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Notice that the largest

for Random corre-

sponds to the smallest for Different!

 

·

 

Pearson correlation between

values on the 

same data sets
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Summary of

values with 

b

1

 = 

-

0.024

 

4

 

Alike grouping strategy results in only a 

little more variability compared to indi-

vidual testing

 

4

 

Random and different grouping strategies 

result in much more variability compared 

to individual testing
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Group testing has long been used to estimate a trait prevalence, 

p

, in situa-

tions where the prevalence is small in order to reduce time and cost or to 

make infeasible individual experiments feasible by grouping. Most of the sta-

tistical research in group testing has focused on estimating a single preva-

lence 

p

 for a homogenous population. Recently, Vansteelandt et al. (2000) and 

Xie (2001) have proposed models to incorporate covariates to estimate 

p

 for a 

heterogeneous population. The purpose here is to further examine these mod-

eling methods through a set of comparisons between individual and group 

testing models. First, the relative efficiency of model parameter estimates is 

investigated under a number of grouping strategies. Second, agreement be-

tween model parameter estimates is examined to determine how well esti-

mates coincide. Third, the effect of group size on model estimation is exam-

ined. Overall recommendations are given in order to show the benefits and 

sacrifices to using group testing models.

 

 

 

 

 

·

 

Used when testing an item for a trait

 

·

 

Example: Testing blood for the presence or absence of a disease

 

4

 

Individual testing

 

 

 

 

 

 

 

-

 

Problems: Cost and time

 

4

 

Group testing

 

-

 

If the GROUP sample is negative, then all 

I

 people in the group do not 

have the disease

 

-

 

If the GROUP sample is positive, then at least ONE of the 

I

 people in 

the group have the disease

 

-

 

Cost and time savings!

 

-

 

Strategy works well when prevalence of the trait is small

 

·

 

Many other examples of group testing

 

4

 

Disease transmission by an insect vector to a plant (Swallow, 1985)

 

4

 

Drug

-

discovery experiments (Xie et al. 2001; Zhu, Hughes

-

Oliver, and 

Young, 2001)
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·

 

Until recently, no one had used covariates in a regression setting to help esti-

mate the probability an individual item is positive for a trait

 

·

 

Vansteelandt et al. (2000)

 

4

 

Use maximum likelihood estimation to estimate parameters for a model in 

the form of a generalized linear model

 

4

 

Estimation done directly on the group responses

 

4

 

Shows smallest variance estimators occur when covariates are most alike 

within a group

 

·

 

Xie (2001)

 

4

 

Use maximum likelihood estimation to estimate parameters for a model in 

the form of a generalized linear model

 

4

 

Estimation done on the unobservable individual responses through using 

the EM algorithm

 

·

 

Since maximum likelihood estimation is used for both, the Vansteelandt et al. 

(2000) fitting method will be used here only

 

·

 

Purpose:

 

4

Compare individual and group testing models

 

4

Examine bias and efficiency of model parameter estimates

 

4

Assess agreement between model parameter estimates

 

4

Investigate the effect of group size

 

4

Analyze the effects of three grouping strategies

 

 

 

 

 

·

 

Individual responses

 

4

 

Y

ik

 

= 1 if the 

i

th

 item in the 

k

th

 group has the trait (positive) 

 

Y

ik

 

= 0 otherwise (negative) for 

i

 = 1, …, 

I

k

 and 

k

 = 1, …, 

K

 

4

 

p

ik

 = 

P

(

Y

ik

 = 1)

 

4

 

Y

ik

 are independent Bernoulli(

p

ik

) random variables

 

·

 

Group responses

 

4

 

Z

k

 = 1 denotes a positive response and

 

Z

k

 = 0 denotes a negative response for the 

k

th

 group

 

4

 

q

k

 = 

P

(

Z

k

 = 1) =

 

4

 

Z

k

 are independent Bernoulli(

q

k

) random variables

 

·

 

 Individual and group relationship

 

4

 

Z

k

 = 1 if and only if  

 

Z

k

 = 0 if and only if 

 

4

 

