0[1], t =
 boot.res$t[, 1])

Intervals :
Level Studentized
95% (48.8, 279.6)
Calculations and Intervals on Original Scale

Notice the Z quantiles are -4.85 and 1.65, and these are quite different from the quantiles used in a standard t-distribution based interval! Below is a plot of the Z distribution shown with a t-distribution with 11 degrees of freedom (see program for code).

[image:]
What do you think about using a t-distribution?

Below is how I implement the double bootstrap:

> calc.t2<-function(data, i) {
 d2<-data[i]
 mean(d2)
 }

> calc.t<-function(data, i, M) {
 d<-data[i]
 boot.res.M <- boot(data = d, statistic = calc.t2, R =
 M, sim = "ordinary")
 v.boot <- var(boot.res.M$t)
 c(mean(d), v.boot)
 }

> #Try it
> calc.t(data = y, i = 1:length(y), M = 999)
[1] 108.0833 1270.8009

> #Find start time
> start.time <- proc.time()

> set.seed(8912)
> boot.res2 <- boot(data = y, statistic = calc.t, R = 4999,
 sim = "ordinary", M = 999)

> end.time<-proc.time()
> save.time<-end.time-start.time
> cat("\n Number of minutes running:", save.time[3]/60, "\n
 \n")

 Number of minutes running: 1.315333

> boot.res2

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = y, statistic = calc.t, R = 4999, sim = "ordinary", M = 999)

Bootstrap Statistics :
 original bias std. error
t1* 108.0833 -0.1996899 38.16035
t2* 1270.8009 23.7918281 879.18462

> z.star2 <- (boot.res2$t[,1] - boot.res2$t0[1]) /
 sqrt(boot.res2$t[,2])
> z.quant2 <- quantile(x = z.star2, type = 1, probs =
 c(alpha, 1-alpha))
> z.quant2
 2.5% 97.5%
-4.812343 1.662741

> boot.ci(boot.out = boot.res2, conf = 0.95, type = "stud")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = boot.res2, conf = 0.95, type = "stud")

Intervals :
Level Studentized
95% (48.8, 279.6)
Calculations and Intervals on Original Scale

The interval is 48.8 < < 279.6. Because I am only estimating a variance in the second layer of resampling, I use a much lower number of resamples for it.

Below is a summary of the standard deviations (see program for code):
[image:]

Compare the above standard deviations to the usual estimate .

Question: Why do you think the histogram is bimodal?	Comment by Bilder: Probably due to the large y value (487) being in the re-resamples sometimes

General comments:
· The studentized interval uses somewhat of a pivotal statistic in its formation. In general, working with pivotal quantities for the bootstrap are better than with non-pivotal quantities. In simple terms, the order of convergence of the resampling distribution to the true distribution ends up being faster with a pivotal quantity than non-pivotal. This occurs because there are no unknown parameters within a pivotal quantity’s distribution.
· Similar to the basic interval, a monotone transformation, say h(), can be used with Z to hopefully obtain better results. The transformed statistic is

where is the derivative of h() with respect to T. Then

The confidence interval is

I do not see this type of transformation used as often with a studentized interval as with a basic interval.
· The studentized interval is generally thought of as one of two “best” bootstrap intervals (the other is the BCa interval). In general, you can think of a confidence interval’s true confidence level approaching the stated confidence level as n gets large. This convergence occurs faster with the studentized interval than most other intervals.
· Unfortunately, the studentized interval can be quite wide. This is due to the variance in the denominator of Z. For example, examine what would happen when there is a very small variance.

Percentile confidence interval

There are many cases in statistics where a transformation of a statistic leads to a better performing confidence interval. This is the case as well with the basic interval. Finding this transformation may not always be easy, especially in a fully nonparametric setting. One way to avoid having to find a transformation is to use percentile-based methods developed by Efron after his initial introduction of the bootstrap.

What is this “correct transformation” to use?

Suppose there is an monotone, invertible transformation of T, say U = h(T), which results in a symmetric distribution with = h() at the center of the symmetry with E(U) = (assuming U is unbiased is an assumption we get around later). Also, let K be the CDF of U – so that K-1(|F) is the th quantile from the distribution of U – .

Because of the symmetric property of this transformation and E(U –) = 0, we have the following

where K-1(1 –) and K-1() are the same distance from E(U –) = 0. Thus, K-1() = -K-1(1 –).

When deriving the basic bootstrap confidence interval for , we had

P[G-1(|F) < T – < G-1(1 – |F)] = 1 – 2
 P[T – G-1(1 – |F) < < T – G-1(|F)] = 1 – 2

where G is the CDF of T – . Using T – t to estimate the distribution of T – led us to the basic interval of

t – = 2t –

as the lower bound and

t – = 2t –

as the upper bound.

In our situation with here, this means we have

P[U – K-1(1 – |F) < < U – K-1(|F)] = 1 – 2

Using the symmetry property, we could also rewrite this as

P[U + K-1(|F) < < U + K-1(1 – |F)] = 1 – 2

When calculating the interval for , we can substitute u in for U, but how do we obtain the quantiles from K? Going back to the plug-in principal again, we can use and . Using R resamples, these quantiles are estimated by and , respectively. The lower bound of the “basic” interval becomes

 and the upper bound of the interval becomes

Because h(T) is a monotone transformation, we easily obtain the limits of the interval in terms of with

 and

Remember that the ordering of the t’s does not change when transforming back from the u’s due to the monotone transformation. Therefore, the key parts of the derivation are:

1. Use a symmetric, monotone transformation of T
2. Start with the basic interval and take advantage of the transformation used

The percentile interval is simply:

 < <

Notice where the and 1 – are located in the lower and upper limits. This is the reverse of what we saw with the basic interval. Overall, this is probably the best known bootstrap confidence interval, but it does not necessarily perform the best! Better intervals will be discussed shortly, but they are all motivated by this interval so we will start with it. 	Comment by Bilder: These types of quantiles are used in the limits of a credible interval as well.

Notes:
· Notice the percentile interval produces limits that are ALWAYS within the parameter space provided a sensible statistic is chosen. Why?	Comment by Bilder: Don't choose a statistic that can be negative if the parameter is always positive
· The basic interval does not produce limits always in the parameter space. Why? Below is a diagram that I created in a class once to explain this:

[image:]

Example: Air conditioning data (AC.R)

> boot.ci(boot.out = boot.res, conf = 0.95, type = "perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = boot.res, conf = 0.95, type = c("basic", "perc"))

Intervals :
Level Basic Percentile
95% (23.2, 169.6) (46.6, 192.9)
Calculations and Intervals on Original Scale

> alpha <- 0.025
> quantile(x = t.star, type = 1, probs = c(alpha, 1-alpha))
 2.5% 97.5%
 46.41667 189.16667

BCa confidence interval

This procedure is like the percentile interval, but it uses different quantiles than the and 1 – from the distribution of T. Thus, we will need to find a “new” , say to use when obtaining quantiles from T.

The bias-corrected accelerated (BCa) confidence interval attempts to correct for violations of two assumptions with the percentile interval:
1) h(T) is an unbiased estimate of h()
2) The variance of h(T) – h() is not a function of

The (1 – 2)100% BCa confidence interval ends up being

where

,

, () denotes the standard normal CDF, , and .

Why?

The details are given in Davison and Hinkley (1997, p. 204) and in my Chapter 5 notes for STAT 950. In summary, we are trying to correct for the bias problem by using w and the variance problem by using a. The bias correction comes about through assuming h(T) – h() ~ N(-w, 1). The variance issue is taken care of by assuming h(T) – h() ~
N(-w(), 2()) where = h() and () = 1 + a. The a looks at how the variance accelerates as a function of and it is actually a measure of skewness. Therefore, w is generally called the “bias correction” and a is generally called the “acceleration value” or the “skewness correction parameter”.

Comments:
· Note that we are not really making a normality assumption about T here. We are just assuming that some transformation exists such that we get normality. The key is that we do not ever need to specify the transformation!
·

The boot.ci() function actually uses in its calculation (I gave what Davison and Hinkley 1997 present). Note that w is an estimate of .
·
You can estimate a with . Note that boot.ci() will use the bootstrap estimate of the empirical influence values (see p. Boot.35).
·

Be careful with obtaining a that is very close to 0 or 1 resulting in problems with obtaining the (R + 1) values from the distribution of T.
· The BCa and the studentized intervals are the best bootstrap confidence interval methods. These should generally be the only intervals used in practice.

Questions:
1. What happens if w is 0? When would this occur?
2. What happens if a is 0? When would this occur?	Comment by Bilder: Think about what skewness represents – a value of 0 means a symmetric distribution!
3. Are the limits for the BCa interval always in the parameter space?

Example: Air conditioning data (AC.R)

> boot.ci(boot.out = boot.res, conf = 0.95, type = "bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = boot.res, conf = 0.95, type = "bca")

Intervals :
Level BCa
95% (56.7, 227.0)
Calculations and Intervals on Original Scale

> l.jack <- empinf(data = y, statistic = calc.t, stype =
 "i", type = "jack")
> a.jack <- 1/6 * sum(l.jack^3)/sum(l.jack^2)^(3/2)
> sum(boot.res$t[,1] <= boot.res$t0[1])/R
[1] 0.5387077
> w< - qnorm(p = sum(boot.res$t[,1] <= boot.res$t0[1])/R)
> w
[1] 0.09717866

> alpha <- c(0.025, 0.975)
> z.tilde <- w + qnorm(p = alpha)
> alpha.tilde <- pnorm(q = w + z.tilde/(1-a.jack*z.tilde))
> d <- (R+1)*alpha.tilde
> d
[1] 341.5208 4979.6474

> limit.ceil <- sort(boot.res$t[,1])[ceiling(d)]
> limit.floor <- sort(boot.res$t[,1])[floor(d)]
> data.frame(alpha, z.tilde, alpha.tilde, d, limit.ceil,
 limit.floor)
 alpha z.tilde alpha.tilde d limit.ceil limit.floor
1 0.025 -1.862785 0.06830417 341.5208 56.66667 56.66667
2 0.975 2.057143 0.99592947 4979.6474 227.08333 227.00000

Additional aspects of boot.ci()

The boot.ci() function also calculates a “normal” interval. The (1 – 2)100% confidence interval limits are

where b is the bootstrap estimate of the bias, v is the bootstrap estimate of the variance, and z1- denotes a 1 – quantile from a standard normal.

