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Abstract

Group testing, the process of testing items as an amalgamated group rather than

individually, is used in a wide variety of applications, including human infectious

disease screening, virus monitoring of insect carriers, food surveillance, discovery of

new pharmaceutical drugs, and quality control of manufactured products. No matter

the application, an important decision that needs to be made prior to implementation

is determining what group sizes to use. In best practice, an objective function is chosen

and then minimized to determine an optimal set of these group sizes, known as the
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optimal testing con�guration (OTC). There are a few options for objective functions,

and they di�er based on how the expected number of tests, assay characteristics, and

testing constraints are taken into account. These varied options have led to a recent

controversy in the literature regarding which objective function is best. In our paper,

we examine the most commonly proposed objective functions. We show that this

controversy may be �much ado about nothing� because the OTCs and corresponding

results (e.g., number of tests, accuracy) are largely the same for standard testing

algorithms in a wide variety of situations. Supplemental materials for this article are

available online.

Keywords: Binary response; Pooled testing; Screening; Sensitivity; Speci�city
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1. Introduction

Laboratories throughout the world test high volumes of clinical specimens for infectious

diseases, including HIV, hepatitis C, and West Nile virus. In such situations, it has become

standard practice to test amalgamations of specimens as a �group� or �pool� rather than to

test individual specimens. The reason is simple: members of a negatively testing group can

be declared negative all at once. Thus, for a group of size I, say, just one test is needed to

declare all members negative, rather than the I separate tests that would be needed with

individual testing. Fortunately, when disease prevalence is small, the majority of groups will

test negatively when sensibly chosen group sizes are used. For members of a positive testing

group, there are many algorithmic retesting procedures available to determine which speci�c

individuals are positive. The �rst retesting procedure was proposed by Dorfman (1943)

and simply involved individually retesting each member of a positive group. Since this

seminal work, group testing has been used to e�ciently test for infectious diseases in a vast

number of human applications, including blood donation screening (American Red Cross

2018), antiretroviral treatment failure detection for HIV-positive individuals (Kim et al.

2014; Tilghman et al. 2015), chlamydia and gonorrhea testing for US government-sponsored

STD assessment and prevention programs (Centers for Disease Control and Prevention

2012), and in�uenza outbreak surveillance (Hourfar et al. 2007). Outside of infectious

disease testing in humans, group testing is used in an extensive number of applications,

including cow milk surveillance (Græsbøll et al. 2017), disease detection in cattle and

bu�aloes (Abdellrazeq et al. 2014), West Nile virus monitoring in mosquitoes (Khan et al.

2017), food contamination detection (Pasquali et al. 2014), drug discovery (Kainkaryam

and Woolf 2009), and diagnosis of faulty network sensors (Lo et al. 2013). Due to this

wide variety of applications and somewhat diverse terminology within them, we will use

the language associated with infectious disease testing throughout our paper for the ease

of exposition.

For all group testing applications, the choice of group sizes is extremely important for

success. Choosing group sizes too large will lead to exceedingly many groups testing pos-

itively. This will subsequently lead to a large number of retests, perhaps even a larger
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number of tests overall than what would be needed for individual testing. Similarly, choos-

ing group sizes too small will lead to a larger number of tests than would otherwise be

needed if the group sizes were chosen better. In best practice, laboratories choose group

sizes by minimizing an objective function that takes into account the group testing algo-

rithm to be implemented. There are a number of di�erent algorithms in use, and they

are best characterized as being either hierarchical or non-hierarchical in nature. Hierarchi-

cal algorithms begin by testing individuals in non-overlapping groups. For a group that

tests positively, subsequent retesting stages occur in smaller, non-overlapping groups. The

previously described Dorfman algorithm is a two-stage algorithm. Three- and four-stage

algorithms are commonly used in practice (e.g., Quinn et al. 2000; Sherlock et al. 2007)

because they are often more e�cient (i.e., fewer tests). Non-hierarchical algorithms involve

testing each individual in overlapping groups to reduce the number of retests. The most

common type of non-hierarchical algorithm is known as array-based (matrix-based) testing

(Phatarfod and Sudbury 1994; Kim et al. 2007). For this algorithm, individual specimens

are arranged in a two-dimensional grid. These specimens are amalgamated by row and by

column and then tested. Intersecting positive rows and columns indicate where retesting

should be performed to determine which individuals are positive. For a thorough review of

hierarchical and array-based algorithms, see Hughes-Oliver (2006).