Y

ik

’s are “observed” when 

Z

k

 

= 0 and there are no measurement errors; 

Y

ik

’s 

are unobservable otherwise

 

·

 

Model

 

4

 

x

ik

 = (

x

ik1

, 

x

ik2

, …, 

x

ikp

)

¢

 is a vector of covariates for the 

i

th

 subject in the 

k

th

 

group

 

4

 

b

  =

is the corresponding vector of model parameters

 

4

 

log[

p

ik

/(1

-

p

ik

)] = 

b

¢

x

ik

 

4

 

Other link functions could be used as well

 

 

 

 

·

 

Simplifications for rest of presentation

 

4

 

One covariate, 

x

ik

 

4

 

No measurement errors (sensitivity = specificity = 1)

 

4

 

Equal group sizes (

I

1

 = 

I

2

 = … = 

I

K

 = 

I

)

 

·

 

Maximum likelihood estimation

 

4

 

Likelihood function:

 

4

Maximizing 

L

 with respect to 

b

 yields the maximum likelihood estimator,    

 

·

 

Asymptotic variance of

 

 

·

 

For individual testing, the standard asymptotic variance for
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·

 

Motivated from example in Vansteelandt et al. (2000)

 

4

 

Examines the covariate specific prevalence of HIV among pregnant 

women in an area of Kenya

 

4

 

One covariate of interest is age

 

·

 

Model: log[

p

ik

/(1

-

p

ik

)] = 

b

0

 + 

b

1

x

ik

 

·

 

Simulate data from model fitted to the individual observations in paper

 

4

 

b

0

 = 

-

1.97 and 

b

1

 = 

-

0.024 

 

4

 

Generate 

x

ik

 from Gamma(20.95, 1.16) since it provides a good fit to the 

observed age distribution 

 

4

 

I

 = 7 subjects per group

 

4

 

K

 = 100 groups

 

4

 

Overall sample size is 

I

*

K

 = 700

 

·

 

Generate the 

Y

ik

 individual responses from Bernoulli distribution with parame-

ter  

p

ik

 = exp(

b

0

 + 

b

1

x

ik

)/[1 + exp(

b

0

 + 

b

1

x

ik

)]

 

4

 

Groups are formed from these individual responses

 

4

 

Thus, both individual and group responses are available!

 

4

 

Example simulated data
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·

 

Alike

 

-

 Subjects with similar covariates are put into groups (sort by covariate, 

then assign to successive groups)

 

·

 

Random

 

-

 Subjects are randomly put into groups (emulates chronological if 

there is no response dependence over time)

 

·

 

Different

 

-

 Subjects with covariates as different as possible are put into groups 

(emulates worse case scenario)
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Summary

 

 

 

 

 

 

 

 

4

 

True values: 

b

0

 = 

-

1.97 and 

b

1

 = 

-

0.024 

 

4

 

Relative efficiency =  (Individual Var.) / (Group Var.) 

 

4

 

Remember that 7 times more tests are done using individual testing! 
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Percent bias = 

*

 100%
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Individual
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Random

 

Different

 

 

0

ˆ

b

-

1.4452

 

-

1.2423

 

0.5431

 

0.5357

 

 

1

ˆ

b

-

0.0415

 

-

0.0493

 

-

0.1301

 

-

0.1275

 

 

1

ˆ
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AsVar

b

Ù

0.00079

 

0.00114

 

0.00676

 

0.02925

 

Relative efficiency

 

 

 

0.70
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Conclusions

 

Fixed sample size (

I

*

K

) comparisons

 

Fixed number of tests (

K

) comparisons

 

100 simulated data sets
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Different
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Individual

 

3.4%

 

 

 

 

 

 

 

 

 

I

 

 

K

 = 100

 

2

 

5

 

10

 

20

 

30

 

40

 

Grouping
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Different
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K

 = 200

 

 

 

 

 

 

 

Grouping

 

Alike

 

2.79

 

5.87

 

8.58

 

 

 

 

Random

 

2.02

 

2.26

 

1.89

 

 

 

 

Different

 

1.46
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Grouping

 