If a variance stabilizing transformation is known, one can use this with the boot.ci() function to calculate the basic bootstrap and studentized intervals.

Example: Air conditioning data (AC.R)

> boot.ci(boot.out = boot.res2, conf = 0.95, type = "all")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = boot.res2, conf = 0.95, type = "all")

Intervals :
Level Normal Basic Studentized
95% (33.5, 183.1) (23.2, 169.6) (48.8, 279.6)

Level Percentile BCa
95% (46.6, 192.9) (56.7, 227.0)
Calculations and Intervals on Original Scale

> lower <- t - b - qnorm(0.975, mean = 0, sd = 1) *
 sd(boot.res$t[,1])
> upper <- t - b - qnorm(0.025, mean = 0, sd = 1) *
 sd(boot.res$t[,1])
> data.frame(name = "Normal interval calc in boot.ci",
 lower, upper)
 name lower upper
1 Normal interval calc in boot.ci 33.49011 183.0759

If Y ~ Exp(), then ~ Gamma(n, /n) (using Casella and Berger’s parameterization, not Davison and Hinkley’s parameterization). This means that Var(T) = 2/n. Suppose we use the log transformation for T. Then the parametric -method gives us that the asymptotic variance for log(T) as

Thus, the asymptotic variance is a constant. How did I know to use the log transformation? Go in the opposite direction – find a h() such that

where c is some constant.

This transformation can be used with the boot.ci() function by writing functions for h(), h-1(), and . Because h() is simple here, I only needed to write a function for . Below is the code and output:

> hdot.func <- function(u) {
 1/u
 }
> save.tran.ci <- boot.ci(boot.out = boot.res2, conf =0.95,
 type = c"basic", "stud"), h = log, hinv = exp, hdot =
 hdot.func)
> save.tran.ci
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 4999 bootstrap replicates

CALL :
boot.ci(boot.out = boot.res2, conf = 0.95, type = c("basic", "stud"), h = log, hdot = hdot.func, hinv = exp)

Intervals :
Level Basic Studentized
95% (60.6, 250.8) (52.9, 306.2)
Calculations on Transformed Scale; Intervals on Original Scale

Below is a summary of all confidence intervals calculated for this problem:

	Interval
	Lower
	Upper

	Basic
	23.2
	169.6

	Studentized
	48.8
	279.6

	Percentile
	46.6
	192.9

	BCa
	56.7
	227.0

	Normal
	33.5
	183.1

	Basic trans
	60.6
	250.8

	Studentized trans
	52.9
	306.2

Example: MC simulation for the variance (MC_sim_var_boot.R)

The purpose here is to show how to obtain the estimated true confidence levels for the bootstrap intervals given by the Trellis plots of the Monte Carlo simulation section. Below is my R code copied directly from Tinn-R:

 mu <- 2.713333
 sigma <- 2.195581
 sigma^2
 n <- 9
 num.sim <- 500 #Number of simulations - do not use R here
 because R is number of resamples in boot section

 #Simulate data all at once
 set.seed(9811)
 y.sim <- matrix(data = rnorm(n = n*num.sim, mean = mu, sd =
 sigma), nrow = num.sim, ncol = n)
 y.sim[1,]
 var(y.sim[1,]) #t_1

##
Examine true confidence level

 library(boot)

 alpha <- 0.05

 calc.t2 <- function(data, i) {
 d2 <- data[i]
 var(d2)
 }

 calc.t <- function(data, i) {
 d <- data[i]
 n <- length(d)
 l.jack <- empinf(data = d, statistic = calc.t2, stype = "i",
 type = "jack")
 v.jack <- var.linear(L = l.jack)
 c(var(d), v.jack)
 }

 calc.t(data = y.sim[1,], i = 1:n)

 #Calculate the confidence intervals for a data set
 sim.func <- function(y, alpha = 0.05, R = 1999) {

 n <- length(y)
 t <- var(y)

 normal.based <- (n - 1)*t / qchisq(p = c(1-alpha/2,
 alpha/2), df = n - 1)

 mu.hat4 <- 1/n*sum((y - mean(y))^4)
 asym <- t + qnorm(p = c(alpha/2, 1-alpha/2))*sqrt((mu.hat4 –
 t^2)/n)

 boot.res <- boot(data = y, statistic = calc.t, R = R, sim =
 "ordinary")
 save.int <- boot.ci(boot.out = boot.res, conf = 1-alpha,
 type = "all")
 basic <- c(save.int$basic[4], save.int$basic[5])
 percentile <- c(save.int$perc[4], save.int$perc[5])
 bca <- c(save.int$bca[4], save.int$bca[5])
 student <- c(save.int$student[4], save.int$student[5])

 c(normal.based, asym, basic, percentile, bca, student)
 }

First, I test sim.func() and then estimate how long 500 simulations will take.

> set.seed(7127) #need to set seed due to bootstrap
> sim.func(y = y.sim[1,])
 [1] 1.8105389 14.5646327 0.4607171 7.4760273 0.5995811
 [6] 7.2433138 0.6934307 7.3371633 1.0480102 9.4820095
[11] -0.3918298 38.8011253

> ###################################
> #Estimate time to complete using 10 simulations
> start.time <- proc.time()

> set.seed(7127)
> save.intervals.temp <- t(apply(X = y.sim[1:10,], MARGIN =
 1, FUN = sim.func))

> end.time <- proc.time()
> save.time <- end.time-start.time
> cat("\n Number of minutes running:", save.time[3]/60, "\n
 \n")

 Number of minutes running: 0.2263333

> #Estimated number of minutes for 500 simulated data sets
> save.time[3]/60 * 500/10
 elapsed
11.31667

All 500:

> start.time <- proc.time()

> set.seed(7127)
> save.intervals <- t(apply(X = y.sim, MARGIN = 1, FUN
 = sim.func))

> end.time <- proc.time()
> save.time <- end.time-start.time
> cat("\n Number of minutes running:", save.time[3]/60, "\n
 \n")

 Number of minutes running: 13.56117

There were 19 warnings (use warnings() to see them)

> warnings()
Warning messages:
1: In norm.inter(t, adj.alpha) : extreme order statistics used as endpoints
2: In norm.inter(t, adj.alpha) : extreme order statistics used as endpoints

<EDITED>

19: In norm.inter(t, adj.alpha) : extreme order statistics used as endpoints

Why do these errors occur?

One should try to track down the code that leads to the warning message. After looking through boot.ci() and bca.ci(), I saw that norm.inter() is called to obtain the necessary quantiles. Below is the function code:

> getAnywhere(norm.inter)
A single object matching ‘norm.inter’ was found
It was found in the following places
 namespace:boot
with value

function (t, alpha)
{
 t <- t[is.finite(t)]
 R <- length(t)
 rk <- (R + 1) * alpha
 if (!all(rk > 1 & rk < R))
 warning("extreme order statistics used as
 endpoints")
 k <- trunc(rk)
 inds <- seq_along(k)
 out <- inds
 kvs <- k[k > 0 & k < R]
 tstar <- sort(t, partial = sort(union(c(1, R), c(kvs,
 kvs + 1))))

<Remainder of code is omitted>

The values of k are used to obtain the quantiles. Therefore, if rk is not greater than 1 or R, then the 1st or Rth values are taken as the interval limits.

I also extracted the values of and from the bca object in a new set of simulations. This showed that is usually very close to R!

The solution to the problem is to take a larger number of resamples for the BCa interval. For actual research, this is what I would do. Instead, to save time here, I used the results already calculated.

Below is the code that I use to summarize the intervals:

> summarize <- function(low.up, sigma.sq) {
 true.conf <- mean(ifelse(test = sigma.sq > low.up[,1],
 yes = ifelse(test = sigma.sq < low.up[,2], yes = 1,
 no = 0), no = 0), na.rm = TRUE)
 exp.length <- mean(low.up[,2] - low.up[,1], na.rm =
 TRUE)
 exclude <- sum(is.na(low.up[,1])|is.na(low.up[,2]))
 data.frame(true.conf, exp.length, exclude)
 }

> normal.based <- summarize(low.up = save.intervals[,1:2],
 sigma.sq = sigma^2)
> asym <- summarize(low.up = save.intervals[,3:4], sigma.sq
 = sigma^2)
> basic <- summarize(low.up = save.intervals[,5:6],
 sigma.sq = sigma^2)
> percentile <- summarize(low.up = save.intervals[,7:8],
 sigma.sq = sigma^2)
> bca <- summarize(low.up = save.intervals[,9:10], sigma.sq
 = sigma^2)
> student <- summarize(low.up = save.intervals[,11:12],
 sigma.sq = sigma^2)
> interval.names <- c("Normal", "Asymptotic", "Basic",
 "Percentile", "BCa", "Student")
> data.frame(interval = interval.names, rbind(normal.based,
 asym, basic, percentile, bca, student))
 interval true.conf exp.length exclude
1 Normal 0.960 15.802934 0
2 Asymptotic 0.712 5.792117 0
3 Basic 0.784 6.922735 0
4 Percentile 0.786 6.922735 0
5 BCa 0.810 7.982144 0
6 Student 0.950 32.895974 0

Please see the Monte Carlo simulation notes for plots. The simulations summarized by the plots used the actual empirical influence values to calculate variances rather than those estimated by the jackknife. Also, they used R = 4999 for the bootstrap.