While there are many di�erent types of group testing algorithms, all laboratories are

interested in minimizing the number of tests needed to assay their specimens. For this

reason, objective functions are based on the expected number of tests, so that a set of

group sizes for a testing algorithm, known as the optimal testing con�guration (OTC), can

be found by minimizing this function. Traditionally, group testing research has focused on

objective functions expressed solely as the expected number of tests per individual. This

is due to a close correspondence between the number of tests and testing costs. However,

using an objective function that contains only the expected number of tests leaves out an

important component of infectious disease testing: accuracy. Infectious disease testing is

rarely perfect. Errors can occur for reasons such as improper laboratory implementation

or a specimen being collected during the window period between disease contraction and

the ability to detect it. Fortunately, known mathematical expressions are available for
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the accuracy of most group testing algorithms. This enables laboratories to calculate the

expected accuracy of a chosen testing con�guration prior to implementation.

Malinovsky et al. (2016) recently proposed a new objective function that includes the

expected number of tests and a measurement of accuracy. This allows laboratories to eval-

uate accuracy at the same time as the number of tests when choosing an OTC. As may be

expected when breaking with tradition, the proposal generated controversy in the group

testing research literature. Both Hudgens (2016) and McMahan et al. (2016) o�ered rejoin-

ders to Malinovsky et al. (2016) that disagreed with this new objective function. All three

of these works focused only on the Dorfman algorithm in their limited evaluations. The

purpose of our paper is to examine a signi�cant number of other group testing algorithms

with respect to objective functions. This is important because other algorithms are widely

used and known to result in a smaller number of tests and/or higher accuracy than the

Dorfman algorithm. We present �ndings in our paper that interestingly show both the

traditional and the new objective function are actually quite similar and very often lead to

the same OTC.

The order of this paper follows. Section 2 explicitly de�nes the objective functions and

provides a mathematical comparison between them. Section 3 calculates the OTC for each

objective function along with their operating characteristics (expected number of tests

and accuracy measures) in a wide variety of settings. These calculations are performed

for both hierarchical and array-based group testing algorithms. We show under what

conditions these operating characteristics will be the same and when they will be di�erent.

Section 4 summarizes our �ndings, discusses alternative objective functions, and provides

recommendations for practice. We also provide R functions to �nd the OTCs and to

reproduce our work.

2. Objective Functions

De�ne T as the total number of tests for an overall group of size I with a hierarchical

algorithm. When using the traditional objective function, the OTC is found by minimizing
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the expected number of tests per individual:

OET = E(T )/I.

For example, the expected number of tests for three-stage hierarchical testing is given by

E(T ) = 1 +m11P (G11 = 1) +

c2∑
j=1

m2jP (G11 = 1, G2j = 1),

where Gsj is the binary outcome (values of 0 and 1 indicate a negative and a positive test

result, respectively) for group j at stage s, msj is the number of subgroups that would be

created if group j at stage s tests positively, and cs is the number of groups at stage s.

The probabilities P (G11 = 1) and P (G11 = 1, G2j = 1) are both functions of the number of

groups and their respective sizes, the probability of positivity for each individual, and the

sensitivity Se and speci�city Sp of the assay. General expressions for E(T ) are available from

Kim et al. (2007) for the case of each individual having the same probability of positivity

p and from Black et al. (2015) for the case of each individual potentially having a di�erent

probability of positivity pi for i = 1, . . . , I. The latter case is known as informative group

testing (Bilder et al. 2010; Lewis et al. 2012; Bilder and Tebbs 2012), because pi can be

estimated with the help of disease-risk information that may be available for each individual

tested. We will refer to the former case then as non-informative group testing in our work

here. Expressions for the expected number of tests are known for array-based algorithms

(Kim et al. 2007; McMahan et al. 2012b) as well, where OET is still de�ned as the expected

number of tests per individual.

While OET is the most commonly utilized objective function, it does not directly take

into account the accuracy of the algorithm. When using OET , one usually examines the

accuracy of an OTC separately through measures such as the overall sensitivity and speci-

�city of an algorithm, most often known as the pooling sensitivity and pooling speci�city,

respectively. Each of these accuracy measures is a function of the group sizes used in the

testing algorithm and the probabilities of positivity.

Rather than examining accuracy measures after obtaining the OTC, Malinovsky et al.

(2016) proposed an alternative objective function that simultaneously takes into account
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accuracy and the expected number of tests. De�ne C as the number of correct classi�cations

for an overall group of size I. The OTC is found by minimizing

OMAR = E(T )/E(C).

