
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Capturing the Pool Dilution Effect in Group Testing Regression:
A Bayesian Approach

Stella Self*1 | Christopher McMahan2 | Stefani Mokalled2

1Department of Epidemiology and
Biostatistics, Arnold School of Public
Health, University of South Carolina, South
Carolina, United States of America

2School of Mathematical and Statistical
Sciences, Clemson University, South
Carolina, United States of America

Correspondence
*Stella Self Email:
scwatson@mailbox.sc.edu

Present Address
Discovery Building, 901 Greene St,
Columbia SC, 29208

Summary

Group (pooled) testing is becoming a popular strategy for screening large populations
for infectious diseases. This popularity is owed to the cost savings that can be real-
ized through implementing group testing methods. These methods involve physically
combining biomaterial (e.g., saliva, blood, urine, etc.) collected on individuals into
pooled specimens which are tested for an infection of interest. Through testing these
pooled specimens, group testing methods reduce the cost of diagnosing all individu-
als under study by reducing the number of tests performed. Even though group testing
offers substantial cost reductions, some practitioners are hesitant to adopt group test-
ing methods due to the so-called dilution effect. The dilution effect describes the
phenomenon in which biomaterial from negative individuals dilute the contributions
from positive individuals to such a degree that a pool is incorrectly classified. Ignor-
ing the dilution effect can reduce classification accuracy and lead to bias in parameter
estimates and inaccurate inference. To circumvent these issues, we propose a novel
Bayesian regression methodology which directly acknowledges the dilution effect
while accommodating data that arises from any group testing protocol. As a part of
our estimation strategy, we are able to identify pool specific optimal classification
thresholds which are aimed at maximizing the classification accuracy of the group
testing protocol being implemented. These two features working in concert effec-
tively alleviate the primary concerns raised by practitioners regarding group testing.
The performance of our methodology is illustrated via an extensive simulation study
and by being applied to Hepatitis B data collected on Irish prisoners.
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1 INTRODUCTION

Group (pooled) testing was first proposed by Dorfman1 as a strategy that could be used to screen United States Army inductees
for syphilis during the SecondWorldWar. The strategy outlined by this seminal work suggested that pooled specimen be formed,
by amalgamating biomaterial (e.g., blood, urine, etc.) collected from individuals, and tested for the infection of interest. Based
on the outcomes of the pool tests, individuals are either diagnosed as being negative or are subjected to further testing. In
particular, as a part of Dorfman’s original strategy, individuals contributing to pools that test negative would be diagnosed as
such, while positive pools would be resolved by retesting contributing individuals one-by-one. If the infection/disease of interest
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is relatively rare, it is easy to see that this testing strategy can confer a substantial reduction in testing cost, i.e., in such settings
a majority of the pools will be negative allowing practitioners to diagnose all contributing individuals at the expense of a single
diagnostic test per pool. Given these potential cost savings, group testing has been adopted to screen for a variety of infectious
diseases (e.g., HIV2, Zika3, influenza4, SARS-CoV-25, etc.) as well as in alternate application areas (e.g., animal testing6,7,
bio-terrorism detection8, drug discovery9, genetics10, etc.).
In addition to case identification (i.e. determining which specific individuals have a disease, prior infection, etc.), group testing

has also been posited as a tool that can be used to reduce costs associated with conducting surveillance. This is accomplished by
designing statistical methodologies that can estimate population level characteristics based on data arising from implementing a
group testing protocol. The origins of the group testing estimation problem can be traced to Thompson (1962)11 and Chiang and
Reeves (1962)12, who independently developed a prevalence estimator based on test outcomes taken solely on pooled specimen.
Since this proposal, the prevalence estimation problem has received considerable attention, e.g., see Hung and Swallow13 for
a nice review. Extending these works to allow for the inclusion of covariate information, a number of regression procedures
have been developed, which include parameteric14,15,16, semiparameteric17,18, and non-parametric19,20,21 techniques. A common
limitation among the aforementioned methodologies is that they do not account for the dilution effect, which, if present and
unaccounted for, can lead to bias in parameter estimates and inaccurate inference.
To understand the underpinnings of the dilution effect, one must consider the underlying mechanism by which diagnostic tests

classify the infection status of a specimen (pooled or unpooled). Most assays render a binary diagnosis based on the measured
concentration of a continuous biomarker (e.g., antibody level, antigen concentration, etc.) which is indicative of the infection of
interest. Thus, a diagnosis is levied based on whether a measured biomarker concentration exceeds a diagnostic threshold, with
elevated concentrations typically being indicative of infection. With this in mind, the dilution effect describes the phenomenon
by which an assay’s sensitivity (ability to classify a truly positive sample as such) is adversely impacted by pooling multiple
biospecimens. This impact is due to the biomarker concentration of a positive specimen being diluted when pooled with several
negative ones.
To account for the dilution effect, a number of regression methodologies have been developed. McMahan et al.22 was the

first to propose such a procedure, though this proposal incorporates data from master pools only. Wang et al.23 expanded on this
approach by incorporating data arising from retesting protocols. Other approaches includeDelaigle andHall24 andWarasi et al25.
More recently, Mokalled et al.26 developed a regression methodology which acknowledges the dilution effect by assuming that
the observed testing outcomes are continuous biomarker concentrations. A primary strength of this work is that the underlying
biomarker distributions for the positive and negative individuals are assumed to be unknown and are estimated as part of the
regression procedure, thus circumventing restrictive assumption made by previous proposals. However, this approach cannot
accommodate data observed from resolving positive pools and it ignores the potential for measurement error.
To overcome these limitations, herein we develop a novel Bayesian group testing regression methodology which specifically