Discreteness

T has a discrete distribution for the nonparametric bootstrap because there are different resamples (Davison and Hinkley 1996, p. 61). Especially when the sample size is small, one will notice this discreteness by having groups of with similar values. For example, the AC data has n = 12 leading to

> choose(2*length(y)-1, length(y)-1)
[1] 1352078

different possible resamples. Below is an annotated Figure 2.9 of Davison and Hinkley (1997) corresponding to the AC data that demonstrates this behavior:

[image:]

Seeing this type of banding is not necessarily something to be concerned about. However, very extreme cases of this may be of concern.

Notation

The notation corresponds to the expected value of T if sampling was done from F. The notation corresponds to the expected value of T if sampling was done from rather than F. The “|F” or “|” is helpful for seeing the “plug-in principle” aspect of the bootstrap. This notation is common.

Once you understand the plug-in principle, the more common notation used is E(T) to represent . This is notation it is a little shorter, and I think a little less confusing because one is working with ’s whenever the bootstrap is used.

Davison and Hinkley (1997) actually use both sets of notation interchangeably! This can be confusing then to those who are new to the notation.

Resampling for hypothesis testing

Whenever we perform hypothesis testing, we assume that the null hypothesis is true and look for evidence against it. This leads us to finding the distribution of a test statistic under H0, say F0. When using the bootstrap, we also need to assume the null hypothesis is true. This means we need to resample under the null hypothesis where is the EDF under Ho. Resampling under can be difficult for some problems!

Example: Test for one mean

H0: = 0 vs. Ha: 0 for some constant 0

The resamples are taken using modified data values of
 = yi – + 0 for i = 1, …, n. The reason for these adjusted values is to resample under . In this case,
yi – adjusts the data to have a mean of 0. Adding 0 back to the data forces the data to have a mean of 0. Thus, the data now has been adjusted to reflect the null hypothesis and resampling can proceed as usual with these adjusted data values. For further clarification, is the EDF of .

What could be used for a test statistic? 	Comment by Bilder: Hold off on discussing a studentized-like value – focus on ybar and then ybar*. I discuss studentized values later.

Example: Test for difference of two means

H0: 1 – 2 = 0 vs. Ha: 1 – 2 0

There are a number of approaches that can be used to resample under the null hypothesis. Below are three of them.

Approach #1 (Algorithm 16.2 of Efron and Tibshirani (1993, p. 224))

Our data consists of y11, …, , y21, …, where the first index in the subscripts differentiates “population #1” and “population #2”. Let and where is the mean of all yij’s. Notice that this is very similar to how the one-sample test was approached. Use a stratified resampling approach with the , j = 1,…, n1, and , j = 1, …, n2. Stratified resampling can be done in R using the strata argument in the boot() function. An example will be given shortly in the context of a different hypothesis test.

What could be used for a test statistic?

Approach #2

Combine both samples into one. Resample n1 observations with replacement to form “group #1”. Resample n2 more observations with replacement to form “group #2”.

This approach assumes the data actually come from one population if the null hypothesis is true! Therefore, the EDF under H0, , simply consists of y11, …, , y21, …, without differentiating between if the observed y came from population #1 or #2. While the equality of means would be true, it actually is using a more restrictive set of hypotheses than what I stated at the beginning of this problem. Suppose F1 = H(y) and F2 = H(y -) are CDFs for the two groups. The hypotheses are:

H0: = 0 (Distributions are the same)
Ha: 0 (Distributions are the same, but the second
 one is shifted by)

These hypotheses also mean that we are assuming equal variances. The reason for these stronger hypotheses is that we need to assume a common F0 in order to justify putting all of the y’s together into one sample.

Approach #3

Consider the following model of Yij = i + iij where ij ~ i.i.d. (0,1), i = 1, 2, and j = 1, …, ni. Using this type of underlying model assumption would not be fully nonparametric, but it may be quite reasonable.

Under H0, Yij = + iij. The estimated standardized residuals are

where is the mean of the combined samples. Also, note that one can show =.

The used is the EDF of e11, …, e2n. An important point here is that the eij’s are all IDENTICALLY distributed!

Suppose denotes a resampled eij. Through using these , REFORM the response variable as . Use these ’s as your resampled y’s under the null hypothesis.

The subscript i,j on is not used to denote whether it originally came from population i as replicate j. Rather, it is just meant to show the order in which the resampled value was obtained. For example, suppose we have e11, e12, e13, e21, and e22. One resample could be , , , , and .

This idea of resampling the residuals will be very important when we examine regression models!

Question: Why can be taken as 0 without loss of generality? 	Comment by Bilder: All it is doing is shifting the distribution - it will not change the ybar1 - ybar2 or the variances

P-value calculation

A p-value provides a measure for how much evidence exists against H0. When only large values of T indicate evidence against H0, the p-value is P(T ≥ t | F0). For example, when testing H0: = 0 vs. Ha: 0, one could use T = as the test statistic. If t = 3 is observed, one simply calculates P(T ≥ 3 | F0).

Remember that this probability is being calculated with respect to Y1, …, Yn ~ F0, NOT Y1, …, Yn ~ F. Therefore, the E(T) = 0. 	Comment by Bilder: If it was just F, then the probability would be 0.5 if F was symmetric.

The bootstrap estimates this p-value with . We can approximate this probability through taking R resamples and calculating

.

Why is the +1 in the numerator and denominator of the p-value?
· R + 1: If H0 was really true, then the original t would be just one more piece of information about the null distribution of T.
·
: t is always at least as large as itself
· See Davison and Hinkley (1997, p. 141) for more precise reasoning if interested.

Often, you will see

used instead for the p-value. As long as R is large, there will be not much difference between the two calculations.

The above p-value is contingent on only LARGE values indicating evidence against H0. If both small and large values indicate evidence against H0, there is more than one way to calculate the p-value. One common way is:

where this is typically estimated by

Another way is

when the probability distribution is expected to be approximately symmetric about 0. If the distribution is not, this p-value calculation method should not be used.

My preference is for the first method.

Example: Larry Bird (bird.R)
[image: birdcelt]
Free throws are typically shot in pairs. Below is a contingency table summarizing Larry Bird’s first and second free throw attempts during the 1980-1 and 1981-2 NBA seasons. Let X = First attempt result and Y = Second attempt result.

	
	
	Second (Y)
	

	
	
	Made
	Missed
	Total

	First (X)
	Made
	251
	34
	285

	
	Missed
	48
	5
	53

	
	Total
	299
	39
	338

Are the first free throw and the second throw outcomes independent? Test the following hypotheses:

H0: P(X=i, Y=j) = P(X=i)P(Y=j) for i = 1, 2 and j = 1, 2
Ha: Not all equal

Below is how we can enter the data into R:

> c.table<-array(data = c(251, 48, 34, 5), dim = c(2,2),
 dimnames = list(First = c("made", "missed"), Second =
 c("made", "missed")))
> c.table
 Second
First made missed
 made 251 34
 missed 48 5

In order to use the bootstrap, we will also need to convert the data into its “raw form”:

> set1 <- as.data.frame(as.table(c.table))
> set1
 First Second Freq
1 made made 251
2 missed made 48
3 made missed 34
4 missed missed 5

> set2 <- set1[rep(1:nrow(set1), times = set1$Freq), -3]
> head(set2)
 First Second
1 made made
1.1 made made
1.2 made made
1.3 made made
1.4 made made
1.5 made made

> tail(set2)
 First Second
3.33 made missed
4 missed missed
4.1 missed missed
4.2 missed missed
4.3 missed missed
4.4 missed missed

> table(set2)
 Second
First made missed
 made 251 34
 missed 48 5

To test for independence, I can perform a Pearson chi-square test. The statistic is:

where

· nij is the row i and column j cell count
·
 is the estimated expected cell count under independence
· ni+ is the row i total
· n+j is the column j total
· n is the overall sample size (n++)
· I is the number of rows
· J is the number of columns

Normally for this test, we use a approximation for X2 because UNDER H0. The critical value for the test is and the p-value is p =
P(A > x2) where A ~ and x2 is the observed value of the test statistic.

Question: Is n large enough for X2 to be approximated by a sufficiently well? Instead of looking at n itself, rules of thumb for the approximation are typically given as are > 1 or 5.

Below is my R code for the Pearson chi-square test for independence:

> chisq.test(x = set2[,1], y = set2[,2], correct = FALSE)

 Pearson's Chi-squared test

data: set2[, 1] and set2[, 2]
X-squared = 0.2727, df = 1, p-value = 0.6015

The observed value of the test statistic is x2 = 0.2727 and the p-value is 0.6015. We do not reject H0 because the p-value is large. Thus, there is not sufficient evidence against the independence of Larry Bird’s first and second free throw attempt outcomes.

The X2 statistic is also ideal to use with the bootstrap because it is an asymptotically pivotal statistic for a fixed size contingency table.

There are two ways to perform the resampling (this was on my PhD comprehensive exam).

1) Independently resample with replacement the First variable values and the Second variable values. Put these values back together to form the data set.

Resampling this way is like saying the row variable, X, has its own marginal distribution, A, and the column variable, Y, has its own marginal distribution, B. We then resample from their corresponding EDFs, and , independently.

Question: What named distribution would A and B represent?	Comment by Bilder: Each would have its own multinomial (binomial) distribution with probability parameters equal to the estimated marginal probabilties of the table

2)

Find the expected counts under independence, for i = 1, …, I and j = 1, …, J and use the in a multinomial distribution in order to take the resamples. This method is discussed on page 150-1 of Bilder and Loughin (2014) and in my fiber.R program on the book’s website.

Be careful: With both of these approaches, one needs to perform a sort of “conditional” resampling approach. We need to make sure each contingency table resulting from a resample has the same size as the original 22 table.

Why? X2 is an asymptotically pivotal statistic with a distribution of . This distribution changes if the size of the contingency table changes!

For example, suppose for another contingency table, there are I = 3 rows and row #1 has a small number of counts. Through the resampling process, there may be no observations from row #3 in a resample. The way to resolve this problem is to throw out resamples that do not have the same size as the original contingency table. Of course, if you throw out a lot, you may question if the bootstrap is appropriate for this setting!

This is something to be careful about when working with contingency tables. In other problems, you should look out for problems like this too!

