Testing for Conditional Multiple Marginal Independence

Christopher R. Bilder Department of Statistics Oklahoma State University www.chrisbilder.com bilder@okstate.edu

Thomas M. Loughin Department of Statistics Kansas State University

March 26, 2001

- Conditional multiple marginal independence (CMMI)
- Survey of 239 college women
 - Contraceptive use and first time urinary tract infection (UTI)

$\Delta \sigma = -21$		Contraceptive						
Age-	~~~~1	Oral	Condom	L. Cond.	Spermicide	Diaphragm	Total	
דידיו ד	No	18	9	8	7	0	24	
011	Yes	8	9	2	3	2	14	
							38	

Age<24		Contraceptive					
		Oral	Condom	L. Cond.	Spermicide	Diaphragm	Total
ITTI	No	55	41	37	27	0	85
011	Yes	75	68	33	22	5	116

201

◆ LogXact 4 manual (p. 198-9) and Foxman et al. (1997)

Christopher R. Bilder

- Contraceptive use is a "pick any/c variable"
 - Coombs (1964)
 - Subjects may pick any out of the 5 types of contraception
 - Each choice is referred to as an "item" (Agresti and Liu, 1999)
- UTI is referred to as the "group variable"

Age is referred to as the "stratification variable"

Age>=24		Contraceptive						
		Oral	Condom	L. Cond.	Spermicide	Diaphragm	Total	
ттт	No	18	9	8	7	0	24	
011	Yes	8	9	2	3	2	14	
							38	
A 60 < 24			С	ontracepti	ve			
Agu	~~1	Oral	Condom	L. Cond.	Spermicide	Diaphragm	Total	
итт	No	55	41	37	27	0	85	
011	Yes	75	68	33	22	5	116	

201

- Hypothesis test for CMMI
 - Are the contraception practices of college women marginally independent of their UTI history, controlling

for age?

Δσο>	-91	Contraceptive						
Age-	Ge>=24 Oral		Condom	L. Cond.	Spermicide	Diaphragm	То	tal
TTT	No	18 (0.75)	9 (0.38)	8 (0.33)	7 (0.29)	0 (0.00)	2	4
UII	Yes	8 (0.57)	9 (0.64)	2 (0.14)	3 (0.21)	2 (0.14)	1	4

Observed proportion of women selecting an item is in parentheses

Δσο~21		Contraceptive					
Age	~~4	Oral	Condom	L. Cond.	Spermicide	Diaphragm	Tota
тртт	No	55 (0.65)	41 (0.48)	37 (0.44)	27 (0.32)	0 (0.00)	85
011	Yes	75 (0.65)	68 (0.59)	33 (0.28)	22 (0.19)	5 (0.04)	116
-							

38

- Hypothesis test for CMMI
 - Let $\pi_{j|ik} = P($ subject picks item j|subject is in group i and stratum k)
 - i=1,...,r denotes the group (row)
 - j=1,...,c denotes the item (column)
 - k=1,...,q denotes the stratum
 - Hypotheses (in general) $H_o:\pi_{j|1k}=\pi_{j|2k}=...=\pi_{j|rk}$ for j=1, ...,c and k=1,...,q $H_a:$ At least one of the equalities does not hold

 Cochran (1954) and Mantel and Haenszel (1959) tests should not be used

◆ Need the pick any/c variable to be pick 1/c

Purpose

- Derive test for CMMI
 - Extend Cochran's statistic to include $r \times 2 \times q$ tables
 - Test for conditional independence for each item
 - Sum c "extended Cochran" statistics to form a new statistic to test for CMMI
 - Approximations to its sampling distribution

Multiple Marginal Independence (MMI)

- Special case of CMMI when the number of strata is 1
- Previous research
 - Umesh (1995)
 - Loughin and Scherer (1998)
 - ◆ Agresti and Liu (1998, 1999)
 - Decady and Thomas (2000)
 - Bilder, Loughin, and Nettleton (2000)
 - Conclude the best MMI testing methods are:
 - Bootstrapping the naïve chi-squared statistic
 - Bootstrapping p-value combination methods
 - Most consistently hold the correct size while providing power against various alternatives

Notation

- For subject s in row i, Y_{s(ik)j}=1 if a positive response is given for item j and Y_{s(ik)j}=0 for a negative response
 - ◆ s=1,...,n
 - All responses by subject s can be viewed as an item response vector, $\mathbf{Y}_{s(ik)} = (Y_{s(ik)1}, Y_{s(ik)2}, \dots, Y_{s(ik)c})'$.
 - ♦ h=1,...,2^c different item response vectors
- Let n_{ihk} = number of observed subjects for the hth item response vector
 - Let $\mathbf{n}_{ik} = (n_{i1k}, ..., n_{i2^c k})' \sim Multinomial(\tau_{1|ik}, ..., \tau_{2^c |ik})$
 - Independent multinomial sampling within each row of each stratum
- Let m_{ijk} = number of positive responses to item j in group i and stratum k