accounts for the dilution effect. Our approach, unlike Mokalled et al.26, can accommodate testing data arising from any group
testing protocol, can easily be implemented under any biomarker distributional assumptions, and directly acknowledges the error
associated with measuring the biomarker concentrations. In developing our approach, we consider four commonly encountered
settings; namely, 1) the information available on the biomarker distributions is poor quality, 2) there is limited information
available, 3) there is a great deal of information available, and 4) the distributions are known. Through analyzing continuous
outcomes measured on pools, our approach can estimate both a regression function and the distributions of the biomarker
concentrations of positive and negative individuals. Further, in settings where limited/poor information is available for the
biomarker distributions, we propose a two-stage procedure under which our proposed modeling framework can be used to
set diagnostic thresholds to minimize misclassifications, thus merging the classification and estimation problems. To facilitate
model fitting, an easy to implement Markov chain Monte Carlo (MCMC) posterior sampling algorithm is developed. The finite
sample performance of our approach is illustrated through in depth numerical studies and by being applied to Hepatitis B virus
(HBV) data collected on Irish prisoners.
The remainder of this article is organized as follows. In Section 2, we develop our Bayesian regression methodology for group

testing data. This includes deriving the observed data likelihood, developing the proposedMCMC posterior sampling algorithm,
and outlining our two-stage procedure for estimating pool-specific thresholds. Section 3 covers case identification. In Section
4, we use simulation to assess the performance of both the proposed estimation and case identification aspects of our work. In
Section 5, we apply our methods to the HBV data. In Section 6, we conclude with a summary discussion. Additional details are
provided in the Web Appendix.
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2 METHODOLOGY

2.1 The Model
Suppose we are screening N individuals for a disease/infection of interest via a group testing protocol. Let Yi denote the true
infection status of the ith individual, for i = 1, ..., N , with the convention that Yi = 1 indicates that the individual is infected
and Yi = 0 otherwise. We assume that an individual’s true disease status can be associated with a set of Q individual-level
covariates, denoted xi, through the following model

Yi|xi, �
ind∼ Bernoulli{g−1(x′i�)}, for i = 1, ..., N, (1)

where � is a Q-dimensional vector of regression coefficients and g(⋅) is a known binary link function, e.g., logistic, probit, etc.
As is common in the literature, we assume that the individuals’ statuses (i.e., the Yi’s) are conditionally independent given the
covariate information. Moreover, it is important to note that in the presence of imperfect testing the Yi’s are unobservable, even
under individual level testing.
In our proposed modeling framework, we relate the individuals’ true statuses to the outcomes measured on pools through their

true biomarker concentrations. To this end, let �i denote the true biomarker concentration of the ith individual, and we assume
that these variables are conditonally (given Yi) distributed as

�i|Yi,�0,�1 ∼ (1 − Yi)f�−(� |�0) + Yif�+(� |�1), (2)

where f�−(⋅|�0) and f�+(⋅|�1) are the probability density functions of the biomarker concentrations of the negative and posi-
tive individuals, respectively, and � = (�0,�1)′ is a vector of parameters governing these distributions. A few comments are
warranted. First, given the individuals’ true statuses, we assume that the �i are conditionally independent of each other and the
covariates. Second, as with the individuals’ true statuses, in the presence of imperfect testing the �i’s are unobservable. Lastly, in
some settings it may be reasonable to assume � is known, while in others it may be unknown. When � is unknown, some infor-
mation (of various quality and quantity) might nevertheless be available. Our method facilitates the inclusion of such information
if it exists.
To develop a general methodology, we note that many group testing protocols have been proposed for classification1,27,28,29

and/or quality control purposes30,31. Most of these protocols require a number of the individuals under study to be tested in
multiple pools. To track pool membership, we introduce the index set j which identifies the individuals who contributed to the
jth pool, for j = 1, ..., J , i.e. i ∈ j if and only if individual i contributes biomaterial to pool j. Herein, unlike previous proposals,
we assume that the observed data collected from assaying the jth pool consists of its measured biomarker concentration, which
we denote by j , for j = 1, ..., J . To relate the individuals’ true biomarker concentrations to those measured on pools, we assume
that the (true) biomarker concentration of the jth pool, �j , is the arithmetic average of the concentrations of the contributing
individuals, i.e., �j = |j|−1

∑

i∈Pj
�i. This assumption is common among the literature23,26 and is reasonable as long as pools

are formed from equal volume aliquots. To relate these two variables, we assume the following classical measurement error
model

j|� , �2
ind∼ Normal(�j , �

2) for j = 1, ..., J ,

where � = (�1, �2, ..., �N )′, and �2 > 0 is an unknown error variance. A few comments are warranted. First, given that a
number of the individuals may contribute to multiple pools, the j’s are generally not independent. Although, under our assumed
measurement error model, the j’s are conditionally independent given the true biomarker concentrations of the pools (or
equivalently �).
This observation forms the crux of our model fitting strategy. In particular, by exploiting the conditional independence, one

can express the conditional distribution of the observed data as:

�(|�) = ∫ �(|� , �)�(�|�)d�

= ∫ �(|� , �)
∑

Y ∈Y
�(�|Y , �)�(Y |�)d�

= ∫

J
∏

j=1
f (j|�j , �

2)
∑

Y ∈Y

N
∏

i=1
f�−(�i|�0)1−Yif�+(�i|�1)Yig−1(xi�)Yi{1 − g−1(xi�)}1−Yid� ,
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where  = (1,2, ...,J )′, � = (�, �, �2)′, Y = (Y1, Y2, ..., YN )′, Y = {y = (y1, y2, ..., yN )′ ∶ yi ∈ {0, 1}}, and f (⋅|a, b) is
the probability density function of a normal random variable with mean a and variance b. Given the observed data model, we
can complete our Bayesian model by assigning prior distributions for the model parameters. To this end, we specify normal
and inverse gamma priors for � and �2, respectively, i.e., � ∼ N(0,��) and �2 ∼ IG(�� , ��). In practice, the hyperparameters
of these priors are selected so that they are diffuse32, though if the magnitude of measurement error is well-understood for
laboratory procedure under consideration, an informative prior distribution could be used; for more information on how this
can be accomplished see Klauenberg et al. (2015)33. The prior specifications for �0 and �1 are intrinsically tied to the assumed
distributional families of f�− and f�+ . To avoid loss of generality, we will denote these prior distributions by �(�0) and �(�1)
while leaving their particular form unspecified. It is important to note that the model in (2) hierarchically represents a mixture
model and in therefore subject to the “label switching" problem, where the rolls of f�− and f�+ can be reversed. This issue is
common in mixture models34,35 and is typically resolved either by applying a relabeling algorithm36,37,38, imposing constraints
on the parameters39, or by assigning informative prior distributions40,41. Herein, we adopt the latter strategy, and note that the
role of the informative priors is primarily to discourage the label switching problem by diminishing the exchangeablity of the
biomarker distributions. However when high quality biomarker information is available, the informative priors also provide
a means of incorporating this information into the model. As we show in our simulation study and data application, these
informative prior distributions do not need to be correctly specified in order for our method to perform well. In fact, our method
performs well in our data application even when �(�0) and �(�1) are egregiously misspecified and strongly informative. Web
Appendix A provides further discussion of other strategies for preventing or resolving the label switching problem, as well as
guidance for selecting the most appropriate strategy for particular applications.

2.2 Estimation
While the observed data likelihood simplifies considerably under certain group testing protocols, obtaining a ‘closed-form’
simplified expression for the general case can prove to be quite cumbersome, if at all possible.Moreover, evaluating the likelihood
via numerical integration is computationally impractical since it would require computing an N-dimensional integral whose
integrand includes a 2N -dimensional sum. To circumvent these difficulties, we propose a two-stage data augmentation approach
which begins by introducing � and Y as latent random variables. Proceeding in this fashion yields the following augmented data
likelihood

�(, � , Y |�) =
J
∏

j=1
f (j|�j , �

2)
N
∏

i=1
f�−(�i|�0)1−Yif�+(�i|�1)Yig−1(xi�)Yi{1 − g−1(xi�)}1−Yi . (3)

The next stage in our data augmentation strategy introduces  = ( 1,  2, ... N )′ as a means to decompose the binary regression
model, thus making the posterior sampling of � straightforward. The distribution that i obeys is specifically tied to the specified
link function. Herein, we focus on the case in which g(⋅) is either the probit or logisitic link, which leads to  i being specified as
a truncated normal or Pólya-Gamma random variable, respectively; for further details see Albert and Chib (1993)42 and Polson
et al. (2013)43. Under either link function, the augmented data likelihood after the second stage can be expressed as

�(, � , Y , |�) =
J
∏

j=1
f (j|�j , �

2)
N
∏

i=1
f�−(�i|�0)1−Yif�+(�i|�1)Yif (ℎi|xi�, !i)ℎ( i), (4)

where ℎi =  i, !i = 1, and ℎ( i) = I( i > 0, Yi = 1) + I( i < 0, Yi = 0) under the probit link, while under the logistic link,
ℎi = �i∕ i, ℎ( i) = exp{�2i ∕(2 i)}'( i), �i = Yi−0.5,!i =  −1

i , and'(⋅) denotes the density function of a Pólya-Gamma(1,0)
random variable; for further details see Polson et al. (2013)43.
To develop our posterior sampling algorithm, we note that based on the forms provided in (3) and (4), it is easy to identify

the full conditional distributions of several parameters. In particular, we have that

�|Y , ∼ N(�∗
� ,�

∗
�)

�2|, � ∼ IG
(

�∗� , �
∗
�

)

Yi|�i, �,�0,�1 ∼ Bernoulli
(

p∗i
)

,
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where the specific forms of �∗
� , �

∗
� , �

∗
� , �

∗
� , and p

∗
i are provided in Web Appendix B. Further, when g(⋅) is taken to be the probit

or logistic link we have that the full conditional distribution of  i is

 i|�, Yi ∼ TN{xi�, 1,(Yi)}
or

 i|� ∼ PG(1,xi�),

respectively, where (⋅) controls the support of the truncated normal distribution, with (0) = (−∞, 0) and (1) = (0,∞), and
PG(a, b) denotes the Pólya-Gamma distribution with parameters a and b.
We now turn attention toward the remaining parameters, namely �i, �0, and �1. The full conditional distributions of these

variables are given by

�(�i|, � , Y , �) ∝
∏

j∈i

f (j|�j , �
2)f�−(�i|�0)1−Yif�+(�i|�1)Yi

�(�0|� , Y ) ∝
N
∏

i=1
f�−(�i|�0)1−Yi�(�0)

�(�1|� , Y ) ∝
N
∏

i=1
f�+(�i|�1)Yi�(�1),

where i = {j ∶ i ∈ j}. Regretfully, under common biomarker distributional assumptions (e.g., gamma, log-normal, etc.)
these full conditionals are not recognizable as a member of a common family. For this reason, and generality, we make use of a
Metropolis-Hastings (MH) algorithm to sample these terms. Thus, the proposed Markov chain Monte Carlo (MCMC) sampling
algorithm consists of a Metropolis-Hastings-within-Gibbs sampling scheme. For a detailed implementation of our posterior
sampling algorithm, see Web Figures 1-4. Note, in implementing the proposed approach, if the biomarker distributions are
known with certainty, then �0 and �1 can be treated as fixed constants instead of being sampled from their posterior distributions.
For example, if high quality data is available on a large number of positive and negative individuals, then �0 and �1 can be
estimated from this data a priori and held constant during the model fitting process.