To use the boot() function with the first resampling method, I first need to form a data frame where the row values and column values are concatenated into one data frame column:

> set3 <- rbind(data.frame(index = set2[,1], table.part =
 "X"), data.frame(index = set2[,2], table.part = "Y"))
> head(set3)
 index table.part
1 made X
2 made X
3 made X
4 made X
5 made X
6 made X

> tail(set3)
 index table.part
671 missed Y
672 missed Y
673 missed Y
674 missed Y
675 missed Y
676 missed Y

The table.part variable in the data frame allows me to use boot() with the strata option so that I can perform stratified resampling:

> calc.t <- function(data, I, dim.table) {
 d <- data[i,]
 x <- d[d$table.part == "X",] #Notice use of ==
 y <- d[d$table.part == "Y",]
 x.sq <- chisq.test(x = x$index, y = y$index, correct =
 FALSE)
 ck.row <- nrow(x.sq$observed) == dim.table[1]
 ck.col <- ncol(x.sq$observed) == dim.table[2]
 c(x.sq$statistic, ck.row, ck.col)
 }

> #Test calc.t with observed data
> calc.t(data = set3, i = 1:nrow(set3), dim.table =
 c(nrow(c.table), ncol(c.table)))
X-squared
0.2727363 1.0000000 1.0000000

> set.seed(9180)
> R <- 4999
> boot.res <- boot(data = set3, statistic = calc.t, R = R,
 sim = "ordinary", strata = set3$table.part)
> boot.res

STRATIFIED BOOTSTRAP

Call:
boot(data = set3, statistic = calc.t, R = R, sim = "ordinary", strata = set3$table.part)

Bootstrap Statistics :
 original bias std. error
t1* 0.2727363 0.7359547 1.395461
t2* 1.0000000 0.0000000 0.000000
t3* 1.0000000 0.0000000 0.000000

There were 50 or more warnings (use warnings() to see the first 50)

> warnings()
Warning messages:
1: In chisq.test(x = x$index, y = y$index, correct = F) :
 Chi-squared approximation may be incorrect
2: In chisq.test(x = x$index, y = y$index, correct = F) :
 Chi-squared approximation may be incorrect

<EDITED>

49: In chisq.test(x = x$index, y = y$index, correct = F) :
 Chi-squared approximation may be incorrect
50: In chisq.test(x = x$index, y = y$index, correct = F) :
 Chi-squared approximation may be incorrect

> #p-value
> (1 + sum(boot.res$t[,1]>=boot.res$t0[1]))/(R + 1)
[1] 0.6052

Comments:
· The warnings are due to small counts in a contingency table cell for a resample.
· There was not a good way to get around the situation of having I < 2 and J < 2 for a general IJ contingency table being used with these functions. The chisq.test() will produce an error message and will not calculate a statistic which may cause boot() to stop. Thus, my check of table size may not be needed here, but it can be helpful in larger contingency table problems.
· Here’s how you can find one of the resampled contingency tables:

> save.index <- boot.array(boot.res, indices = TRUE)
> i <- save.index[3,] #Find 3rd resample
> d <- set3[i,]
> x <- d[d$table.part == "X",]
> y <- d[d$table.part == "Y",]
> x.sq <- chisq.test(x = x$index, y = y$index, correct =
 FALSE)
> x.sq$observed
 y$index
x$index made missed
 made 260 22
 missed 50 6
Warning message:
In chisq.test(x = x$index, y = y$index, correct = FALSE) : Chi-squared approximation may be incorrect

> x.sq$statistic
X-squared
0.5217657

> boot.res$t[3,]
[1] 0.5217657 0.0000000 0.0000000

> c.table #Original
 Second
First made missed
 made 251 34
 missed 48 5

From the resampled table above: = 282, = 56, = 310, and = 28; . From the observed table: n1+ = 285, n2+ = 53, n+1 = 299, and n+2 = 39; x2 = 0.2727.

·
The p-value is 0.6052 so there is not sufficient evidence to reject independence. Notice how close this p-value is to what we obtained from a approximation.

How well is X2 approximated by a ? With the p-values being very similar, this provides a little information, but not enough to make a judgment. Below is my function that examine the approximation with respect to the bootstrap results.

summarize <- function(result.set, statistic, df, R,
 color.line = "red") {

 par(mfrow = c(1,3), mar = c(5,4,4,0.5))

 # Histogram
 hist(x = result.set, main = "Histogram", freq = FALSE,
 xlab = expression(X^{"2*"}))
 curve(expr = dchisq(x = x, df = df), col = color.line,
 add = TRUE, lwd = 2)
 segments(x0 = statistic, y0 = -10, x1 = statistic, y1 =
 10)

 # Compare CDFs
 plot.ecdf(x = result.set, verticals = TRUE, do.p = FALSE,
 main = "CDFs", lwd = 2, col = "black",
 xlab = expression(X^"2*"), ylab = "CDF")
 curve(expr = pchisq(q = x, df = df), col = color.line,
 add = TRUE, lwd = 2, lty = "dotted")
 legend(x = df, y = 0.4, legend = c(expression(Perm.),
 substitute(chi[df1]^2, list(df1 = df))), lwd = c(2,2),
 col = c("black", color.line), lty = c("solid",
 "dotted"), bty = "n")

 # QQ-Plot
 chi.quant <- qchisq(p = seq(from = 1/(R+1), to = 1-
 1/(R+1), by = 1/(R+1)), df = df)
 plot(x = sort(result.set), y = chi.quant, main = "QQ-
 plot", xlab = expression(X^{"2*"}), ylab = "Chi-square
 quantiles")
 abline(a = 0, b = 1)

 par(mfrow = c(1,1))

 # p-value
 (1 + sum(result.set >= statistic))/(R + 1)
}

When I run the function, the following is produced:

> win.graph(width = 9, height = 6, pointsize = 20)
> summarize(result.set = boot.res$t[,1], statistic =
 boot.res$t0[1], df = (nrow(c.table)-1)*(ncol(c.table)-
 1), R = boot.res$R)
[1] 0.6052

[image:]

Therefore, one way to determine if a distribution approximation works (see p. Boot.3 for three ways to approximate a distribution of a statistic) is to use the bootstrap to validate the approximation.

Example: Table 2.10 of Agresti (1996) (tab2.10Agresti1996.R)

This is a good example of where the bootstrap does not work!

> c.table <- array(data = c(0, 1, 0,
 7, 1, 8,
 0, 1, 0,
 0, 1, 0,
 0, 1, 0,
 0, 1, 0,
 0, 1, 0,
 1, 0, 0,
 1, 0, 0), dim = c(3,9), dimnames =
 list(X = 1:3, Y = 1:9))

> c.table
 Y
X 1 2 3 4 5 6 7 8 9
 1 0 7 0 0 0 0 0 1 1
 2 1 1 1 1 1 1 1 0 0
 3 0 8 0 0 0 0 0 0 0

> #Convert to raw form
> set1 <- as.data.frame(as.table(c.table))
> set2 <- set1[rep(1:nrow(set1), times = set1$Freq), -3]

> chisq.test(x = set2[,1], y = set2[,2], correct = FALSE)

 Pearson's Chi-squared test

data: set2[, 1] and set2[, 2]
X-squared = 22.2857, df = 16, p-value = 0.1342

Warning message:
In chisq.test(x = set2[, 1], y = set2[, 2], correct = FALSE) : Chi-squared approximation may be incorrect

> library(boot)

> #Construct form of data set needed
> set3 <- rbind(data.frame(index = set2[,1], table.part =
 "X"), data.frame(index = set2[,2], table.part = "Y"))

> #Perform the test
> calc.t <- function(data, i, dim.table) {
 d <- data[i,]
 x <- d[d$table.part == "X",] #Notice use of ==
 y <- d[d$table.part == "Y",]
 x.sq <- chisq.test(x = x$index, y = y$index, correct =
 FALSE)
 ck.row <- nrow(x.sq$observed) == dim.table[1]
 ck.col <- ncol(x.sq$observed) == dim.table[2]
 c(x.sq$statistic, ck.row, ck.col)
 }

> #Test calc.t with observed data
> calc.t(data = set3, i = 1:nrow(set3), dim.table =
 c(nrow(c.table), ncol(c.table)))
X-squared
 22.28571 1.00000 1.00000

> set.seed(8912)

> R <- 4999
> boot.res <- boot(data = set3, statistic = calc.t, R = R,
 sim = "ordinary", strata = set3$table.part,
 dim.table = c(nrow(c.table), ncol(c.table)))
> boot.res

STRATIFIED BOOTSTRAP

Call:
boot(data = set3, statistic = calc.t, R = R, sim = "ordinary", strata = set3$table.part, dim.table = c(nrow(c.table), ncol(c.table)))

Bootstrap Statistics :
 original bias std. error
t1* 22.28571 -11.556005 3.9092837
t2* 1.00000 0.000000 0.0000000
t3* 1.00000 -0.979996 0.1400277

> colSums(boot.res$t[,2:3])
[1] 4999 100
There were 50 or more warnings (use warnings() to see the first 50)

Only 4,899 data sets had the correct dimension for the contingency table! Why?

Alternative nonparametric resampling approach

Remember that the bootstrap can be thought of in terms of resampling from a multinomial distribution with probability parameters equal to i = 1/n, for i = 1, .., n. A new set of probability parameters, say , could be used instead to ensure that the resampling is taken under the null hypothesis. The procedure used to find is called exponential tilting. Please see Davison and Hinkley (1997, p. 165) and my Chapter 4 lecture notes for STAT 950 if you are interested in learning more about it.

Studentized statistics for hypothesis testing

As discussed earlier, it can be better to use an approximately pivotal statistic with the bootstrap. You can do this with hypothesis testing as well. For example, this is what was done with X2 when testing for independence. If there is no obvious way to find an approximately pivotal quantity, one can form a studentized statistic the usual way by making sure that H0 is incorporated into the statistic.