Alike
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6.72
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1.61
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1.50

 

 

 

 

Different

 

1.16
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Settings

 

·

 

Model

 

4

b

0

 = 

-

2 and 

b

1

 = 0.6931 for log[

p

ik

/(1

-

p

ik

)] = 

b

0

 + 

b

1

x

ik

 

4

x

ik

 sampled from Uniform(

-

7.079, 1.663)

 

4

Thus, 0.001 < 

p

ik

 < 0.3

 

4

Average value of 

p

ik

 

is 0.02

 

·

 

b

 = 1, …, 500 simulated data sets for each setting of 

I

 and 

K

 

·

 

R’s 

glm

() function used to fit model to individual responses

 

·

 

R’s 

optim

() function used to fit models to group responses

 

·

 

Additional simulations for different 

b

0

, 

b

1

, 

I

, 

K

, and 

x

ik 

distribution settings 

were performed with similar results
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Relative efficiency

 

 

Correlation 
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Alike
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·

 

is biased for finite samples 

 

4

 

Bias increases with group size for fixed 

I

*

K

 here

 

4

 

Bias is smaller for group testing than individual testing with 

K

 fixed

 

·

 

Relative efficiency

 

4

 

For the same 

I

*

K

, individual testing is more efficient 

 

-

 

Remember that less tests are done with group testing!

 

4

 

When 

K

 is fixed, group testing is more efficient (except for Different) 

 

4

 

Alike is the most efficient of the grouping methods

 

·

 

Pearson correlation between individual and grouping methods

 

4

 

Correlation decreases as group size increases

 

4

 

Depending on the group size, Random and Different grouping can produce 

quite different

values than found for individual testing!  

 

·

 

Which is the more fair comparison 

-

 fixed 

I

*

K 

or fixed 

K

? 

 

4

 

If tests are expensive and individual items are cheap to obtain, fixed 

K

 is 

better to compare

 

4

 

If individual items are expensive to obtain, fixed 

I

*

K

 is better to compare
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·

 

Is the Alike grouping strategy realistic?

 

4

 

Only if ALL individual samples are available at once since groups are 

formed by covariate

 

-

 

Example: All samples are available at the same time in Thorburn et al. 

(2001) when assessing hepatitis prevalence in Glasgow, Scotland

 

-

 

More than one covariate makes Alike grouping more difficult

 

4

 

Often, Alike is not realistic due to limited “shelf

-

life” for item samples

 

4

 

As a compromise, some individual items could be constructed in homoge-

nous groups by covariates as the samples are received

 

·

 

How should group size(s) be chosen? 

 

4

 

Vansteelandt et al. (2000) suggests one way if all individual samples are 

available at once

 

4

 

Without this information, group size should be chosen based upon the pos-

sible range of 

q

k 

 

by avoiding values close to 0 or 1

 

·

 

Convergence of parameter estimates

 

4

 

Complete separation problems 

-

 this happens most often with Alike due to 

how the groups are formed

 

4

 

Low trait prevalence means small number of 

Y

ik

 = 1 for individual testing

 

-

 

This is a contributing factor to its large bias for smaller 

I

*

K

 

For example, Alike is biased by 10.8% when 

100 groups of size 2 are formed for 

I

*

K

=200
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for mean

 

-

0.0193)

 

-

0.0189)

 

-

0.0223)

 

-
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ˆ

b

For example, Alike is biased by 10.8% when 

100 groups of size 2 are formed for 

I

*

K

=200
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» Examines the covariate specific prevalence of HIV among pregnant
women in an area of Kenya
» One covariate of interest is age
* Model: log[pi/(1-pa)] = &0 = Bixix
« Simulate data from model fitted to the individual abservations in paper
» B=-197 and B =-0.024
» Generate x; from Gamma(20.95. 1.16) since it provides a good fit to the
observed age distribution
» I=7 subjects per group
» K=100 groups
» Overall sample size is I+K = 700
* Generate the Iz individual responses from Bermoulli distribution with parame-
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» Groups are formed from these individual responses

» Thus, both individual and group responses are available!
» Example simulated data
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Grouping strategies