3 CASE IDENTIFICATION

The dilution effect can also adversely impact the classification accuracy of group testing protocols. This effect can be mitigated
by setting diagnostic thresholds that acknowledge the dilution effect based on a priori knowledge of the biomarker distributions;
for further discussion see Wang et al. (2018)44. In practice, the information available for the biomarker distributions can be of
varying quality and quantity. In the context of a rare or newly emerging infectious disease, the available information might be
limited to a handful of measurements on positive and negative individuals. Even in more established diseases, if the causative
pathogen mutates rapidly, available information may quickly become outdated. Alternatively, if the disease exhibits heterogene-
ity among different populations, information available from one population may not generalize well to other populations. In an
effort to guard against the dilution effect and to improve classification accuracy of group testing strategies in settings where
limited/poor information is available for the biomarker distributions, we propose a two-stage procedure which leverages testing
information to guide case identification. In the first stage, our estimation methodology is used to estimate “optimal” pool spe-
cific diagnostic thresholds which acknowledge the dilution effect. Based on these diagnostic thresholds, retesting is completed
via a group testing protocol. In the second stage, we make use of the retesting information to refine the estimated thresholds
with an eye toward identifying pools (or individuals) who were potentially misclassified in the first stage. It is important to note
that we consider the setting in which limited information is available about the biomarker distributions and researchers do not
feel comfortable specifying these distributions exactly, i.e., there is considerable uncertainty regarding f�+ and f�− . If these dis-
tributions were known a priori and researchers were interested in classification only, the work of Wang et al. (2018) could be
used to set the diagnostic thresholds44.
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3.1 Optimal Threshold Selection
In what follows, we seek to identify the optimal diagnostic threshold for a pool consisting of c individuals, which we denote by
t▿(c). If the biomarker distributions were known, one can identify t▿(c) as

t▿(c) = argmax
t

{Sp(c, t) + Se(c, t) − 1},

where Sp(c, t) is the probability that a pool consisting of c negative individuals will test negative under a diagnostic threshold
t and Se(c, t) is the probability that a pool consisting of 1 positive and c − 1 negative individuals will test positive under a
diagnostic threshold t. Formally, under the model formulation discussed above, we have that

Sp(c, t) =

t

∫
−∞

∞

∫
−∞

cf (u|v, �2)f c(0)� (cv)dvdu

Se(c, t) =

∞

∫
t

∞

∫
−∞

cf (u|v, �2)f c(1)� (cv)dvdu

where f c(q)� = f (c−q)∗
�− ∗ f (q)∗

�+ , “∗” denotes the usual convolution operator, and f (q)∗
� denotes the q-fold convolution of f�

with itself. For further discussion on the derivation of these expressions, see McMahan et al. (2013)22. A few comments are
warranted. First, the objective function used to identify the thresholds was inspired by the Youden index, which is commonly
adopted for setting diagnostic thresholds for individual level testing. Second, as a strategy for setting thresholds, this approach
has been well explored by Wang et al. (2018)44. Lastly, computing the thresholds as discussed above requires one to know f�+
and f�− , or equivalently �0 and �1.
In settings where such knowledge about the biomarker distributions is unavailable, one can estimate the thresholds described

above by replacing the unknown parameters �0 and �1 by their estimates. To this end, we assume that we have access to j , for
j = 1, ..., J , arising from the first stage of a group testing protocol, e.g., the biomarker concentrations measured on master pools
as a part of the first stage of Dorfman testing, row and column pool results from implementing array testing, etc. Based on these
assessments, the estimation methodology described above can be utilized to estimate �0 and �1 and hence the optimal thresholds.
Admittedly, especially in high volume settings, it is expected that the estimates of �0 and �1 will stabilize after enough data is
collected and analyzed by the proposed approach. After this has occurred, one could use the method of Wang et al. (2018) to
set diagnostic thresholds treating the biomarker distributions as known quantities.

3.2 Quality Control Stage
Once the thresholds have been determined by the approach outlined above, the group testing protocol can be completed, i.e.,
initially tested pools can be classified and retesting can be conducted as necessary. As a part of the retesting process, we gain
more information by resolving positive pools which can be assimilated into our model to refine our understanding about the
unknown model parameters. Thus, as a part of the second stage of our proposed procedure, we assert that our model should
be re-fit to this extended dataset and that the diagnostic thresholds be re-estimated. Once this process is complete, one can use
the updated diagnostic thresholds to identify discrepancies, e.g., pools/individuals initially diagnosed to be negative that are
re-classified as positive. In some cases, this could require that additional pools be resolved. Given the numerous group testing
protocols that have been proposed, it is hard to enumerate how all possible discrepancies could arise and whether they would
necessitate further retesting. That is to say, the retesting process would have to be protocol specific. Figure 1 provides flowcharts
depicting the implementation of two such strategies under Dorfman and array testing. This cycle of retesting and re-estimation
could be allowed to continue until no discrepancies remain, or until a pre-specified number of updates have been performed.
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FIGURE 1 This figure presents a flowchart that outlines our quality control adapted variants of Dorfman (left panel) and
array (right panel) testing. These adaptations require iterating between testing, classification, and retesting. At each iteration,
estimation results are used to update classification thresholds.