Suppose we are testing H0: = 0 vs. Ha: 0. The studentized statistic is

where v0 is an estimated variance calculated under H0. If v0 is difficult to calculate, you may be able to use v instead (preferably, calculate it under Ho). The reason is because the resamples are taken under H0 so v should be close to v0. For the resamples, calculate 	Comment by Bilder: In the non-bootstrap setting, this is often not done. For example, Wald statistics for testing beta1 = 0 in a logistic regression model. The reason why this is often not done (in addition to making it more complex) is that if Ho is true the non-adjusted variance will be asymptotically equivalent to the adjusted variance under Ho

and note that the resampling process needs to be done using . Notice that 0 is used instead of t where 0 is a known quantity under H0. 	Comment by Bilder: See my STAT 950 notes for additional discussion about the relationship between t and theta0. If we think in terms of statistical functionals, t = theta0 (depending on the statistic of interest) WHEN F^_0. Probably not of interest to go into in Computational Statistics course

There is a different way to think about bootstrap hypothesis testing. Suppose again the following hypotheses are under consideration: H0: = 0 vs. Ha: 0. We can calculate

using the original sample. For each resample, calculate

without restricting the resamples to be taken under H0. Note that including t is in there and not putting a subscript 0 on z is correct. A two-tail test p-value measures how extreme Z is relative to z0 using as the underlying distribution. This can be estimated by

	
Discussion:
· Hall and Wilson (1991) advocate this method of not needing to resample under the null hypothesis. Section 9.3.3 of Givens and Hoeting (2013) also advocate not resampling under the null hypothesis. 	Comment by Bilder: See Efron and Tibshirani (1993) p. 226 (bottom) for a discussion of this as well	Comment by Bilder: It’s interesting how short their section is!
·
Tibshirani (1992) later replies to the Hall and Wilson (1991) paper discussing how their approach is incorrect although it can result in the same answer for some problems (like testing one population mean). Also, Tibshirani says that resampling with respect to may lead to tests that have the correct size, but these tests may have poor power. Tibshirani advocates resampling with respect to H0.
· I agree with Tibshirani (1992).

Permutation tests

Permutation tests (sometimes also called “randomization tests”) are closely related to the bootstrap-based tests that we just discussed. In fact, some individuals think of these types of tests as special cases of a bootstrap test where the resampling is performed WITHOUT replacement! An introductory book on permutation tests is Higgins’ (2004) book “Introduction to Modern Nonparametric Statistics” which would be used for a class like STAT 874.

A sufficient statistic under H0 is conditioned upon for permutation tests, where a form of an EDF often plays the role of the sufficient statistic. One can think of this equivalently as conditioning on the order statistics. P-values are calculated conditional on the sufficient statistic’s observed value (see p. 399 of Casella and Berger (2002)). Care is needed here because these sufficient statistics are found under the null hypothesis.

Due to the conditioning, the observed values of the sufficient statistics can NOT change from resample to resample. This type of resampling also limits a permutation test’s applicability.

When only large values of T indicate evidence against H0, the p-value is P(T ≥ t | S = s, H0) where S is the sufficient statistic with observed value s. We can approximate this probability through taking R resamples WITH REPLACEMENT and calculating 	Comment by Bilder: Notation: S=s allows us to get the F^ in the equation

.

There may be problems where one can think of SMALL values or both SMALL AND LARGE values as evidence against H0. In those cases, adjustments would need to be made to the p-values as shown earlier.

Example: Two-sample test for means

Our data consists of y11, …, , y21, …, where the first index in the subscripts differentiates “population #1” and “population #2”. The hypotheses are H0: 1 2 = 0 vs. Ha: 1 2 0.

Similar to “approach #2” for the bootstrap version of this test, we could again combine both samples into one. Resample n1 observations WITHOUT replacement to form “group #1”. Resample n2 more observations WITHOUT replacement to form “group #2” (alternatively, just put the remaining observations into group #2).

Similar to the discussion earlier, a single population is being assumed here. Thus, the hypotheses are actually stronger than what is stated.

This sampling is called a “permutation” of the data because the exact same data is observed, but one is just essentially reordering the first subscripts (1 and 2) on the y’s.

I will use to be the statistic of interest because it provides a measure of evidence against H0.

There are a total of different permutations (resamples) of these observed values. Each of these permutations are equally likely to occur if the null hypothesis is true. The exact permutation distribution for T is found by first calculating all possible values of t, and assigning a probability of 1/w to each of them. Because the same values of t can occur for different permutations, the probabilities for the permutation distribution then involve summing the 1/w probabilities across the same values of t.

Because w is most often large, we can randomly select R of these permutations and find an estimate of this distribution or just a p-value.

Example: Higgins (2004, p. 23); there is no program for this example

Suppose seven new employees of a company are being trained using one of two methods. These employees are given a test at the end of training. Below are their scores:

1. New method: y11 = 37, y12 = 49, y13 = 55, y14 = 57
2. Traditional method: y21 = 23, y22 = 31, y23 = 46

Is there a difference in mean scores for the two training methods if they were applied to all new employees?

There are different permutations of the data, which are all equally likely to occur if there was no difference. For example,

1.

 = 46, = 49, = 55, = 57,
2.

 = 23, = 31, = 37

has the same likelihood of occurring under H0 as

1.

 = 37, = 49, = 55, = 57,
2.

 = 23, = 31, = 46

Notice how the order statistics (equivalently, the EDF) will remain the same under these resamples. Here are all possible resamples from Higgins’ book where the * in the table denotes the observed.

[image: IM002131_2]

Notice the observed = 16.2 which is the 4th most extreme from 0. For a test of H0: 1 - 2 = 0 vs. Ha: 1 - 2 0, the p-value can be calculated a few different ways. First, in terms of extremeness relative to the exact permutation distribution, the p-value is 4/35 = 0.1143. Even though a subset of R resamples was not taken, some individuals may calculate the p-value as

or

where R ends up being the total number of possible permutations. Obviously, p-values in general can be a little different in situations where there are a small number of possible permutations or a relatively small number of distinct values for T.

Using a hypothesis test of H0: 1 - 2 ≤ 0 vs. Ha: 1 - 2 > 0 (new method has higher mean), the p-value would be (1+2)/(1+35) = 0.0833. Again, some people may use instead 2/35 = 0.0571.

Here are the results from a regular two-sided t-test:

> t.test(x = c(37, 49, 55, 57), y = c(23, 31, 46),
 var.equal = TRUE, conf.level = 0.95)

 Two Sample t-test

data: c(37, 49, 55, 57) and c(23, 31, 46)
t = 2.0843, df = 5, p-value = 0.09156
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.77169 36.10502
sample estimates:
mean of x mean of y
 49.50000 33.33333

> t.test(x = c(37, 49, 55, 57), y = c(23, 31, 46),
 var.equal = FALSE, conf.level = 0.95)

 Welch Two Sample t-test

data: c(37, 49, 55, 57) and c(23, 31, 46)
t = 1.9946, df = 3.691, p-value = 0.1227
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -7.100006 39.433340
sample estimates:
mean of x mean of y
 49.50000 33.33333

Using a hypothesis test of H0: 1 - 2 ≤ 0 vs. Ha: 1 - 2 > 0, the t-test p-value is 0.04578 (different variances) and 0.06136 (equal variances). One can use the alternative = “greater” option in t.test() to produce this result.

Comments:
· Notice how simple the idea behind permutation tests is and how it provides similar results to the usual t-test based on normality for this example!
· Again, the sufficient statistic that is being condition upon is the combined ordering of the data values (order statistics or equivalently the common EDF for both samples). The order statistics do not change from resample to resample. In a similar bootstrap setting, resampling would be done with replacement. The order statistics from a bootstrap resample would not necessarily be the same as those observed because one may get the same observed value to appear >1 or 0 times in a resample.
· More robust versions of the test statistic can also be used. For example, one could use the difference of the medians or the trimmed means. Also, one could replace the observations with their ranks (ranked as coming from one population) and examine the difference in mean ranks. This is what the Wilcoxon rank-sum test does.

Question: Suppose you had one sample from a single population. With this sample, you would like to test H0: = 0 vs. Ha: 0 0 for some constant 0. How could you do this with a permutation test? 	Comment by Bilder: Think about what the permutations for one sample would look like ;)

Example: Larry Bird (bird.R)

The marginal counts for the rows and columns are the sufficient statistics under H0 because this is all one would need to recreate the contingency table (= ni+n+j/n). Therefore, ni+ and n+j need to remain fixed for the permutations.

How should the resamples be taken for the permutation test? This is done as follows: 	Comment by Bilder: There is a different explanation in Higgins (2004) on p. 165 that results in the same resamples
1) Put the data into its raw form.
2) Randomly permute the column observations while keeping the row observations unchanged.
3)
Calculate on the newly formed data.
4) Repeat steps 2 and 3 R times.
5) Calculate the p-value as

Questions:
· Why are the ni+ and n+j the same for each resample?	Comment by Bilder: Row and column numbers are not changing at all - one will still have the same 1's, 2's, 3's, ... for each row and column
· Why don’t we randomly permute the row observations too?

