Modeling Association Between Two or More Multiple-Response Categorical Variables

Christopher R. Bilder Department of Statistics University of Nebraska-Lincoln www.chrisbilder.com chris@chrisbilder.com

This research was supported in part by National Science Foundation grant SES-0207212

Introduction

Introduction

There is no place like Nebraska!

Multiple-response categorical variables

- "Choose all that apply" or "pick any" from a set of *items*
 - Lead to multiple-response categorical variables (MRCVs)
- Examples
 - 1997 new Federal standards for ethnicity reporting (*Federal register*, 1997, p. 58781)
 - □ Choose all that apply from these "items":
 - American Indian or Alaskan Native
 - Asian
 - Black or African American
 - Native Hawaiian or Other Pacific Islander
 - White
 - Some Other Race
 - Individuals may choose more than one race!
 - Census 2000

Multiple-response categorical variables	Kansas farmer example
 Examples (continued) Marketing research studies (Chambers and Skinner, 2003) Consumer choices among pop (Holbrook et al., 1982) Coke, Pepsi, Sprite, Perceptions about quality of car manufacturers (Umesh, 1995) Toyota, GM, Ford, Contraceptive use studies (Foxman et al., 1997) Examine urinary tract infection and contraception method used by women Positive/negative responses to each item Correlated binary random variables 	 Survey of 279 Kansas farmers conducted by Kansas State University What swine waste disposal methods do you use? Pick all that apply: Lagoon Pit Natural drainage Holding tank What do you test swine waste for? Pick all that apply: Nitrogen Phosphorus Salt
www.chrisbilder.com 5 of 36	www.chrisbilder.com 6 of 36

Kansas farmer example

Observ	ed counts	Waste storage method chosen				
			Ĩ	Natural	Holding	
		Lagoon	Pit	Drainage	Tank	
waste sen	Nitrogen	27	16	2	2	
	Phosphorus	22	12	1	1	
Test cho	Salt	19	6	1	0	

Questions of interest:

- Is waste storage independent of what the waste is tested for?
- If they are dependent, what is the association structure?
 - Does some waste storage methods lead to more or less testing than others?
 - Are there particular storage/contaminant combinations for which there is more or less testing than for others?

Kansas farmer example

- □ What makes this problem unique?
 - Both questions result in multiple-response categorical variables (MRCVs)
 - Farmers can be represented multiple times in the table
 - Usual independence testing or loglinear modeling methods should not be used on this type of data
 - Cell counts are correlated most likely in a non-multinomial way
 - Margins do not add to proper totals

		Waste storage method chosen				
				Natural	Holding	
		Lagoon Pit Drainage Tan				
waste isen	Nitrogen	27	16	2	2	
	Phosphorus	22	12	1	1	
Test cho	Salt	19	6	1	0	

Alternative Representation	Summary of Past Research on MRCVs
	 Focus has been on testing independence Loughin, T. M. and Scherer, P. N. (1998). Testing for association in contingency tables with multiple column responses. <i>Biometrics</i> 54, 630-637. Bilder, C. R. and Loughin, T. M. (2002). Testing for Conditional Multiple Marginal Independence. <i>Biometrics</i> 58. 200-208. Bilder, C. R. and Loughin, T. M. (2004). Testing for Marginal Independence Between Two Categorical Variables with Multiple Responses. <i>Biometrics</i> 60, 241-8. Limited efforts to <i>model</i> association Agresti and Liu (<i>Biometrics</i>, 1999, and <i>Sociological Methods</i> & <i>Research</i>, 2001) Suggest using generalized loglinear models fit via MLE (Lang and Agresti, <i>JASA</i>, 1994) Problems with achieving convergence for parameter estimates
 Goals Develop models to describe association between two MRCVs "Association" is defined by odds ratios within the subtables of the item response table Assign parameters to control odds ratios within subtables Develop inference procedures for models Extend models to allow more than two MRCVs 	NotationImage: Second state stream of the stream of