4 SIMULATION STUDY

4.1 Simulation Configuration
To demonstrate the performance of the proposed methodology, we conducted an extensive simulation study. As a part of this
study, we generated true disease statuses forN individuals, forN ∈ {900, 1800}, from the following population-level models

M1: P (Yi = 1|xi) = g−1(�0 + �1xi1 + �2xi2);xi = (xi1, xi2)′, � = (�0, �1, �2)′ = (−5, 2, 1)′

M2: P (Yi = 1|xi) = g−1(�0 + �1xi1 + �2xi2);xi = (xi1, xi2)′, � = (�0, �1, �2)′ = (−3, 0.5, 1.5)′,

where g(⋅) is the logistic link, xi1 ∼ N(0, 1), and xi2 ∼Bernoulli(0.5). Models M1 and M2 yield overall disease prevalences
of 5% and 12%, respectively. To simulate biomarker concentrations for the positive and negative individuals, we consider 2
separate specifications:

D1: �i|Yi = y ∼ Gamma(�y, �y); � = (�0, 
0, �1, 
1, �′)′ = (2.5, 0.5, 80, 2, �′)′

D2: �i|Yi = y ∼ Gamma(�y, �y); � = (�0, 
0, �1, 
1, �′)′ = (2.5, 0.5, 20, 1, �′)′,

where the specification in D1 allows for near perfect separation, while D2 allows for overlap between the 2 distributions; see
Figure 2.
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To illustrate our methodology, we simulate the process of testing theN individuals using our quality control adapted variants
of 2 common group testing procedures, i.e., Dorfman and array testing, with one round of retesting and one associated model
update. The step-by-step implementation of these protocols are outlined in Figure 1. In this study, we randomly assigned indi-
viduals to pools of size c for Dorfman testing and c × c arrays for array testing, where c ∈ {3, 5, 10}. To provide a baseline for
comparison, we also simulated individual level testing. For all three testing protocols the observed biomarker concentration for
pools and individuals were simulated as j = |Pj|−1

∑

i∈j
�i + �j , where �j ∼ N(0, �2 = 0.0052) provides the measurement

error. This process was repeated 500 times for each combination of sample size, population model, biomarker model, and testing
protocol leading to a total of 28,000 datasets.
To complete our Bayesian model, prior distributions for � and �2 were assigned as described in Section 2 with �� = 100I and

�� = �� = 3. The biomarker distribution parameters were assigned independent gamma priors whose parameters were specified
according to the strategy outlined in Web Appendix A, reflecting the more difficult scenario in which limited and imperfect
information is available about the biomarker distributions. We found that this approach all but eliminated the label switching
problem, with only 0.02% of model fits exhibiting the problem. The results from these datasets were removed and replaced. To
analyze each dataset, a posterior sample of 10,000 realizations was generated using the algorithm outlined in Section 2, after
discarding a burn-in sample to ensure convergence.Most scenarios required a burn-in period of 20,000 iterationswith a few of the
individual testing and Dorfman testing with pools of size 10 scenarios requiring 50,000. Convergence of theMCMC chains were
assessed in the usual manner, e.g, trace plots, etc. Based on the posterior sample, we obtain point estimates (estimated posterior
means) of the model parameter and associated measures of uncertainty (estimated posterior standard deviation). Further, based
on the estimated diagnostic thresholds, we also classify each individual.

4.2 Simulation Results
Table 1 provides a summary of our estimates of � under population model M1 and biomarker concentration model D2. This
combination represents the most difficult estimation setting considered, i.e., M1 provides for the lowest prevalence and D2 pro-
vides for overlapping biomarker distributions. Web Tables 1-3 provide the same summary under the other considered simulation
configurations. The presented summary includes the empirical bias, average estimated posterior standard deviation, and the stan-
dard deviation of our estimators, along with the empirical coverage probability associated with 95% credible intervals. From
these results, one will first note that the proposed approach provides both accurate point estimates as well as reliable inference.
That is, using the results from individual level testing as a baseline for comparison, we first note the the bias in point estimates
are relatively small. Moreover, this bias tends to disappear as the sample size increases, as one should expect. Further, the vari-
ability of the estimates obtained by the group testing procedures are roughly equivalent to those attained from individual level
testing and the coverage probabilities attain their nominal level. In making these comparisons, it is important to remember that
it takes approximately twice as many tests to collect the individual level data than the group testing data; see the average number
of tests reported in the right hand column of Table 1. Attention is now turned to classification accuracy, Table 1 also provides
the empirical true positive, true negative, false positive, and false negative classification rates that were obtained based on our
estimated diagnostic thresholds. For comparative purposes, the same accuracy measures are provided for the case in which the
true diagnostic threshold were known. From these results, we see that our quality control step provides near “oracle" like per-
formance, i.e., our approach, which has to estimate the diagnostic threshold, classifies the individuals with the same level of
precision as the approach that is given the true diagnostic threshold. This is made possible by the fact that our approach is capa-
ble of precisely estimating the biomarker distributions of the positives and negatives, which is demonstrated by Figure 2. That
is, this figure displays a summary of the estimated biomarker distributions for all simulation configurations under model M1.
Similar results under model M2 are provided in Web Figure 5. In summary, the findings from this simulation study suggests that
the proposed approach can simultaneously estimate the regression model and the biomarker distributions, as well as provide a
path for precise classification, all while directly accounting for the dilution effect and measurement error.
To further explore the performance of the proposed approach, several complementary simulations studies were performed.