R calculations using the boot() function:

> x.sq <- function(data, i, row.var) {
 col.var <- data[i]
 chisq.test(x = row.var, y = col.var, correct =
 FALSE)$statistic
 }

> x.sq(data = set2[,2], i = 1:nrow(set2), row.var =
 set2[,1])
X-squared
0.2727363

> set.seed(1198)
> perm.res <- boot(data = set2[,2], statistic = x.sq, R =
 R, sim = "permutation", row.var = set2[,1])
> perm.res

DATA PERMUTATION

Call:
boot(data = set2[, 2], statistic = x.sq, R = R, sim = "permutation", row.var = set2[, 1])

Bootstrap Statistics :
 original bias std. error
t1* 0.2727363 0.6811288 1.322804

> win.graph(width = 9, height = 6, pointsize = 20)
> summarize(result.set = perm.res$t[,1], statistic =
 perm.res$t0[1], R = R, df = (nrow(c.table)-
 1)*(ncol(c.table)-1))
[1] 0.6526
[image:]

[bookmark: _GoBack]Comments:
·
The p-value is 0.6526 so there is not sufficient evidence to reject independence. Again, this p-value is similar to what we obtained from a approximation.
· Because the row and column marginal counts for the resamples are the same as with the original data, I did not need to perform the table size check as I did with the bootstrap. Below is the 3rd resample that shows the marginal counts are the same as with the original data:

> save.index <- boot.array(boot.out = perm.res, indices =
 TRUE)
> i <- save.index[3,]
> d <- set2[i,2]
> x.sq <- chisq.test(x = set2[,1], y = d, correct =
 FALSE)
> x.sq$observed
 d
set2[, 1] made missed
 made 254 31
 missed 45 8

> x.sq$statistic
X-squared
0.7786442

> perm.res$t[3]
[1] 0.7786442
> rowSums(x.sq$observed)
 made missed
 285 53
> colSums(x.sq$observed)
 made missed
 299 39
> rowSums(c.table)
 made missed
 285 53
> colSums(c.table)
 made missed
 299 39

·

How well is X2 approximated by a ? Obviously, the distribution obtained from the permutations is very discrete. Below is a summary of all values obtained:

> table(round(perm.res$t,2))

 0 0.17 0.27 0.78 0.98 1.82 2.13 3.31 3.71 5.23
919 818 886 577 673 338 340 186 128 70

 5.74 7.59 8.2 10.39 13.63
 27 24 2 8 3

This discreteness often occurs with a permutation test due to the conditioning on the sufficient statistics.
· A simpler implementation of this test:

> set.seed(6611)
> chisq.test(c.table, correct = FALSE, simulate.p.value =
 TRUE, B = 4999)

 Pearson's Chi-squared test with simulated p-value
 (based on 4999 replicates)

 data: c.table
 X-squared = 0.2727, df = NA, p-value = 0.6486

· How could you perform the test with a likelihood ratio test statistic?
· There is a very close relationship to what was done here to what is done with Fisher’s exact test. Please see Section 6.2 of Bilder and Loughin (2014) for details.
· How could you find the permutation distribution with all possible permutations? 	Comment by Bilder: There is only one random quantity in table due to row and column totals fixed – say, cell (1,1). Could relate this further to Fisher’s exact test and a hypergeometric distribution.

Example: Table 2.10 of Agresti (1996) (tab2.10Agresti1996.R)

This is an example of when the approximation does not work well for a Pearson chi-square test for independence AND the bootstrap does not work well.

> chisq.test(x = set2[,1], y = set2[,2], correct = FALSE)

 Pearson's Chi-squared test

data: set2[, 1] and set2[, 2]
X-squared = 22.2857, df = 16, p-value = 0.1342

Warning message:
In chisq.test(x = set2[, 1], y = set2[, 2], correct = FALSE) : Chi-squared approximation may be incorrect

> x.sq <- function(data, i, row.var) {
 col.var <- data[i]
 chisq.test(x = row.var, y = col.var, correct =
 FALSE)$statistic
 }

> x.sq(data = set2[,2], i = 1:nrow(set2), row.var =
 set2[,1])
X-squared
 22.28571
Warning message:
In chisq.test(x = row.var, y = col.var, correct = FALSE) :
 Chi-squared approximation may be incorrect

> set.seed(7645)
> perm.res <- boot(data = set2[,2], statistic = x.sq, R =
 R, sim = "permutation", row.var = set2[,1])
> perm.res

DATA PERMUTATION

Call:
boot(data = set2[, 2], statistic = x.sq, R = R, sim = "permutation", row.var = set2[, 1])

Bootstrap Statistics :
 original bias std. error
t1* 22.28571 -5.582091 0.980291

> win.graph(width = 9, height = 6, pointsize = 20)
> summarize(result.set = perm.res$t[,1], statistic =
 perm.res$t0[1], R = R, df = (nrow(c.table)-
 1)*(ncol(c.table)-1))
[1] 0.0014
[image:]

Comments:
· The permutation test indicates there is sufficient evidence against independence. The Pearson chi-square test with an asymptotic chi-square distribution approximation finds only marginal evidence. Given the results in the above plots, I would not trust the asymptotic chi-square distribution approximation for the Pearson statistic!
· The permutation test worked much better than resampling with replacement because the marginal counts were kept fixed for each permutation.
oleObject48.bin

oleObject49.bin

image40.wmf
(1)(R)

tt,,tt

**

--

K

oleObject50.bin

image41.wmf
((R1)(1))

tt

*

+-a

-

oleObject51.bin

oleObject52.bin

image42.wmf
((R1))

tt

*

+a

-

oleObject53.bin

image43.wmf
1

ˆ

G(|F)

-

a

oleObject54.bin

image44.wmf
(50)

tt

*

-

oleObject55.bin

image45.wmf
(950)

tt

*

-

oleObject56.bin

image46.wmf
(

)

((R1)(1))

tt

*

+-a

-

oleObject57.bin

image47.wmf
(

)

((R1))

tt

*

+a

-

oleObject58.bin

image48.wmf
((R1)(1))

t

*

+-a

image2.wmf
iid

~

oleObject59.bin

image49.wmf
((R1))

t

*

+a

oleObject60.bin

image50.emf
0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

EDF for AC failure times

y

F

^

0 50 100 150 200 250

0

100

200

300

400

500

600

QQ-Plot for AC failure times

Exp. quantiles

y

image51.wmf
1

y

*

oleObject61.bin

image52.wmf
2

y

*

oleObject62.bin

image53.wmf
12

y

*

oleObject63.bin

oleObject2.bin

image54.wmf
t

*

oleObject64.bin

image55.emf
-100 -50 0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

EDF for t* - t

t* - t

EDF

Histogram for t* - t

t* - t

Frequency

-100 -50 0 50 100 150

0

200

400

600

800

1000

image56.wmf
R

r

r1

1

tt

R

*

=

æö

-

å

ç÷

èø

oleObject65.bin

image57.wmf
(

)

1/2

R

2

r

r1

1

tt

R1

**

=

éù

-

å

êú

-

ëû

oleObject66.bin

image58.wmf
R

r

r1

1

tt

R

**

=

=

å

oleObject67.bin

image3.wmf
iid

~

image59.emf

image60.emf

image61.emf

image62.emf

image63.emf

oleObject3.bin

image64.emf

image65.emf

image66.emf

image67.emf

image68.emf

image4.wmf
(

)

d

nTX

-q¾¾®

image69.emf

image70.emf

image71.emf

image72.emf

image73.emf

image74.emf
Histogram of t

t*

Density

0 50 100 150 200 250 300

0.000

0.004

0.008

0.012

-3 -2 -1 0 1 2 3

50

100

150

200

250

Quantiles of Standard Normal

t*

oleObject4.bin

image75.wmf
1R

t,,t

**

K

oleObject68.bin

image76.wmf
{

}

{

}

11

((R1)(1))((R1))

h2h(t)h(t)h2h(t)h(t)

-*-*

+-a+a

-<q<-

oleObject69.bin

image77.wmf
ˆ

F

oleObject70.bin

oleObject71.bin

oleObject72.bin

oleObject73.bin

image78.wmf
R

r

r1

1

t

R

*

=

æö

å

ç÷

èø

image5.wmf
ˆ

F

oleObject74.bin

oleObject75.bin

image79.wmf
i

n

22

i1

1

S(YY)

n1

=

=-

å

-

oleObject76.bin

image80.wmf
R

2

r

r1

1

(tt)

R1

=

-

å

-

oleObject77.bin

image81.wmf
R

2

bootr

r1

1

v(tt)

R1

**

=

=-

å

-

oleObject78.bin

image82.wmf
22

ˆˆˆ

Var(T|F)E(T|F)E(T|F)

=-

oleObject79.bin

oleObject5.bin

image83.wmf
(

)

2

RRR

2

2

rrr

r1r1r1

111

(t)ttt

RRR

===

æöæö

-=-

ååå

ç÷ç÷

èøèø

oleObject80.bin

image84.wmf
(

)

2

n

2

i

2

ja

i1

ck

(n1)

vtt

n

-

=

-

=-

å

oleObject81.bin

image85.wmf
n

2

Li

2

i1

1

v

n

=

=

å

l

oleObject82.bin

image86.wmf
i

l

oleObject83.bin

oleObject84.bin

image87.wmf
jack,ii

(n1)(tt)

-

=--

l

oleObject6.bin

oleObject85.bin

oleObject86.bin

image88.wmf
(

)

n

jack,1j

2

i1

ack

i

n1

vtt

n

-

=

-

=-

å

oleObject87.bin

image89.wmf
n

i

jack

i1

1

tt

n

-

=

=

å

oleObject88.bin

image90.wmf
(

)

jack,

i

2

n

2

i

1

n1

vtt

n

-

=

-

=-

å

oleObject89.bin

oleObject90.bin

image91.wmf
(

)

1/2

R

2

r

r1

1

tt38.16

R1

**

=

éù

-=

å

êú

-

ëû

oleObject91.bin

image92.wmf
s/n39.3

=

oleObject92.bin

image93.wmf
1/2

1/2

ˆ

Tt(F)t(F)

Z

ˆ

V

v(F)

-q-

==

oleObject93.bin

image94.wmf
·

1/2

Var(T)

oleObject94.bin

image95.wmf
1/21/2

1

tzvtzv

-aa

-<q<-

oleObject95.bin

image96.wmf
1/2

1/2

ˆˆ

Ttt(F)t(F)

Z

ˆ

V

v(F)

**

*

*

*

--

==

image6.jpeg
|8 B 2 ;"' N

4 -

, Py
) \! { & A4

oleObject96.bin

image97.wmf
1/21/2

((R1)(1))((R1))

tzv tzv

**

+-a+a

-<q<-

oleObject97.bin

image98.wmf
((R1)(1))

z

*

+-a

oleObject98.bin

oleObject99.bin

image99.wmf
2

s/n

*

oleObject100.bin

image100.wmf
(

)