• Then
$$m_{ijk} = \sum_{s} Y_{s(ik)j} = \sum_{\{h:Y_j=1\}} n_{ihk}$$

Notation

-

• Example $2 \times 2 \times q$ table

Extended Cochran Statistic - C²_i

- Consider the jth item and examine the responses over the strata
 - Develop a test for conditional independence

• Let

$$\mathbf{m}_{j+} = \sum_{k=1}^{q} (m_{1jk}, \dots, m_{r-1, jk})'$$

$$\mathbf{m}_{j+}^{\circ} = \sum_{k=1}^{q} \left(\frac{n_{1+k}m_{+jk}}{n_{++k}}, \dots, \frac{n_{r-1, +k}m_{+jk}}{n_{++k}} \right)$$

Extended Cochran Statistic - C_i²

Let \hat{V}_j denote the estimated covariance matrix of $\mathbf{m}_{j+} - \mathbf{m}_{j+}^{\circ}$ under conditional independence with elements of

$$\begin{split} & = C^{\wedge}_{i=1} C^{\wedge}_{ov} \left(m_{ijk} - \frac{n_{i+k}m_{+jk}}{n_{++k}}, m_{i'jk} - \frac{n_{i'+k}m_{+jk}}{n_{++k}} \right) \\ & = \sum_{k=1}^{q} \frac{m_{+jk}(n_{++k} - m_{+jk})n_{i+k}(\delta_{ii'}n_{++k} - n_{i'+k})}{n_{++k}^{3}} \\ & \text{where } \delta_{ii'} = \begin{cases} 1 \text{ if } i = i' \\ 0 \text{ if } i \neq i' \end{cases} \end{split}$$

Extended Cochran Statistic $-C_i^2$

The "Extended Cochran Statistic" is

$$\mathbf{C}_{j}^{2} = (\mathbf{m}_{+j} - \mathbf{m}_{+j}^{\circ})' \mathbf{\hat{V}}_{j}^{-1} (\mathbf{m}_{+j} - \mathbf{m}_{+j}^{\circ})$$

• Under conditional independence as $n \rightarrow \infty$:

•
$$n^{-1}V_{j} \xrightarrow{p} V_{j}$$

• $n^{-\frac{1}{2}}(\mathbf{m}_{+j} - \mathbf{m}_{+j}^{\circ}) \xrightarrow{d} N(\mathbf{0}, V_{j})$
• Then $C_{j}^{2} \xrightarrow{d} \chi_{r-1}^{2}$

Notes:

- C_j^2 simplifies to Cochran's original statistic for $2 \times 2 \times q$
- Similar to the Generalized Mantel-Haenszel test statistic
 - Landis, Heyman, and Koch (1978)
 - Difference: Assumes a multiple hypergeometric distribution in each stratum.

Modified Cochran Statistic $-C_M^2$

To test CMMI, the c C²_j are summed to form the "modified Cochran" statistic

$$C_{M}^{2} = \sum_{j=1}^{c} C_{j}^{2} = (\mathbf{m}_{+} - \mathbf{m}_{+}^{\circ})' \hat{\mathbf{Q}}^{-1} (\mathbf{m}_{+} - \mathbf{m}_{+}^{\circ})$$

$$\mathbf{m}_{+} = (\mathbf{m}_{1+}', ..., \mathbf{m}_{c+}')'$$

$$\mathbf{m}_{+}^{\circ} = (\mathbf{m}_{1+}^{\circ'}, ..., \mathbf{m}_{c+}^{\circ'})'$$

$$\hat{\mathbf{Q}} = \text{Diag}(\hat{\mathbf{V}}_{j})$$

If item responses for each subject are independent, then

$$C_{M}^{2} \xrightarrow{d} \chi_{c(r-1)}^{2} \text{ under CMMI}$$

$$\bullet \text{ Reject CMMI if } C_{M}^{2} > \chi_{c(r-1),1-\alpha}^{2}$$

Modified Cochran Statistic - C_M^2

- In most situations, the item responses are not independent
- Note that under CMMI:
 - $n^{-1}\hat{\mathbf{Q}} \longrightarrow \mathbf{Q} = \text{Diag}(\mathbf{V}_j)$
 - $n^{-\frac{1}{2}}(\mathbf{m}_{+}-\mathbf{m}_{+}^{\circ}) \xrightarrow{d} N(\mathbf{0}, \mathbf{P}_{o})$
 - Note: \mathbf{P}_{o} is excluded from here due to time constraints
- Then under CMMI