In particular, we consider the performance of our methodology under several different biomarker distributional settings. These
include normal and log-normal specifications. Further, we also examine the case in which the biomarker distribution for the
negative individuals is known and concentrates around zero, which is indicative of the absence of the biomarker for negative
individuals. To consider other group testing protocols, we also simulated testing under rectangular arrays and array testing with
master pool testing. For further details on these additional studies and a summary of the results see Web Appendix C. Briefly,
the findings from these studies reinforce all of the conclusions discussed above. That is, that the proposed methodology can
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FIGURE 2 Simulation Results: Summary of the posterior mean estimates of �̂ from model M1, under biomarker distributions
D1 (top row) and D2 (bottom row) obtained from individual (A1), Dorfman (A2), and array (A3) testing. The curves represent
the average estimate of the biomarker distributions, plotted against the true densities. The left column corresponds toN = 900
and the right toN = 1800.

simultaneously estimate the regression model and the biomarker distributions while directly accounting for the dilution effect
and measurement error.

5 DATA APPLICATION

To further assess the performance of our methodology, we make use of a Hepatitis B dataset collected on an Irish prisoner
population. The dataset contains 1,193 individuals, though 95 individuals were missing key variables and were excluded leaving
1098 individuals for analysis. Available information included hepatitis B virus (HBV) infection status, age, sex, and continuous
optimal density (OD) reading from a Murex ICE enzyme immunoassay on oral fluid samples. For complete details regarding
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the data and associated study protocol, see Allwright et al45. This dataset contains individual patient OD readings, allowing us
to construct, test, and decode master pools according to the three classification approaches outlined in Section 3. In so doing,
we follow the approach of McMahan et al.22, Delaigle and Hall24, and Mokalled et al.26, who also used this data to demonstrate
the performance of various group testing methodologies. We consider the performance of our method under four different
information settings (limited information, inaccurate information, high quality information, and perfect information). Our goal
is threefold: to estimate the logistic regression model linking the individuals’ disease statuses to their associated risk factors,
to estimate the underlying distribution of the OD values of the positive and negative individuals, and to correctly classify each
individual as positive or negative for HBV. To relate the patients’ ages and sexes to their infection statuses, we assume

P (Yi = 1|x1i, x2i) = g−1(�0 + �1x1i + �2x2i),

where x1i and x2i denote the age and sex of the ith patient, respectively.
We evaluated the performance our method on the HBV data using the three classification approaches outlined in Section 3:

individual, Dorfman, and array testing. Our quality control variant of Dorfman testing was implemented with pools of size 3 and
5 and our array based testing procedure with 3×3 and 5×5 arrays. We note thatN = 1098 does not divide equally into pools of
size 5 or 5 × 5 arrays. One approach to address this is to utilize “remainder pools" or to test “left over" individuals individually.
However, both of these options make it difficult to compare performance fairly across testing methods and pool sizes. Instead,
we constructed and simulated testing of 500 datasets, each of which consisted of 900 randomly selected individuals. Proceeding
in this fashion allows for a direct comparison across the three classification techniques. In implementing these techniques,
individuals were assigned to pools/arrays at random and pooled responses were simulated by taking the arithmetic mean of OD
readings of the members of each pool. We applied the retesting approaches depicted in Figure 1 using one round of retesting and
one associated model update. If an individual was retested, their individual OD reading was used as their retest observation.
To fit our model, we assume that the distributions of the OD readings for positive and negative individuals are well-

approximated by gamma distributions; Mokalled et al.26 concluded that this assumption was reasonable for these data. The
parameters of these distributions were assigned independent gamma priors whose parameters were selected to reflect four dif-
ferent settings; namely, a limited information, inaccurate information, high quality information, and perfect information setting.
For specific details of these specifications see Web Appendix A. This was done to gauge the performance of our methodol-
ogy across a broad spectrum of potential settings a practitioner may face. In all scenarios, prior distributions for � and �2 were
assigned as described in Section 2 with �� = 100I and �� = �� = 3. Our posterior sampling algorithm was used to obtain a
sample of size 10,000 from the posterior distribution, after discarding a burn-in sample to ensure convergence. The individual
testing scenarios and the high quality information setting for Dorfman testing with pools of size 5 required a burn-in period of
50,000 iterations with the other scenarios requiring only 20,000 iterations. Convergence was assessed via trace plots. The label
switching problem occurred in approximately 2% of the datasets, with the overwhelming majority of label switching (all but 8
of the instances) occurring in the unreliable prior scenarios. These instances were replaced with additional model fits. Based
on the posterior sample, we obtain point estimates (estimated posterior means) of the model parameter and associated measures
of uncertainty (estimated posterior standard deviation). Further, based on the estimated diagnostic thresholds, we also classify
each individual.
Table 2 contains the average posterior mean estimate and the average estimated posterior standard deviation. The table also

summarizes the average number of tests and the classification performance, using the HBV statuses in the data as the true
statuses. From these results, we see that analyzing data arising from our variants of Dorfman and array testing provide for
approximately the same level of accuracy as analyzing individual level data, though there was a modest increase in the size of the
standard errors for Dorfman testing with pools of size 5. Further, it took approximately half the number of tests to attain these
estimates, with virtually no loss in classification accuracy. Notably, the precision and accuracy under the misspecified priors are
comparable to that observed for the other prior configurations, indicating that our method is robust to prior misspecification.
Figure 3 displays the estimated biomarker distribution for positive and negative individuals from the inaccurate information
configurations, plotted against a histogram of the OD reading from positive and negative individuals. Results for the other three
configurations are displayed in Web Figures 6-8. From this figure we again see that the proposed approach is capable of well
estimating the biomarker distributions, even when strongly informative misspecified prior distributions are used. In summary,
the findings from this analysis reinforce the findings from our simulation studies. That is, the proposed approach can estimate
both the regression model linking the individuals’ disease statuses to their associated risk factors and the underlying biomarker
distributions, and in so doing our approach provides a path for precise classification, all while directly accounting for the dilution
effect and measurement error.
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FIGURE 3 Data Application Results: The figure displays both the empirical and the average estimated biomarker distributions
for negative and positive individuals obtained from individual (left), Dorfman (center) and array (right) testing using inaccurate
information for the HBV data application. Note that the axis scales differ between the histograms of the negative and positive
individuals.