Notation

 $m_{ab(ij)}$ is the number of (W_i=a, Y_i=b) responses where a = 0 or \Box Consider a single subtable (items W_i and Y_i) • Loglinear model for counts in a table is $m_{ab} \sim Poisson(\mu_{ab})$, 1 and b = 0 or 1where $m_{11(31)}$ = 19 farmers who test waste for salt and also use lagoon $\log(\mu_{ab}) = \gamma + \eta_a^{W} + \eta_b^{Y} + \lambda_{ab}^{WY}$ as their waste storage method Waste storage methods □ Association controlled through λ_{ab}^{WY} Natural Holding Lagoon Drainage Tank Other terms force predicted margins to match observed 27 16 24 2 Set-last-to-zero estimability restrictions $\Rightarrow \log(\theta) = \lambda_{nn}^{WY}$ Nitrogen 116 123 64 175 83 where θ is the odds ratio 12 18 1 22 1 29 Phosphorus 121 128 68 181 84 165 12 237 Independence between W_i and $Y_i \Leftrightarrow \theta = 1$, or 15 6 20 $E(m_{ab(ii)}) = \mu_{ab(ii)}$ 184 $\log(\mu_{ab}) = \gamma + \eta_a^W + \eta_b^Y$ $\square \quad \theta_{ij} = \mu_{11(ij)} \mu_{00(ij)} / (\mu_{10(ij)} \mu_{01(ij)})$ is the population odds ratio in Extend this model to cover all subtables simultaneously subtable (i,j) Estimate model parameters from entire item response table $\hat{\theta}_{ii} = m_{11(ii)} m_{00(iii)} / (m_{10(ii)} m_{01(iii)})$ is the empirical odds ratio in Model association parameters according to effects of W-items, Y-items, and interactions subtable (i,j) Like factorial ANOVA, except modeling log-odds-ratios instead of means www.chrisbilder.com 13 of 36 www.chrisbilder.com 14 of 36 Generalized loglinear model Generalized loglinear model First, consider the case where there is independence in each Non-SPMI models: subtable (all $\theta_{ii}=1$). • $\log(\mu_{ab(ij)}) = \gamma_{ij} + \eta^{W}_{a(ij)} + \eta^{Y}_{b(ij)} + \lambda_{ab}$ This is called Simultaneous Pairwise Marginal Independence Homogenous association model (SPMI) – Agresti and Liu (1999) \Box Odds ratios between the W_i and Y_i items all the same: log(θ_{ii}) Model under SPMI: $\log(\mu_{ab(ij)}) = \gamma_{ij} + \eta_{a(ij)}^{W} + \eta_{b(ij)}^{Y}$ = λ_{00} for all (i,j) pairs for a=0,1, b=0,1, i=1,...,I, and j=1,...,J • $\log(\mu_{ab(ij)}) = \gamma_{ij} + \eta^{W}_{a(ij)} + \eta^{Y}_{b(ii)} + \lambda_{ab} + \lambda^{Y}_{ab(i)}$ For the W_i and Y_i subtable, it is the "usual" loglinear model under W-homogenous association model independence - $\log(\mu_{ab}) = \gamma + \eta_a^W + \eta_b^Y$ □ Odds ratios between (W_i,Y_i) vary across the Y_i items only No association parameters anywhere! $\Box \log(\theta_{ii}) = \lambda_{00} + \lambda_{00(i)}^{Y}$ Predicted subtable count margins match the observed subtable • $\log(\mu_{ab(ij)}) = \gamma_{ij} + \eta^{W}_{a(ij)} + \eta^{Y}_{b(ij)} + \lambda_{ab} + \lambda^{W}_{ab(i)}$ margins Y-homogenous association model □ Odds ratios between (W_i,Y_i) vary across the W_i items only $\Box \quad \log(\theta_{ij}) = \lambda_{00} + \lambda_{00(i)}^{W}$ www.chrisbilder.com 15 of 36 www.chrisbilder.com 16 of 36

Model Development: Loglinear Models

Generalized loglinear model

- Non-SPMI models (continued): Maximum likelihood estimation $\textbf{Iog}(\mu_{ab(ij)}) = \gamma_{ij} + \eta^{W}_{a(ij)} + \eta^{Y}_{b(ij)} + \lambda_{ab} + \lambda^{W}_{ab(i)} + \lambda^{Y}_{ab(j)}$ Observe a vector of binary responses for each subject Main-effects association model \square (W₁, ..., W_I, Y₁, ..., Y_I) – 2^{I+J} possible Counts for each response combination are multinomial Main effects of both W and Y on the odds ratios $W_1 W_2 W_3 Y_1 Y_2 Y_3 Y_4$ Count Differences between log odds ratios for any two items of Y Kansas farmer data 0 0 0 0 0 0 are constant across W and vice versa 0 0 0 9 0 0 0 0 69 $\textbf{Iog}(\mu_{ab(ij)}) = \gamma_{ij} + \eta^{W}_{a(ij)} + \eta^{Y}_{b(ij)} + \lambda_{ab} + \lambda^{W}_{ab(i)} + \lambda^{Y}_{ab(j)} + \lambda^{WY}_{ab(ij)}$ Saturated model No constraints on the odds ratios for the W_i and Y_i Estimate the multinomial probability for each combination combinations Subject to marginal model constraints Model-predicted odds ratios match observed odds ratios in Item response table is marginal summary of the each subtable multinomial counts □ Lang and Agresti (JASA, 1994) Large number of combinations (2^{I+J}) leads to sparseness Convergence problems occur www.chrisbilder.com 17 of 36 www.chrisbilder.com 18 of 36 Fitting the models
- Marginal estimation: estimating equations approach
 - Fit model directly to the item response table
 - Temporarily ignore that a subj contributes a response to EACH subtable
 - Treat the counts as coming from one multinomial distribution