« Alike - Subjects with similar covariates are put into groups (sort by covariate,
then assign fo successive groups)

« Random - Subjects are randomly put into groups (emulates chronological if
there is no response dependence over time)

« Different - Subjects with covariates as different as possible are put info groups
(emulates worse case scenario)

One simulated data set
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* Summary Grouping
Tndividual | Alike |Random |Different|
A 14452 |-12423 ] 05431 | 05357
& 00415 |-0.0493 [-0.1301 | -0.1275
Aean(i) 000079 |0.00114 |0.00676 | 0.02925

Relative efficiency 070 | 012 | 003

» True values: & =-197 and £ =-0.024
» Relative efficiency = (Individual Var) / (Group Var.)
» Remember that 7 times more tests are done using individual testing!

100 simulated data sef
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Notice that the largest

for Random corre-

sponds to the smallest for Different!

 

·

 

Pearson correlation between

values on the 

same data sets

 

 

 

 

 

 

·

 

Summary of

values with 

b

1

 = 

-

0.024

 

4

 

Alike grouping strategy results in only a 

little more variability compared to indi-

vidual testing

 

4

 

Random and different grouping strategies 

result in much more variability compared 

to individual testing
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Group testing has long been used to estimate a trait prevalence, 

p

, in situa-

tions where the prevalence is small in order to reduce time and cost or to 

make infeasible individual experiments feasible by grouping. Most of the sta-

tistical research in group testing has focused on estimating a single preva-

lence 

p

 for a homogenous population. Recently, Vansteelandt et al. (2000) and 

Xie (2001) have proposed models to incorporate covariates to estimate 

p

 for a 

heterogeneous population. The purpose here is to further examine these mod-

eling methods through a set of comparisons between individual and group 

testing models. First, the relative efficiency of model parameter estimates is 

investigated under a number of grouping strategies. Second, agreement be-

tween model parameter estimates is examined to determine how well esti-

mates coincide. Third, the effect of group size on model estimation is exam-

ined. Overall recommendations are given in order to show the benefits and 

sacrifices to using group testing models.

 

 

 

 

 

·

 

Used when testing an item for a trait

 

·

 

Example: Testing blood for the presence or absence of a disease

 

4

 

Individual testing

 

 

 

 

 

 

 

-

 

Problems: Cost and time

 

4

 

Group testing

 

-

 

If the GROUP sample is negative, then all 

I

 people in the group do not 

have the disease

 

-

 

If the GROUP sample is positive, then at least ONE of the 

I

 people in 

the group have the disease

 

-

 

Cost and time savings!

 

-

 

Strategy works well when prevalence of the trait is small

 

·

 

Many other examples of group testing

 

4

 

Disease transmission by an insect vector to a plant (Swallow, 1985)

 

4

 

Drug

-

discovery experiments (Xie et al. 2001; Zhu, Hughes

-

Oliver, and 

Young, 2001)
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·

 

Until recently, no one had used covariates in a regression setting to help esti-

mate the probability an individual item is positive for a trait

 

·

 

Vansteelandt et al. (2000)

 

4

 

Use maximum likelihood estimation to estimate parameters for a model in 

the form of a generalized linear model

 

4

 

Estimation done directly on the group responses

 

4

 

Shows smallest variance estimators occur when covariates are most alike 

within a group

 

·

 

Xie (2001)

 

4

 

Use maximum likelihood estimation to estimate parameters for a model in 

the form of a generalized linear model

 

4

 

Estimation done on the unobservable individual responses through using 

the EM algorithm

 

·

 

Since maximum likelihood estimation is used for both, the Vansteelandt et al. 