6 DISCUSSION

We have developed a Bayesian group testing regression methodology which can be applied to continuous observations arising
from any group testing procedure (Dorfman testing, array testing, etc.) for the purposes of estimating both a regression function
and the underlying biomarker distributions of the positive and negative individuals. Our modeling technique allows us to directly
account for the dilution effect as well as measurement error. Further, our approach can be used to estimate optimal pool and
individual classification thresholds via the estimated biomarker distributions. We have assessed the performance of our method
under a variety of conditions with an in-depth simulation study and we have further demonstrated our technique by applying
it to HBV data collected on Irish prisoners. Given the multitude of group testing protocols which have been proposed, an
exploration of which protocol is most efficient for our method would be a worthwhile pursuit. To further disseminate our work,
code (written in R) which implements every aspect of our approach has been developed and has been made freely available at
https://github.com/scwatson812/GT_Dilution.
A number of possible extensions of this methodology are possible. While an appropriate distributional family exists for many

biomarker concentrations, a semi-parametric or non-parametric approach would be desirable for scenarios in which researchers
are uncomfortable making assumptions about the underlying form of the biomarker distributions. Further, the work described
herein may not be applicable to polymerase chain reaction (PCR) testing. That is, PCR tests render a diagnosis via a cycle
threshold (CT) value, which represents the number of amplification cycles required for the signal from the targeted genetic
sequence to cross the detection threshold. While CT values are related to the amount of targeted genetic material present in the
original sample, the relationship is more complex than the relationship assumed in Section 2. That said, once the distributional
relationship for PCR testing is made, our general framework can be applied seamlessly. Based on this realization, coupled with
the widespread use of PCR based testing, we believe extending our proposed methodology in this manner would be a worthwhile
pursuit. Lastly, our approach can estimate the parameters of the biomarker distributions through the analysis of group testing
data. These estimates can then be used to set diagnostic thresholds. Over time, as more information becomes available it might
be reasonable to treat these estimates as “known" quantities. Proceeding in this fashion would allow one to identify optimal
thresholds based on the approach of Wang et al. (2018)44. Given this potential, further work is needed to determine the optimal
time for transitioning to fixed thresholds, and the consequences of transitioning too early.
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TABLE 1 Simulation Results: The table provides the bias of the posterior mean estimate, average estimated posterior standard
deviation (SD), empirical coverage probability of 95% credible intervals (CP), and sample standard deviation (SSD) of the
estimated regression coefficients from regression model M1 with biomarker model D2 obtained from individual (A1), Dorfman
(A2), and array (A3) testing. The testing accuracy using the estimated optimal threshold (ET) is reported in the form of true
negative (TN), true positive (TP), false negative (FN), and false positive (FP) rates. The testing accuracy using the true optimal
threshold (TT) is included for comparison. The average number of tests used (#) is also reported.

Estimation Classification
N∗ A† c∓ �0 �1 �2 TN TP FN FP #

900

A1 Bias (SD) -0.22(0.65) 0.09(0.32) 0.07(0.46) ET 0.96 0.98 0.02 0.04 900.00
CP95(SSD) 0.94(0.69) 0.94(0.33) 0.94(0.50) TT 0.96 0.99 0.01 0.04

A2

3 Bias (SD) -0.37(0.72) 0.15(0.35) 0.11(0.50) ET 0.97 0.93 0.07 0.03 519.16
CP95(SSD) 0.94(0.75) 0.94(0.38) 0.94(0.53) TT 0.97 0.93 0.07 0.03

5 Bias (SD) -0.38(0.74) 0.13(0.36) 0.14(0.53) ET 0.97 0.89 0.11 0.03 494.96
CP95(SSD) 0.94(0.88) 0.95(0.37) 0.93(0.66) TT 0.97 0.89 0.11 0.03

10 Bias (SD) -0.43(0.80) 0.17(0.39) 0.15(0.56) ET 0.97 0.86 0.14 0.03 547.86
CP95(SSD) 0.93(0.90) 0.93(0.41) 0.96(0.61) TT 0.97 0.86 0.14 0.03

A3

3 Bias (SD) -0.34(0.69) 0.14(0.34) 0.11(0.48) ET 0.98 0.89 0.11 0.02 690.82
CP95(SSD) 0.91(0.84) 0.92(0.41) 0.94(0.52) TT 0.98 0.89 0.11 0.02

5 Bias (SD) -0.31(0.71) 0.12(0.36) 0.11(0.49) ET 0.98 0.82 0.18 0.02 495.16
CP95(SSD) 0.94(0.76) 0.94(0.39) 0.94(0.51) TT 0.98 0.84 0.16 0.02

10 Bias (SD) -0.55(0.84) 0.20(0.40) 0.20(0.58) ET 0.98 0.76 0.24 0.02 417.58
CP95(SSD) 0.90(1.00) 0.92(0.47) 0.93(0.69) TT 0.98 0.76 0.24 0.02