e	ct	Waste storage methods								
			ПП		Natural		Holding			
			Lag	Lagoon Pit		Pit	Drainage		Tank	
			1	0	1	0	1	0	1	0
N River and		1	27	13	16	24	2	38	2	38
	5 Nitrogen		116	123	64	175	83	156	11	228
waste	Dharahama	1	22	8	12	18	1	29	1	29
		0	121	128	68	181	84	165	12	237
E Salt		1	19	2	6	15	1	20	0	21
		0	124	134	74	184	84	174	13	245

- Parameter estimates result from maximizing the (incorrect) multinomial likelihood equations
 - $\square \mathbf{X}'\hat{\mathbf{\mu}} = \mathbf{X}'\mathbf{m}$
 - \square $\hat{\mu}$ and **m** are 4IJ×1 vectors of the corresponding $\hat{\mu}_{ab(ii)}$ and m_{ab(ii)} quantities
 - **X** is a matrix of 0's and 1's relating the expected to the observed counts for a model

Fitting the models

Fitting the models

- Marginal estimation (continued)
 - Fit the models using PROC GENMOD in SAS or glm in R
 - Parameter estimates
 - □ Called "pseudo" MLEs by Rao and Scott (Annals of Statistics, 1984) for a similar problem
 - Loglinear models for contingency table counts arising through complex survey sampling
 - True likelihood equations are not used
 - Consistent

Model comparison statistics	Model comparison statistics
 Compare two nested models H_o: Smaller model H_a: Larger model Pearson and LRT like statistics Pearson: X² = Σ_{a,b,i,j}(μ̂^(a)_{ab(ij)} - μ̂^(b)_{ab(ij)})²/μ̂^(a)_{ab(ij)} Generally will not have asymptotic χ² distributions because of the incorrect multinomial assumption Asymptotic distribution is a linear combination of independent χ²₁ random variables 	 Pearson and LRT statistics (continued) First and second-order Rao-Scott (<i>Annals of Statistics</i>, 1984) adjustments can be applied Adjusted statistics have asymptotic first and/or second order moments the same as a χ² random variable Reject H_o if X²/d > χ²_{1-α,ν} where d is the adjustment Past MRCV research has shown tests do not always hold the correct size Especially for the first-order adjustment Bilder, Loughin, and Nettleton (<i>Comm. in Stat.</i>, 2000) and Bilder and Loughin (<i>Biometrics</i>, 2002)
www.chrisbilder.com 21 of 36 Model comparison statistics	www.chrisbilder.com 22 of 36 Model comparison statistics
•	· · · · · · · · · · · · · · · · · · ·
 New bootstrap procedure Find predicted counts, µ^(o) and µ^(a), from specified H_o and H_a models, respectively, and calculate the Pearson statistic, X² Find observed 2×2 tables for each W_i & W_i (i<i') and="" y<sub="">j & Y_j (j<j') li="" pair<="" response=""> With µ^(o) and observed counts from 2., use the algorithm of Gange (<i>American Statistician</i>, 1995) to obtain the multinomial probability of each possible (W₁,, W_I, Y₁,, Y_J) combination under the H_o model Simulate B resamples of (W[*]₁,,W[*]₁,Y[*]₁,,Y[*]_J)' using these multinomial probabilities Fit the models to each resample and calculate X^{2*}_b for b=1,,B Calculate the p-value as B⁻¹∑^B_{b=1} I(X^{2*}_b ≥ X²) where I(·) is the indicator function </j')></i')>	 What is the Gange algorithm? Gange, S.J. (1995). Generating multivariate categorical variates using the iterative proportional fitting algorithm. <i>The American Statistician</i> 49, 134-138. Method to generate vectors of correlated binary observations Uses Iterative Proportional Fitting method Fitting method for loglinear models Specify marginal contingency tables – "configurations" Model predicted sub-tables (µ̂^(o)) and observed 2×2 tables for each W_i & W_{i'} (i<i') and="" y<sub="">j & Y_{j'} (j<j') are="" as="" configurations<="" li="" pair="" response="" the="" used=""> Obtain a 2^{I+J} vector of multinomial probabilities under the null hypothesis model </j')></i')>