Because C is never larger than the number of individuals I, E(C) ≤ I. By comparing

OMAR and OET , we see that

OET =
E(T )

I
≤ E(T )

E(C)
= OMAR

for the same initial group size I. In fact, OMAR and OET will be quite close in value. This

is because infectious disease testing algorithms will only be put into use if they have high

accuracy. Thus, E(C) will be quite close to I in practice.

To examine this closeness more precisely, consider minimizing the logarithm of each

objective function:

log(OET ) = log {E (T )} − log(I)

and

log(OMAR) = log {E (T )} − log {E (C)} . (2.1)

As shown in the Supplementary Material on the publisher's website, the expected number

of correct classi�cations is

E(C) =
I∑

i=1

{PSp,i(1− pi) + PSe,ipi} , (2.2)

where PSp,i and PSe,i are the pooling speci�city and pooling sensitivity, respectively, for

individual i. For hierarchical testing, the pooling sensitivity is always the same for every

individual tested in the same number of stages (Kim et al. 2007; Black et al. 2015). The

pooling speci�city is the same for every individual as well, but only for non-informative

group testing with equal group sizes within a stage. Under this scenario then, we can

simplify the expression for the expected number of correct classi�cations to be

E(C) = I {PSp(1− p) + PSep} , (2.3)

7



where PSp and PSe are the pooling speci�city and sensitivity, respectively, but now equal

for each individual. For array testing, the same simpli�cation for E(C) from Equation

(2.2) to Equation (2.3) occurs when the number of rows and the number of columns are

the same (i.e., a square array), which is how array testing is usually applied.

By substituting Equation (2.3) into Equation (2.1), we obtain

log(OMAR) = log {E(T )} − log [I {PSp(1− p) + PSep}]

= log(OET )− log {PSp(1− p) + PSep} .

Thus, any di�erence between the OTCs for the two objective functions is due to the

�penalty� of

log {PSp(1− p) + PSep} . (2.4)

Unfortunately, further de�nitive statements cannot be made regarding Equation (2.4), and

we are left with making general statements regarding what will happen most often. In

particular, we see that the penalty places a large weight on PSp in comparison to PSe

because p is small for realistic group testing applications. Also, because PSp and PSe

tend to be close to 1 for realistic applications, the penalty tends to be close to 0. Thus,

log(OMAR) will most often be close to log {E(T )} .

3. Comparisons

Because de�nitive statements are not possible for Equation (2.4) or for the more general

cases of unequal group sizes and informative group testing, we provide in this section a

thorough investigation of the OTCs when using the objective functions over a very large

number of situations. For each of these situations, we calculate the OTCs along with cor-

responding operating characteristics. Our results for both non-informative and informative

group testing algorithms are described next.
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3.1. Non-informative group testing

We include in this investigation the following group testing algorithms: two-stage hier-

archical, three-stage hierarchical, array testing without a master pool (row and column

groups are tested �rst, as described in Section 1), and array testing with a master pool (all

specimens in the array are tested together in one group before any row or column groups

are formed). For the �rst three algorithms, we allow the initial group sizes to range from

I = 3, ..., 40, but allow higher initial group sizes when the overall prevalence is very small

(e.g., p = 0.005) so that the OTC does not include our arbitrary upper bound for I. For

array testing with a master pool, we use the same range of group sizes for the row and

column groups, leading to a maximum master pool size of I2. All array testing algorithms

use square arrays, and we account for potential testing ambiguities that can occur in arrays

(e.g., a row tests positively without any columns testing positively) by the methods de-

scribed in Kim et al. (2007). We apply these group testing algorithms over thirty di�erent

values of p ranging from 0.005 to 0.150 by 0.005 and over three separate sets of accuracy

levels (low: Se = Sp = 0.90, medium: Se = Sp = 0.95, and high: Se = Sp = 0.99).

Table 1 displays the results for p = 0.01. The OTCs are the same for both objective

functions when using the hierarchical algorithms. Some small di�erences between OTCs

exist for the array testing algorithms, but the di�erences are not of practical importance.

For example, examine the results for array testing without master pooling and Se = Sp =

0.90. The expected number of tests and the pooling sensitivities are the same to four

decimal places. The pooling speci�cities are also quite close. In practical terms, for a

testing volume of 100,000 individuals, there would be 98,267 correct negatives found when

using the OTC for OET and 98,307 correct negatives found when using the OTC for OMAR.