1800

A1 Bias (SD) -0.01(0.41) 0.02(0.21) -0.01(0.30) ET 0.96 0.98 0.02 0.04 1800.00
CP95(SSD) 0.95(0.43) 0.95(0.21) 0.95(0.31) TT 0.96 0.99 0.01 0.04

A2

3 Bias (SD) -0.17(0.45) 0.09(0.23) 0.04(0.32) ET 0.97 0.93 0.07 0.03 1038.26
CP95(SSD) 0.94(0.45) 0.94(0.23) 0.97(0.31) TT 0.97 0.93 0.07 0.03

5 Bias (SD) -0.16(0.46) 0.07(0.24) 0.04(0.33) ET 0.97 0.89 0.11 0.03 981.2
CP95(SSD) 0.95(0.46) 0.95(0.23) 0.94(0.35) TT 0.97 0.89 0.11 0.03

10 Bias (SD) -0.17(0.48) 0.07(0.25) 0.05(0.35) ET 0.97 0.86 0.14 0.03 1084.78
CP95(SSD) 0.95(0.49) 0.95(0.25) 0.96(0.34) TT 0.97 0.86 0.14 0.03

A3

3 Bias (SD) -0.12(0.44) 0.05(0.23) 0.02(0.32) ET 0.98 0.89 0.11 0.02 1379.68
CP95(SSD) 0.94(0.46) 0.95(0.22) 0.94(0.32) TT 0.98 0.89 0.11 0.02

5 Bias (SD) -0.09(0.45) 0.04(0.23) 0.02(0.32) ET 0.98 0.82 0.18 0.02 989.47
CP95(SSD) 0.94(0.48) 0.94(0.24) 0.94(0.33) TT 0.98 0.84 0.16 0.02

10 Bias (SD) -0.16(0.48) 0.05(0.25) 0.07(0.35) ET 0.98 0.77 0.23 0.02 837.33
CP95(SSD) 0.95(0.52) 0.94(0.26) 0.96(0.36) TT 0.98 0.76 0.24 0.02

∗N indicates the sample size.
† A indicates the retesting protocol.
∓ c indicates the pool size.
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TABLE 2Data Application Results: The presented summary includes the average posterior mean estimate (Est.) and the average
estimated posterior standard deviation (SD) for the regression coefficients � obtained from individual (A1), Dorfman (A2), and
array (A3) testing from the HBV data application. Also provided are the true negative (TN), true positive (TP), false negative
(FN), and false positive (FP) rates, along with the total number of tests used (#).

Prior Specification A† c∓
�0 �1 �2 TN TP FN FP #Est. (SD) Est. (SD) Est. (SD)

Limited Information

A1 1 -4.30 (0.44) 0.05 (0.01) -0.73 (0.99) 0.98 1.00 0.00 0.02 900.00

A2 3 -4.29 (0.44) 0.06 (0.01) -0.99 (1.13) 0.98 1.00 0.00 0.02 479.85
5 -5.41 (0.89) 0.04 (0.03) -3.02 (2.96) 0.99 0.99 0.01 0.01 416.26

A3 3 -4.32 (0.44) 0.06 (0.01) -0.84 (1.05) 0.99 1.00 0.00 0.01 672.17
5 -4.42 (0.46) 0.06 (0.01) -0.93 (1.12) 0.99 0.99 0.01 0.01 460.48

Inaccurate Information

A1 1 -4.15 (0.41) 0.05 (0.01) -0.52 (0.89) 0.96 1.00 0.00 0.04 900.00

A2 3 -4.14 (0.43) 0.05 (0.01) -0.59 (0.95) 0.98 1.00 0.00 0.02 429.82
5 -4.43 (0.46) 0.06 (0.01) -1.01 (1.15) 0.98 1.00 0.00 0.02 432.27

A3 3 -4.16 (0.42) 0.05 (0.01) -0.61 (0.97) 0.98 1.00 0.00 0.02 681.82
5 -4.38 (0.47) 0.05 (0.02) -1.02 (1.14) 0.99 1.00 0.00 0.01 469.854

High Quality Information

A1 1 -4.27 (0.43) 0.05 (0.01) -0.90 (1.10) 0.98 1.00 0.00 0.02 900.00

A2 3 -4.62 (0.56) 0.06 (0.02) -1.60 (1.77) 0.99 1.00 0.00 0.01 469.07
5 -4.95 (0.79) 0.05 (0.03) -2.30 (2.36) 0.99 1.00 0.00 0.01 432.38

A3 3 -4.27 (0.44) 0.05 (0.01) -0.89 (1.10) 0.99 1.00 0.00 0.01 674.72
5 -4.36 (0.45) 0.06 (0.03) -0.95 (1.07) 0.99 1.00 0.00 0.01 462.66

Perfect Information

A1 1 -4.32 (0.44) 0.05 (0.01) -0.96 (1.10) 0.98 1.00 0.00 0.02 900.00

A2 3 -4.45 (0.49) 0.06 (0.01) -1.29 (1.39) 0.99 1.00 0.00 0.01 464.97
5 -5.07 (0.84) 0.04 (0.02) -2.40 (2.68) 0.99 1.00 0.00 0.01 428.69

A3 3 -4.36 (0.45) 0.06 (0.01) -1.06 (1.13) 0.99 1.00 0.00 0.01 716.85
5 -4.37 (0.45) 0.06 (0.01) -1.05 (1.12) 0.99 1.00 0.00 0.01 459.52

† A indicates the retesting protocol.
∓ c indicates the pool size.
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