 $\begin{array}{c} C_{M}^{2} \xrightarrow{d} & \sum\limits_{p=1}^{c(r-1)} \lambda_{p} X_{p}^{2} \\ \end{array}$ where

 $\lambda_{\rm p}$'s are the eigenvalues of $\mathbf{Q}^{-1}\mathbf{P}_{\rm o}$ $X_{\rm p}^{2}$'s are independent χ_{1}^{2} random variables

Modified Cochran Statistic $-C_M^2$

- Nonparametric bootstrap (bootstrap C_M^2)
 - Approximate sampling distribution of C_M^2
 - Algorithm
 - Take B resamples of size n by randomly selecting $\mathbf{Y}_{s(i)k} = (Y_{s(ik)1}, Y_{s(ik)2}, ..., Y_{s(ik)c})'$ and group (row) designation independently with replacement from the original data within strata
 - For each resample, calculate the test statistic, $C_{M,b}^{2^*}$, for $b=1,\ldots,B$
 - Calculate the p-value as

$$\frac{1}{B}\sum_{b=1}^{c(r-1)} I\left(C_{M,b}^{2^*} > C_M^2\right)$$

where I(A) = 1 if event A occurs, 0 otherwise

Other CMMI testing methods

- Bootstrap p-value combination methods
 - Combine the p-values from C_j^2 (using a χ^2_{r-1} app.) for j=1,...,c to form a "new" test statistic, \tilde{p}
 - Product of the p-values or minimum p-value
 - Algorithm
 - Take B resamples of size n by randomly selecting $\mathbf{Y}_{s(i)k} = (Y_{s(i)1k}, Y_{s(i)2k}, ..., Y_{s(i)ck})'$ and group (row) designation independently with replacement from the original data
 - \bullet For each resample, calculate the test statistic, $\tilde{p}_{\rm b}^{*},$ for b=1,...,B
 - Calculate the p-value as $\frac{1}{B}\sum_{b=1}^{B} I(\tilde{p}_{b}^{*} < \tilde{p})$

■ Bonferroni adjustment to the c C_j^2 ◆ Reject CMMI if $C_j^2 > \chi_{r-1,1-\alpha/c}^2$

UTI Data

- Evidence against CMMI
 5,000 resamples
 - Rejection may be due to Diaphragm and L.Cond.

• $\chi_1^2(0.99) = 6.63$

CMMI Testing Method	P-value
$C_{\rm M}^2$ using $\chi^2_{\rm c(r-1)}$ app.	0.0005
Bootstrap $C_{\rm M}^2$	0.0058
Bootstrap prod. p-values	0.0330
Bootstrap min. p-values	0.0060
Bonferroni	0.0408

	Contraceptive					
	Oral	Condom	L. Cond.	Spermicide	Diaphragm	
$C_j^2 =$	0.20	3.87	6.42	4.51	7.00	

CMMI Type I Error Simulations

- Estimated type I error rate
 - Proportion of data sets in which CMMI is incorrectly rejected
- Data generated using an algorithm by Gange (1995)
 - Specify $\pi_{j|ik}$'s

- Under CMMI
- Specify odds ratios (ORs)

$$OR_{AB} = \frac{Odds(Y_{B} = 1 | Y_{A} = 1)}{Odds(Y_{B} = 1 | Y_{A} = 0)}$$

 For each data set generated, the CMMI testing methods are applied

CMMI Type I Error Simulations

- Settings held constant for each simulation
 - ♦ Nominal type I error rate=0.05
 - ◆ 500 data sets generated
 - ◆ 1,000 resamples for bootstrap methods
 - Expected range of estimated type I error rates for methods holding the nominal level:

 $0.05 \pm 2\sqrt{\frac{(0.05)(1-0.05)}{500}} = 0.05 \pm 0.0195$

 Trellis plots on next slide shows estimated type I error rates

- Includes only the $\pi_{1|ik}=0.1$, $\pi_{2|ik}=0.2$, $\pi_{3|ik}=0.3$, $\pi_{4|ik}=0.4$, and $\pi_{5|ik}=0.5$ cases for i=1,...,r and k=1,...,q
- Results generalize to other cases

•Bootstrap simulations are only run at n=25 and n=100 for $5 \times 5 \times 2$ and n=25 and 250 for $5 \times 5 \times 5$ •OR=2(R1) 25(R2) means all ORs are 2 for row 1 and 25 for row 25

CMMI Type I Error Simulations

Summary

- Bootstrap C²_M, bootstrap product of p-values, and Bonferroni testing methods most consistently hold the correct size
- Bootstrap minimum p-value holds the correct size, provided sample size is not too small
- ◆ C²_M with a X²_{c(r-1)} approximation does not hold the correct size with large pairwise association between item responses

• Corresponds to when the variation among the eigenvalues is the greatest.