(2000) fitting method will be used here only

 

·

 

Purpose:

 

4

Compare individual and group testing models

 

4

Examine bias and efficiency of model parameter estimates

 

4

Assess agreement between model parameter estimates

 

4

Investigate the effect of group size

 

4

Analyze the effects of three grouping strategies

 

 

 

 

 

·

 

Individual responses

 

4

 

Y

ik

 

= 1 if the 

i

th

 item in the 

k

th

 group has the trait (positive) 

 

Y

ik

 

= 0 otherwise (negative) for 

i

 = 1, …, 

I

k

 and 

k

 = 1, …, 

K

 

4

 

p

ik

 = 

P

(

Y

ik

 = 1)

 

4

 

Y

ik

 are independent Bernoulli(

p

ik

) random variables

 

·

 

Group responses

 

4

 

Z

k

 = 1 denotes a positive response and

 

Z

k

 = 0 denotes a negative response for the 

k

th

 group

 

4

 

q

k

 = 

P

(

Z

k

 = 1) =

 

4

 

Z

k

 are independent Bernoulli(

q

k

) random variables

 

·

 

 Individual and group relationship

 

4

 

Z

k

 = 1 if and only if  

 

Z

k

 = 0 if and only if 

 

4

 

Y

ik

’s are “observed” when 

Z

k

 

= 0 and there are no measurement errors; 

Y

ik

’s 

are unobservable otherwise

 

·

 

Model

 

4

 

x

ik

 = (

x

ik1

, 

x

ik2

, …, 

x

ikp

)

¢

 is a vector of covariates for the 

i

th

 subject in the 

k

th

 

group

 

4

 

b

  =

is the corresponding vector of model parameters

 

4

 

log[

p

ik

/(1

-

p

ik

)] = 

b

¢

x

ik

 

4

 

Other link functions could be used as well

 

 

 

 

·

 

Simplifications for rest of presentation

 

4

 

One covariate, 

x

ik

 

4

 

No measurement errors (sensitivity = specificity = 1)

 

4

 

Equal group sizes (

I

1

 = 

I

2

 = … = 

I

K

 = 

I

)

 

·

 

Maximum likelihood estimation

 

4

 

Likelihood function:

 

4

Maximizing 

L

 with respect to 

b

 yields the maximum likelihood estimator,    

 

·

 

Asymptotic variance of

 

 

·

 

For individual testing, the standard asymptotic variance for
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·

 

Motivated from example in Vansteelandt et al. (2000)

 

4

 

Examines the covariate specific prevalence of HIV among pregnant 

women in an area of Kenya

 

4

 

One covariate of interest is age

 

·

 

Model: log[

p

ik

/(1

-

p

ik

)] = 

b

0

 + 

b

1

x

ik

 

·

 

Simulate data from model fitted to the individual observations in paper

 

4

 

b

0

 = 

-

1.97 and 

b

1

 = 

-

0.024 

 

4

 

Generate 

x

ik

 from Gamma(20.95, 1.16) since it provides a good fit to the 

observed age distribution 

 

4

 

I

 = 7 subjects per group

 

4

 

K

 = 100 groups

 

4

 

Overall sample size is 

I

*

K

 = 700

 

·

 

Generate the 

Y

ik

 individual responses from Bernoulli distribution with parame-

ter  

p

ik

 = exp(

b

0

 + 

b

1

x

ik

)/[1 + exp(

b

0

 + 

b

1

x

ik

)]

 

4

 

Groups are formed from these individual responses

 

4

 

Thus, both individual and group responses are available!

 

4

 

Example simulated data
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·

 

Alike

 

-

 Subjects with similar covariates are put into groups (sort by covariate, 

then assign to successive groups)

 

·

 

Random

 

-

 Subjects are randomly put into groups (emulates chronological if 

there is no response dependence over time)

 

·

 

Different

 

-

 Subjects with covariates as different as possible are put into groups 

(emulates worse case scenario)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

·

 

Summary

 

 

 

 

 

 

 

 

4

 

True values: 

b

0

 = 

-

1.97 and 

b

1

 = 

-

0.024 

 

4

 

Relative efficiency =  (Individual Var.) / (Group Var.) 