2

n

2

jacki

2

i1

(n1)

vtt

n

-

=

-

=-

å

oleObject101.bin

oleObject7.bin

image101.wmf
boot

v

*

oleObject102.bin

image102.wmf
r

r

1/2

jack,r

tt

z

(v)

*

*

*

-

=

oleObject103.bin

image103.wmf
1/21/2

((R1)(1))jack((R1))jack

tzvtzv

**

+-a+a

-<q<-

oleObject104.bin

image104.wmf
r

r

1/2

boot,r

tt

z

(v)

*

*

*

-

=

oleObject105.bin

image105.wmf
boot,r

v

*

oleObject106.bin

image7.png
% é/l/]'”ﬂ/(/l/m/' hereeaere

image106.wmf
r

ˆ

F

*

oleObject107.bin

image107.wmf
(

)

M

2

boot,rrmr

m1

1

vtt

M1

=

=-

å

-

oleObject108.bin

image108.wmf
M

rrm

m1

1

tt

M

=

=

å

oleObject109.bin

image109.wmf
1/21/2

((R1)(1))boot((R1))boot

tzvtzv

**

+-a+a

-<q<-

oleObject110.bin

image110.wmf
r

t

*

oleObject111.bin

image111.wmf
jack

v

*

oleObject112.bin

image112.png
EDF

1.0

00 02 04 06 08

EDF for z*

Density

02 03 04

0.1

00

Histogram for z*

f\

-10 -5 0
P

image113.emf
S.D. produced by double bootstrap

sqrt(v*)

Frequency

10 20 30 40 50 60 70

0

500

1000

1500

oleObject113.bin

image114.wmf
h(T)h()

Z

|h(T)|V

-q

=

&

oleObject114.bin

image115.wmf
h(T)

&

oleObject115.bin

image116.wmf
h(t)h(t)

z

|h(t)|v

*

*

**

-

=

&

image8.png
/= Netfiix: Netflix Movie Viewer - Windows Intemet Explorer

8.

Ve | @ Netfli: Netfix M

& B v @ v [Page v & To

Full Screen

28°

NE

R100%
@ < B RETWE 6 1206 AM

oleObject116.bin

image117.wmf
{

}

{

}

1

((R1)(1))

1

((R1))

hh(t)z|h(t)|v

hh(t)z|h(t)|v

-*

+-a

-*

+a

-<q<

-

&

&

oleObject117.bin

image118.emf

oleObject118.bin

oleObject119.bin

oleObject120.bin

oleObject121.bin

oleObject122.bin

image119.wmf
1

ˆ

K(|F)

-

a

image9.png
/2 Netfiix: Netflix Movie Viewer - Windows Intemet Explorer

& Netfix: Netflx LS R

>
N

I | X M) Fulscreen
et 208

The Adventures of Baron Munchausen

4Backto Browsing

L10%

/5 Netfix NetfixMovi... | (@ Inbor Microsoft 0., || ¥ 10 Remnders |

WE O 1206 AM

oleObject123.bin

image120.wmf
1

ˆ

K(1|F)

-

-a

oleObject124.bin

image121.wmf
((R1))

uu

*

+a

-

oleObject125.bin

image122.wmf
((R1)(1))

uu

*

+-a

-

oleObject126.bin

image123.wmf
((R1))((R1))

u(uu)u

**

+a+a

+-=

oleObject127.bin

image124.wmf
((R1)(1))((R1)(1))

u(uu)u

**

+-a+-a

+-=

image10.png
/= Netfiix: Netflix Movie Viewer - Windows Intemet Explorer

Yo & | @ Netfic Nettix Mo

{2 Netflix: Netflix Movi.

]

L] « "o

137/ 208

4Backto Browsing

Full Screen

oleObject128.bin

image125.wmf
((R1))

t

*

+a

oleObject129.bin

image126.wmf
((R1)(1))

t

*

+-a

oleObject130.bin

oleObject131.bin

oleObject132.bin

image122.emf

image127.png
AR
(2N

| ot st

image128.wmf
a

%

oleObject133.bin

image129.wmf
lowup

**

((R1))((R1)())

tt

+a+a

<q<

%%

oleObject134.bin

image130.wmf
low

wz

w

1a(wz)

a

a

+

æö

a=F+

ç÷

-+

èø

%

oleObject135.bin

image131.wmf
1

1

up

w

w

1a(w

z

z

)

-a

-a

+

æö

a=F+

ç÷

-+

èø

%

oleObject136.bin

image132.wmf
r

1

#{tt}

w

R1

*

-

æö

£

=F

ç÷

+

èø

oleObject137.bin

image133.wmf
nn

33

3

j1j1

3/23/2

n

n

2

2

2

j1

j1

1

11

n

a

66

1

n

==

=

=

åå

==

éùéù

å

å

êúêú

ëû

ëû

jj

j

j

ll

l

l

oleObject138.bin

image134.wmf
r

1

#{tt}

w

R

*

-

æö

£

=F

ç÷

èø

oleObject139.bin

image135.wmf
(

)

11

ˆ

G(t|F)

--

F

oleObject140.bin

image136.wmf
n

3

j1

jack

3/2

n

2

j1

1

a

6

=

=

å

=

éù

å

êú

ëû

jack,j

jack,j

l

l

oleObject141.bin

image137.wmf
a

%

oleObject142.bin

image11.jpeg
Acknowledgments. I am grateful to Professors Rupert Miller and David
Hinkley for numerous discussions, suggestions and references, and to Joseph
Verducci for help with the numerical computations. The referees contributed
several helpful ideas, especially concerning the connection with Hartigan’s work,
and the large sample theory. I also wish to thank the many friends who suggested
names more colorful than Bootstrap, including Swiss Army Knife, Meat Axe,
Swan-Dive, Jack-Rabbit, and my personal favorite, the Shoigun, which, to para-
phrase Tukey, “can blow the head off any problem if the statistician can stand the
resulting mess.”

image138.wmf
a

%

oleObject143.bin

image139.wmf
1/21/2

1bootboot

tbzvtbzv

-aa

--<q<--

oleObject144.bin

image140.wmf
TY

=

oleObject145.bin

image141.wmf
2

2

d1

log()

dnn

éù

m

m=

êú

m

ëû

oleObject146.bin

image142.wmf
c

h()d

Var(T)

m=m

ò

oleObject147.bin

image12.wmf
ˆ

F

image143.wmf
h()

×

&

oleObject148.bin

oleObject149.bin

image144.wmf
low

(R1)

+a

%

oleObject150.bin

image145.wmf
up

(R1)

+a

%

oleObject151.bin

oleObject152.bin

image146.wmf
2n1

n1

-

æö

ç÷

-

èø

oleObject153.bin

oleObject8.bin

image147.wmf
r

t

*

oleObject154.bin

image148.wmf
2n1212123

n112111

-*-

æöæöæö

==

ç÷ç÷ç÷

--

èøèøèø

oleObject155.bin

image13.wmf
11

11

11

11

P(G(|F)TG(1|F))12

P(TG(|F)TG(1|F))12

P(TG(|F)TG(1|F))12

P(TG(1|F)TG(|F))12

--

--

--

--

a<-q<-a=-a

Û-+a<-q<-+-a=-a

Û-a>q>--a=-a

Û--a<q<-a=-a

oleObject9.bin

image14.wmf
11

tG(1|F)tG(|F)

--

--a<q<-a

oleObject10.bin

oleObject11.bin

image162.emf

image163.emf

image164.emf

image165.emf

image1660.emf

image15.wmf
1

ˆ

G(1|F)

-

-a

image1670.emf

image1680.emf

image1690.emf

image170.emf

image171.emf

oleObject12.bin

image172.emf

image173.emf

image174.emf

image175.emf

image176.emf

image149.png
Bootstrap SD

7R

o

100150 200 250 300

50 100 150 200 250 300

Bootstrap average

image16.wmf
1

ˆ

G(|F)

-

a

image150.wmf
E(T|F)

oleObject156.bin

image151.wmf
ˆ

E(T|F)

oleObject157.bin

image152.wmf
ˆ

F

oleObject158.bin

oleObject159.bin

oleObject160.bin

image153.wmf
0

ˆ

F

oleObject161.bin

oleObject13.bin

oleObject162.bin

image154.wmf
i

y

%

oleObject163.bin

image155.wmf
y

oleObject164.bin

oleObject165.bin

oleObject166.bin

image156.wmf
0

ˆ

F

oleObject167.bin

image157.wmf
1n

y,y

%%

K

image17.wmf
1n

Y,,Y

**

K

oleObject168.bin

image158.wmf
1

1n

y

oleObject169.bin

image159.wmf
2

2n

y

oleObject170.bin

image160.wmf
1j1j1

yyyy

=-+

%

oleObject171.bin

image161.wmf
2j2j2

yyyy

=-+

%

oleObject172.bin

image162.wmf
y

oleObject14.bin

oleObject173.bin

image163.wmf
1j

y

%

oleObject174.bin

image164.wmf
2j

y

%

oleObject175.bin

image165.wmf
0

ˆ

F

oleObject176.bin

oleObject177.bin

oleObject178.bin

image166.wmf
ij

ij

1/2

i

i

yˆ

e

1

ˆ1

n

-m

=

æö

s-

ç÷

èø

oleObject15.bin

oleObject179.bin

image167.wmf
ˆ

m

oleObject180.bin

image168.wmf
iji

Var(YY)

-

oleObject181.bin

image169.wmf
(

)

i

11/n

-

oleObject182.bin

image170.wmf
0

ˆ

F

oleObject183.bin

image171.wmf
ij

e

*

image18.wmf
1n

y,,y

**

K

oleObject184.bin

oleObject185.bin

image172.wmf
ijiij

yˆˆe

**

=m+s

oleObject186.bin

image173.wmf
ij

y

*

oleObject187.bin

oleObject188.bin

image174.wmf
1113

ee

*

=

oleObject189.bin

image175.wmf
1221

ee

*

=

oleObject16.bin

oleObject190.bin

image176.wmf
1313

ee

*

=

oleObject191.bin

image177.wmf
2111

ee

*

=

oleObject192.bin

image178.wmf
2222

ee

*

=

oleObject193.bin

image179.wmf
ˆ

m

oleObject194.bin

image180.wmf
Y

image19.wmf
T

*

oleObject195.bin

image181.wmf
0

ˆ

P(Tt|F)