CMMI Power Simulations

- Proportion of data sets in which MMI is correctly rejected
- Data generated same way as in the type I error simulation study except that marginal probabilities differ across the rows
- Trellis plot on next slide shows the estimated power
 - Includes only a few of the cases examined
 - Some estimated powers are excluded for the plot
 - Do not hold the correct size for comparable marginal probabilities, ORs, sample sizes, and marginal tables sizes
 - Marginal probabilities used (same across strata):

Row	2x5x2-A	2x5x2-B
1	0.1,0.2,0.3,0.4,0.5	0.1,0.2,0.3,0.4,0.5
2	0.3,0.4,0.1,0.2,0.3	0.5,0.2,0.3,0.4,0.5

Row	5x5x5
1-3	0.1,0.2,0.3,0.4,0.5
4-5	0.1,0.3,0.4,0.2,0.5

Christopher R. Bilder

Some estimated powers are excluded from the plot for methods that do not hold the correct size for comparable marginal probabilities, ORs, ...

CMMI Power Simulations

Summary

- There is not one method with uniformly largest power
- Bootstrap C²_M, bootstrap product of p-values have comparable powers when plotted
- Bootstrap minimum p-value and Bonferroni have comparable powers when plotted
- Some p-value combination methods are better at detecting certain types of alternative hypotheses (Loughin, 2000)
 - Deviation from CMMI for only a few items minimum p-value has higher power
 - Deviation from CMMI for most items by the same degree - product of p-values has higher power

CMMI Testing Recommendations

- Bootstrap C²_M, Bootstrap product of p-values, and Bonferroni
 - Most consistently hold the correct size
 - Provide power against detecting various alternatives

Testing for Conditional Multiple Marginal Independence

Christopher R. Bilder Department of Statistics Oklahoma State University www.chrisbilder.com bilder@okstate.edu

Thomas M. Loughin Department of Statistics Kansas State University

March 26, 2001

References

- Agresti, A. and Liu, I.-M. (1998). *Modelling Responses to a Categorical Variable Allowing Arbitrarily Many Category Choices*. Univ. of Florida Dept. of Statistics Technical Report no.575.
- Agresti, A. and Liu, I.-M. (1999). Modeling a Categorical Variable Allowing Arbitrarily Many Category Choices. *Biometrics* **55**, 936-943.
- Bilder, C. R., Loughin, T. M., Nettleton, D. (2000). Multiple Marginal Independence Testing for Pick Any/c Variables. To appear in *Communications in Statistics: Simulation and Computation* 29(4).
- Cochran, W. G. (1954). Some Methods for Strengthening the Common χ^2 Test. *Biometrics* **10**, 417-451.
- Coombs, C. H. (1964). *A Theory of Data*. New York: John Wiley & Sons, Inc.
- Decady, Y. J. and Thomas, D. R. (2000). A simple test of association for contingency tables with multiple column responses. *Biometrics* **56**, 893-896..
- Foxman, B., Marsh, J. Gellespie, B., Rubin, N. Kopman, J., and Spear, S. (1997). Condom Use and First-Time Urinary Tract Infection. *Epidemiology* **8**, 637-641.
- Gange, S. J. (1995). Generating Multivariate Categorical Variables Using the Iterative Proportional Fitting Algorithm. *The American Statistician* **49**, 134-138.
- Landis, J. R., Heyman, E. R., Koch, G. G. (1978). Average Partial Association in Three-way Table Contingency Tables: a Review and Discussion of Alternative Tests. *International Statistical Review* 46, 237-254.
- Loughin, T. M. and Scherer, P. N. (1998). Testing for Association in Contingency Tables with Multiple Categorical Responses. *Biometrics* **54**, 630-637.
- Loughin, T. M. (2000). A systematic comparison of methods for combining independent tests. Technical Report, Kansas State University, Department of Statistics, Manhattan, KS.
- Mantel, A. M. and Haenszel, W. (1959). Statistical Aspects of the Analysis of Data from Retrospective Studies on Disease. *Journal of the National Cancer Institute* 22, 719-748.

Christopher R. Bilder