While 40 additional false positives would result from the OTC for OET , these false positives

would most likely be discovered from follow-up con�rmatory testing that normally would

occur. We also provide similar tables for p = 0.05 and p = 0.10 in the Supplementary

Material available on the publisher's website. These tables show no di�erences among the

OTCs when using either OET or OMAR.

Table 2 summarizes the largest di�erences among the operating characteristics across

all thirty di�erent values of p included in our investigation. Most often, the OTCs found
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Table 1: OTC summary for p = 0.01 under non-informative group testing.

Objective
Algorithm Se Sp function OTC E(T )/I PSe PSp

0.99 0.99
OET 11-1 0.2035 0.9801 0.9990
OMAR 11-1 0.2035 0.9801 0.9990

2-stage
0.95 0.95

OET 11-1 0.2351 0.9025 0.9932
hierarchical OMAR 11-1 0.2351 0.9025 0.9932

0.90 0.90
OET 12-1 0.2742 0.8100 0.9816
OMAR 12-1 0.2742 0.8100 0.9816

0.99 0.99
OET 25-5-1 0.1354 0.9703 0.9996
OMAR 25-5-1 0.1354 0.9703 0.9996

3-stage
0.95 0.95

OET 24-6-1 0.1443 0.8574 0.9973
hierarchical OMAR 24-6-1 0.1443 0.8574 0.9973

0.90 0.90
OET 24-6-1 0.1562 0.7290 0.9938
OMAR 24-6-1 0.1562 0.7290 0.9938

0.99 0.99
OET 25-1 0.1378 0.9703 0.9995
OMAR 25-1 0.1378 0.9703 0.9995

Array w/o
0.95 0.95

OET 25-1 0.1475 0.8575 0.9970
master pooling OMAR 24-1 0.1475 0.8575 0.9972

0.90 0.90
OET 25-1 0.1611 0.7291 0.9926
OMAR 24-1 0.1611 0.7291 0.9930

0.99 0.99
OET 625-25-1 0.1364 0.9606 0.9995
OMAR 625-25-1 0.1364 0.9606 0.9995

Array w/
0.95 0.95

OET 625-25-1 0.1402 0.8146 0.9972
master pooling OMAR 576-24-1 0.1402 0.8146 0.9974

0.90 0.90
OET 625-25-1 0.1450 0.6562 0.9934
OMAR 576-24-1 0.1450 0.6562 0.9937

NOTE: Equally sized groups are optimal at each stage; thus, an OTC of �24-6-1� means
that stage 1 has a group of size 24, stage 2 has four groups of size 6, and stage 3 has
twenty-four groups of size 1. Di�erences between OET and OMAR are highlighted.
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Table 2: Largest di�erences between operating characteristics for OTCs under non-
informative group testing.

Largest di�erence
Algorithm Se Sp Frequency E(T )/I PSe PSp

0.99 0.99 0 - - -
0.95 0.95 3 0.0018 0.0000 0.0049

2-stage
hierarchical

0.90 0.90 4 0.0023 0.0000 0.0054
0.99 0.99 0 - - -
0.95 0.95 1 0.0014 0.0000 0.0051

3-stage
hierarchical

0.90 0.90 3 0.0015 0.0000 0.0049
0.99 0.99 0 - - -
0.95 0.95 5 0.0010 0.0018 0.0026

Array w/o
master
pooling 0.90 0.90 8 0.0028 0.0022 0.0054

0.99 0.99 2 0.0005 0.0006 0.0008
0.95 0.95 4 0.0012 0.0017 0.0026

Array w/
master
pooling 0.90 0.90 8 0.0015 0.0018 0.0051

NOTE: Values of p range from 0.005 to 0.150 by 0.005. The frequency column denotes
the number of times a di�erent OTC was found for OET and OMAR among these values of
p. Di�erences between operating characteristics are rounded to four decimal places. Note
that operating characteristics are always smaller for OET than for OMAR when di�erences
exist.

are the same for the two objective functions. When di�erences exist, these di�erences

occur more often for smaller values of Se and Sp, but again are not of practical importance.

Overall, these �ndings help con�rm what was strongly suspected in Section 2 through our

mathematical analysis. Namely, the objective functions lead to the same OTCs or OTCs

with similar operating characteristics when di�erences exist.

3.2. Informative group testing

We include in this investigation the following group testing algorithms: two-stage hierarchi-

cal implemented via the pool-speci�c optimal Dorfman (PSOD) method (McMahan et al.