*

³

oleObject196.bin

image182.wmf
{

}

r

boot

1#tt

p

R1

*

+³

=

+

oleObject197.bin

image183.wmf
{

}

r

1#tt

*

+³

oleObject198.bin

image184.wmf
{

}

r

#tt

R

*

³

oleObject199.bin

image185.wmf
{

}

00

ˆˆ

2minP(Tt|F),P(Tt|F)

**

éù

³£

ëû

oleObject17.bin

oleObject200.bin

image186.wmf
{

}

{

}

rr

boot

1#tt1#tt

p2min,

R1R1

**

ìü

éù

+³+£

=

íý

êú

++

ëû

îþ

oleObject201.bin

image187.wmf
{

}

r

1#tt

R1

*

+³

+

oleObject202.bin

image188.jpeg

image189.wmf
22

IJIJ

ijijijij

2

i1j1i1j1

ijij

(nˆ)(nnn/n)

X

ˆnn/n

++

====

++

-m-

==

åååå

m

oleObject203.bin

image190.wmf
ij

ˆ

m

oleObject204.bin

image20.wmf
1n

Y,,Y,

**

K

image191.wmf
2

(I1)(J1)

--

c

oleObject205.bin

image192.wmf
d

22

(I1)(J1)

XA

--

¾¾®c

:

oleObject206.bin

image193.wmf
2

(I1)(J1),1

---a

c

oleObject207.bin

image194.wmf
2

(I1)(J1)

--

c

oleObject208.bin

image195.wmf
2

1

c

oleObject209.bin

oleObject18.bin

image196.wmf
ij

ˆ

m

oleObject210.bin

image197.wmf
ˆ

A

oleObject211.bin

image198.wmf
ˆ

B

oleObject212.bin

image199.wmf
ijij

ˆnn/n

++

m=

oleObject213.bin

image200.wmf
ijij

ˆˆ/n

p=m

oleObject214.bin

image21.wmf
t

*

image201.wmf
2

(I1)(J1)

--

c

oleObject215.bin

image202.wmf
1

n

*

+

oleObject216.bin

image203.wmf
2

n

*

+

oleObject217.bin

image204.wmf
1

n

*

+

oleObject218.bin

image205.wmf
2

n

*

+

oleObject219.bin

oleObject19.bin

image206.wmf
2

x0.5218

*

=

oleObject220.bin

image207.wmf
2

1

c

oleObject221.bin

oleObject222.bin

oleObject223.bin

image208.emf
Histogram

X

2*

Density

0 5 10 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

CDFs

X

2*

CDF

Perm.



1

2

0 5 10 15

0

2

4

6

8

10

12

14

QQ-plot

X

2*

Chi-square quantiles

image209.wmf
(0)

i

p

oleObject224.bin

oleObject225.bin

image22.wmf
ˆ

G(t|F)

image210.wmf
0

0

0

t

z

v

-q

=

oleObject226.bin

image211.wmf
0

0

0

t

z

v

*

*

*

-q

=

oleObject227.bin

image212.wmf
0

ˆ

F

oleObject228.bin

image213.wmf
0

0

0

t

z

v

-q

=

oleObject229.bin

image214.wmf
r

r

r

tt

z

v

*

*

*

-

=

oleObject230.bin

oleObject20.bin

image215.wmf
ˆ

F

oleObject231.bin

image216.wmf
{

}

{

}

r0r0

1#zz1#zz

2min,

R1R1

**

ìü

éù

+³+£

íý

êú

++

ëû

îþ

oleObject232.bin

oleObject233.bin

image217.wmf
{

}

r

perm

1#tt

p

R1

*

+³

=

+

oleObject234.bin

oleObject235.bin

oleObject236.bin

image218.wmf
12

tyy

=-

image23.wmf
Tt

*

-

oleObject237.bin

image219.wmf
12

1

nn

w

n

+

æö

=

ç÷

èø

oleObject238.bin

image220.wmf
12

1

nn437

35

n44

++

æöæöæö

===

ç÷ç÷ç÷

èøèøèø

oleObject239.bin

image221.wmf
11

y

*

oleObject240.bin

image222.wmf
12

y

*

oleObject241.bin

image223.wmf
13

y

*

oleObject21.bin

oleObject242.bin

image224.wmf
14

y

*

oleObject243.bin

image225.wmf
21

y

*

oleObject244.bin

image226.wmf
22

y

*

oleObject245.bin

image227.wmf
23

y

*

oleObject246.bin

oleObject247.bin

image24.wmf
111n1

212n2

R1RnR

y,,yt

y,,yt

y,,yt

®

®

®

K

K

M

K

oleObject248.bin

oleObject249.bin

oleObject250.bin

oleObject251.bin

oleObject252.bin

oleObject253.bin

image228.jpeg
TABLE 2.1.2
All Possible Assignments of meNewandTndiuoualMuhods

Combined Data: 23 31 37 46 49 55 57

Diffe
Permuted Between
Samples New Method Traditional Method Means
1 46 49 55 57 23 31 37 214
2% 37 49 55 57 23 31 43 :ﬁ
3 37 46 55 57 23 31 4 x
4 37 46 49 57 23 31 55 109
5 37 46 49 55 23 31 57 98
6 31 49 55 57 23 37 46 127
7 31 46 55 57 23 37 49 109
8 31 46 49 57 23 37 55 74
9 31 46 49 55 23 37 57 63
10 31 37 55 57 23 46 49 57
11 31 37 49 57 23 46 55 22
12 31 37 49 55 23 46 57 1.0
13 31 37 46 57 23 49 55 04
14 31 37 46 55 23 49 57 08
15 31 37 46 49 23 55 57 43
16 23 49 55 57 31 37 46 8.0
17 23 46 55 57 31 37 49 63
18 23 46 49 57 31 37 55 28
;g 23 46 49 55 31 37 57 1.6
2 22; g; Zs 57 31 46 49 1.0
5 9 57 31 46 55 25
23 37 49 55 31 46 57
37
23 23 37 46 57 3137 55
2 43
23 37 46 55 31 49 57
25 23 37 46 49 -54
% 31 55 57 89
23 31 55 57 37 46 49 .
2l 23 31 49 57 37 46 55 ol
z8 23 -6.0
31 49 55 37 46 57
§9 23 31 46 57 it <7
3? . 23 31 46 55 37 49 57 8
23 31 46 49 -89
3 » 37 55 57 2
i 31 37 57 it 124
23 31 37 55 593 -13.0
24 23 31 37 49 46 49 57 142
2 233 46 55 57 oA

el o 2255157 104

image229.wmf
12

tyy

=-

oleObject254.bin

image230.wmf
{

}

{

}

rr

perm

1#tt1#tt

p2min,

R1R1

12134

2min,

351351

0.1667

**

ìü

éù

+³+£

=

íý

êú

++

ëû

îþ

ìü

++

éù

=

íý

êú

++

ëû

îþ

=

oleObject22.bin

oleObject255.bin

image231.wmf
{

}

r

perm

1#tt

14

p0.1389

R136

*

+³

+

===

+

oleObject256.bin

oleObject257.bin

image232.wmf
2

x

*

oleObject258.bin

image233.wmf
{

}

22

r

perm

1#xx

p

R1

*

+³

=

+

oleObject259.bin

image234.emf
Histogram

X

2*

Density

0 2 4 6 8 12

0.0

0.2

0.4

0.6

0.8

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

CDFs

X

2*

CDF

Perm.



1

2

0 2 4 6 8 12

0

2

4

6

8

10

12

14

QQ-plot

X

2*

Chi-square quantiles

oleObject260.bin

oleObject23.bin

oleObject261.bin

image235.wmf
2

x

*

oleObject262.bin

image236.wmf
2

(I1)(J1)

--

c

oleObject263.bin

image237.emf
Histogram

X

2*

Density

16 18 20 22

0.0

0.1

0.2

0.3

0.4

0.5

0.6

16 18 20 22

0.0

0.2

0.4

0.6

0.8

1.0

CDFs

X

2*

CDF

Perm.



16

2

16 18 20 22

10

20

30

40

QQ-plot

X

2*

Chi-square quantiles

image25.wmf
111n1

212n1

R1RnR

y,,yt

y,,yt

y,,yt

®

®

®

K

K

M

K

oleObject24.bin

image26.wmf
ri

y

*

oleObject25.bin

image27.wmf
1R

tt,,tt

**

--

K

oleObject26.bin

image28.wmf
1

ˆ

G(1|F)

-

-a

oleObject27.bin

oleObject28.bin

oleObject29.bin

oleObject30.bin

oleObject31.bin

image29.wmf
t(F)yf(y)dy

q==

ò

oleObject32.bin

image30.wmf
y

t(F)yf(y)

q==

å

oleObject33.bin

oleObject34.bin

image31.wmf
ˆ

t(F)

oleObject35.bin

image1.emf
Inference

Sample

Population

Take Sample

image32.wmf
y

1

ˆ

tt(F)yy

n

===

å

oleObject36.bin

image33.wmf
*

ˆ

tt(F)

*

=

oleObject37.bin

image34.wmf
ˆ

F

*

oleObject38.bin

image35.wmf
1n

y,,y

**

K

oleObject39.bin

oleObject40.bin

image36.wmf
t(F)

oleObject1.bin

Inference

Sample

Population

Take Sample

oleObject41.bin

image37.wmf
ˆ

t(F)

*

oleObject42.bin

image38.wmf
ˆ

t(F)

oleObject43.bin

oleObject44.bin

image39.wmf
1n233543n4

yy,yy,yy,yy,,yy

=====

K

oleObject45.bin

oleObject46.bin

oleObject47.bin