 

4

 

Remember that 7 times more tests are done using individual testing! 
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Percent bias = 

*

 100%
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Grouping

 

 

 

Individual
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Random

 

Different

 

 

0

ˆ

b

-

1.4452

 

-

1.2423

 

0.5431

 

0.5357

 

 

1

ˆ

b

-

0.0415

 

-

0.0493

 

-

0.1301

 

-

0.1275

 

 

1

ˆ

()

AsVar

b

Ù

0.00079

 

0.00114

 

0.00676

 

0.02925

 

Relative efficiency

 

 

 

0.70

 

0.12

 

0.03

 

Conclusions

 

Fixed sample size (

I

*

K

) comparisons

 

Fixed number of tests (

K

) comparisons

 

100 simulated data sets
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K

 = 200

 

 

 

 

 

 

 

Grouping

 

Alike

 

2.79

 

5.87

 

8.58

 

 

 

 

Random

 

2.02

 

2.26

 

1.89

 

 

 

 

Different

 

1.46

 

0.64

 

0.28
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1.50

 

 

 

 

Different

 

1.16

 

0.51

 

0.22

 

 

 

 

Settings

 

·

 

Model

 

4

b

0

 = 

-

2 and 

b

1

 = 0.6931 for log[

p

ik

/(1

-

p

ik

)] = 

b

0

 + 

b

1

x

ik

 

4

x

ik

 sampled from Uniform(

-

7.079, 1.663)

 

4

Thus, 0.001 < 

p

ik

 < 0.3

 

4

Average value of 

p

ik

 

is 0.02

 

·

 

b

 = 1, …, 500 simulated data sets for each setting of 

I

 and 

K

 

·

 

R’s 

glm

() function used to fit model to individual responses

 

·

 

R’s 

optim

() function used to fit models to group responses

 

·

 

Additional simulations for different 

b

0

, 

b

1

, 

I

, 

K

, and 

x

ik 

distribution settings 

were performed with similar results
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Relative efficiency

 

 

Correlation 
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·

 

is biased for finite samples 

 

4

 

Bias increases with group size for fixed 

I

*

K

 here

 

4

 

Bias is smaller for group testing than individual testing with 

K

 fixed

 

·

 

Relative efficiency

 

4

 

For the same 

I

*

K

, individual testing is more efficient 

 

-

 

Remember that less tests are done with group testing!

 

4

 

When 

K

 is fixed, group testing is more efficient (except for Different) 

 

4

 

Alike is the most efficient of the grouping methods

 

·

 

Pearson correlation between individual and grouping methods

 

4

 

Correlation decreases as group size increases

 

4

 

Depending on the group size, Random and Different grouping can produce 

quite different

values than found for individual testing!  

 

·

 

Which is the more fair comparison 

-

 fixed 

I

*

K 

or fixed 

K

? 

 

4

 

If tests are expensive and individual items are cheap to obtain, fixed 

K

 is 

better to compare

 

4

 

If individual items are expensive to obtain, fixed 

I

*

K

 is better to compare
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·

 

Is the Alike grouping strategy realistic?

 

4

 

Only if ALL individual samples are available at once since groups are 

formed by covariate

 

-

 

Example: All samples are available at the same time in Thorburn et al. 

(2001) when assessing hepatitis prevalence in Glasgow, Scotland

 

-

 

More than one covariate makes Alike grouping more difficult

 

4

 

Often, Alike is not realistic due to limited “shelf

-

life” for item samples

 

4

 

As a compromise, some individual items could be constructed in homoge-

nous groups by covariates as the samples are received

 

·

 

How should group size(s) be chosen? 

 

4

 

Vansteelandt et al. (2000) suggests one way if all individual samples are 

available at once

 

4

 

Without this information, group size should be chosen based upon the pos-

sible range of 

q

k 

 

by avoiding values close to 0 or 1

 

·

 

Convergence of parameter estimates

 

4

 

Complete separation problems 

-

 this happens most often with Alike due to 

how the groups are formed

 

4

 

Low trait prevalence means small number of 

Y

ik

 = 1 for individual testing

 

-

 

This is a contributing factor to its large bias for smaller 

I

*

K

 

For example, Alike is biased by 10.8% when 

100 groups of size 2 are formed for 

I

*

K

=200
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b

For example, Alike is biased by 10.8% when 

100 groups of size 2 are formed for 

I

*

K

=200
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