2012a), three-stage hierarchical (Black et al. 2015), and array testing without a master pool

implemented via the gradient method (McMahan et al. 2012b). For the PSOD method, we

use a block size of 50 and replace its greedy optimization algorithm with examination of

all possible testing con�gurations. Array testing with a master pool is not included in our

investigations because there have been no informative group testing algorithms proposed
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for it. We continue to allow the initial group sizes to range from I = 3, ..., 40 and allow for

higher initial group sizes when the overall prevalence is very small.

To provide di�erent levels of heterogeneity among the pi for i = 1, . . . , I, we use the

expected value of order statistics from Pi ∼ beta {α, α(1− p)/p} for i = 1, . . . , I in the same

manner as in Black et al. (2015). This beta distribution has E(Pi) = p, and we once again

consider values of p ranging from 0.005 to 0.150 by 0.005. The amount of heterogeneity

is controlled by α, where lower levels indicate a larger amount of heterogeneity (see Black

et al. 2015 for further discussion regarding the choice of α).

Table 3 displays the results for E(Pi) = 0.01, and the Supplementary Material available

on the publisher's website provides the results for E(Pi) = 0.05 and E(Pi) = 0.10. The

displayed pooling sensitivity, PSW
e , and pooling speci�city, PSW

p , are weighted averages

of individual pooling sensitivities and pooling speci�cities, respectively, for all individuals

within the initial group for a hierarchical algorithm or within the entire array for an array-

based algorithm. Expressions for these averages are provided in the Supplementary Material

on the publisher's website and are based on accuracy de�nitions given by Altman and Bland

(1994). The largest di�erences for each operating characteristic across all values of p are

given in Table 4. Overall, while di�erences exist more often for some algorithms than in

the non-informative group testing setting, OET and OMAR still result in the same or very

similar OTCs the majority of the time, and, when di�erences exist, the di�erences likely

would not be of practical importance due to similar operating characteristic values.

4. Conclusion

We have shown that the choice of objective function most often does not change the OTC,

and even when the OTC is di�erent, there are not practical di�erences in the operating

characteristics. Therefore, our work helps to close the case on the recent controversy

regarding objective functions: they both can be used in practice. However, we tend to

favor the traditionally used OET for one main reason. Simply, laboratories need to know

the number of tests to be expected and the corresponding costs involved. In many instances,

the expected costs are directly proportional to the expected number of tests. While the

expected number of tests could also be stated when using OMAR, this seems to be an
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Table 3: OTC summary for E(Pi) = 0.01 under informative group testing.

Objective Initial group
Algorithm α Se Sp function size for OTC E(T )/I PSW

e PSW
p

2

0.99 0.99
OET - 0.1947 0.9801 0.9991
OMAR - 0.1947 0.9801 0.9991

0.95 0.95
OET - 0.2264 0.9025 0.9931
OMAR - 0.2264 0.9025 0.9931

0.90 0.90
OET - 0.2657 0.8100 0.9822

2-stage OMAR - 0.2657 0.8100 0.9822
hierarchical

0.5

0.99 0.99
OET - 0.1683 0.9801 0.9992
OMAR - 0.1683 0.9801 0.9992

0.95 0.95
OET - 0.2019 0.9025 0.9943
OMAR - 0.2019 0.9025 0.9943

0.90 0.90
OET - 0.2439 0.8100 0.9843
OMAR - 0.2439 0.8100 0.9843

2

0.99 0.99
OET 26 0.1285 0.9703 0.9996
OMAR 26 0.1285 0.9703 0.9996

0.95 0.95
OET 26 0.1375 0.8574 0.9974
OMAR 26 0.1375 0.8574 0.9974

0.90 0.90
OET 26 0.1497 0.7290 0.9939

3-stage OMAR 26 0.1497 0.7290 0.9939
hierarchical

0.5

0.99 0.99
OET 33 0.1197 0.9703 0.9996
OMAR 33 0.1197 0.9703 0.9996

0.95 0.95
OET 28 0.1291 0.8574 0.9977
OMAR 28 0.1291 0.8574 0.9977

0.90 0.90
OET 29 0.1422 0.7290 0.9942
OMAR 29 0.1422 0.7290 0.9942

2

0.99 0.99
OET 25 0.1349 0.9703 0.9995
OMAR 25 0.1349 0.9703 0.9995

0.95 0.95
OET 25 0.1448 0.8575 0.9972
OMAR 25 0.1448 0.8575 0.9972

0.90 0.90
OET 25 0.1585 0.7291 0.9929

Array w/o OMAR 25 0.1585 0.7291 0.9929
master pooling

0.5

0.99 0.99
OET 28 0.1277 0.9703 0.9995
OMAR 28 0.1277 0.9703 0.9995

0.95 0.95
OET 28 0.1379 0.8574 0.9971
OMAR 27 0.1379 0.8574 0.9972

0.90 0.90
OET 28 0.1519 0.7290 0.9927
OMAR 27 0.1519 0.7290 0.9930

NOTE: Multiple initial group sizes for 2-stage hierarchical algorithms are found within
a block size of 50, so they are not displayed here. The full OTCs are provided in the
Supplementary Material available on the publisher's website. Di�erences between OET and
OMAR are highlighted.
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Table 4: Largest di�erences between operating characteristics for OTCs under informative
group testing.

Largest di�erence
Algorithm α Se Sp Frequency E(T )/I PSW

e PSW
p

2
0.99 0.99 0 - - -
0.95 0.95 7 0.0006 (0.0023) 0.0011

2-stage 0.90 0.90 12 0.0010 (0.0052) 0.0023
hierarchical

0.5
0.99 0.99 0 - - -
0.95 0.95 3 0.0003 (0.0035) 0.0011
0.90 0.90 15 0.0008 (0.0103) 0.0022

2
0.99 0.99 1 0.0000 (0.0019) 0.0002
0.95 0.95 2 0.0035 0.0219 0.0033

3-stage 0.90 0.90 6 0.0044 0.0152 0.0062
hierarchical

0.5
0.99 0.99 1 0.0000 0.0001 0.0001
0.95 0.95 0 - - -
0.90 0.90 3 0.0010 0.0250 0.0033

2
0.99 0.99 1 0.0003 0.0004 0.0005
0.95 0.95 2 0.0011 0.0012 0.0027

Array w/o 0.90 0.90 5 0.0016 0.0012 0.0040
master pooling

0.5
0.99 0.99 0 - - -
0.95 0.95 4 0.0003 0.0004 0.0015
0.90 0.90 14 0.0015 0.0004 0.0032

NOTE: Values of E(Pi) = p range from 0.005 to 0.150 by 0.005. The frequency column
denotes the number of times a di�erent OTC was found among these values of p. Di�er-
ences between operating characteristics are rounded to four decimal places. Note that the
operating characteristic value for OET is always subtracted from the operating character-
istic value for OMAR. Thus, a negative value (indicated with parentheses) means that the
value for OET was larger than the value for OMAR.
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unnecessary extra step, especially for laboratory directors and technicians who choose the

OTC. For these users and also for those performing research in the area, we make available

a set of R functions in the binGroup package that can be used to �nd the OTC with OET

or OMAR. Examples of how to use these functions are available on our research website at

www.chrisbilder.com/grouptesting and in the Supplementary Material for this paper

on the publisher's website.

Throughout this paper, we had to make the assumption that p or pi for i = 1, . . . , I is

known. Of course, this would not be known in actual practice. Instead, some type of past

experience would be used by laboratories to estimate these quantities so that an �estimated�

OTC could be chosen. These estimated OTCs still would be the same or very similar for

the two objective functions because the same estimates for probabilities of positivity would

be used with each function. Furthermore, even when there would be small di�erences,

these di�erences would have less meaning in practice due to the true probabilities being

unknown.

There are other objective functions that could be used. For example, Malinovsky et al.

(2016) considered maximizing E(C/T ), but concluded this to be inferior to OMAR. There-

fore, we focused only on their OMAR proposal in our paper. One could also use the objective

function proposed by Gra� and Roelo�s (1972). This function involves a linear combina-

tion of the expected number of tests, the number of misclassi�ed negatives, and the number

of misclassi�ed positives. Subjectively chosen weights (or penalties) can be used with the

misclassi�cation measures to increase or decrease their importance. Of course, there will

be weights then that result in an OTC di�erent from using OET and OMAR. The sub-

jectiveness of these weights can depend on the infectious disease, the laboratory, or even

particular individuals at a laboratory. For this reason, we do not examine this particular

objective function in our paper.

Supplementary Material

The supplementary material contains the derivation for E(C) (Equation 2.2), additional

results for Sections 3.1 and 3.2, and an explanation of R functions available to reproduce

our results.
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