Follow-up analysis

Kansas farmer example Absolute value of standardized Pearson residuals Goodness-of-fit results where H_a model is the saturated: Check fit of model Pearson Bootstrap 2nd-order Rao-Scott Asymptotic standard normal distribution approximation H_o Model statistic p-value adj. p-value SPMI 64.03 0.0006 < 0.0001 Model predicted odds ratios Homogenous association 62.76 0.0004 < 0.0001 5.34 0.0412 0.0691 W-homogenous association One odds ratio per subtable 62.68 0.0002 < 0.0001 Y-homogenous association Asymptotic distribution and standard error can be derived Main-effects association 5.28 0.0306 0.0690 B = 5,000 resamples □ H_o: W-homogenous association H_a: Main-effects association Bootstrap p-value = 0.5036 Consider W-homogenous association model further $\log(\mu_{ab(ii)}) = \gamma_{ii} + \eta^{W}_{a(ii)} + \eta^{Y}_{b(ii)} + \lambda_{ab} + \lambda^{Y}_{ab(i)}$ www.chrisbilder.com 25 of 36 www.chrisbilder.com

Kansas farmer example

u Further investigation of W-homogenous association model:

	0							
		_ Waste storage methods _						
				Natural	Holding			
		Lagoon	Pit	Drainage	Tank			
	$ \mathbf{r}_{ab(ij)} =$	2.41	1.04	0.28	0.97			
	$\tilde{\theta}_{\mathrm{obs,ij}}$ =	2.20	1.82	0.10	1.09			
Nitrogen	C.I. _{obs} =	(1.22, 3.99)	(1.02, 3.26)	(0.03, 0.33)	(0.30, 3.99)			
	~	3.18	1.57	0.09	0.79			
	C.I. _{mod} =	(1.73, 5.85)	(0.87, 2.84)	(0.02, 0.34)	(0.22, 2.85)			
	$ \mathbf{r}_{ab(ij)} =$	0.53	0.92	0.94	0.31			
	$\tilde{\theta}_{obs,ij} =$	2.91	1.77	0.07	0.68			
Phosphorus	C.I. _{obs} =	(1.43, 5.92)	(0.92, 3.42)	(0.01, 0.37)	(0.12, 3.89)			
	~	3.18	1.57	0.09	0.79			
	C.I. _{mod} =	(1.73, 5.85)	(0.87, 2.84)	(0.02, 0.34)	(0.22, 2.85)			
	$ \mathbf{r}_{ab(ij)} =$	2.93	1.7	0.32	1.27			
		10.27	0.99	0.10	0.45			
Salt		(2.97, 35.47)	(0.44, 2.27)	(0.02, 0.57)	(0.04, 4.95)			
	$\hat{\theta}_{mod,ii} =$	3.18	1.57	0.09	0.79			
	C.I. _{mod} =	(1.73, 5.85)	(0.87, 2.84)	(0.02, 0.34)	(0.22, 2.85)			
		$\begin{split} r_{ab(ij)} = & \\ \tilde{\theta}_{obs,ij} = \\ Nitrogen & C.I{obs} = \\ \hat{\theta}_{mod,ij} = \\ C.I{obs} = \\ \tilde{\theta}_{mod,ij} = \\ R_{ab(ij)} = \\ \tilde{\theta}_{obs,ij} = \\ Phosphorus & C.I{obs} = \\ \hat{\theta}_{mod,ij} = \\ C.I{mod} = \\ C.I{mod} = \\ \hline R_{ab(ij)} = \\ \tilde{\theta}_{obs,ij} = \\ $	$\begin{tabular}{ c c c c } & c_{ab(j)} & c c c \\ \hline & c_{ab(j)} & c c c \\ \hline & \tilde{\theta}_{obs,ij} & c c c \\ \hline & \tilde{\theta}_{obs,ij} & c c c \\ \hline & c c c c \\ \hline & c c c c \\ \hline & c c c c \\ \hline & c c c \\ \hline & c c c c \\ \hline & c c c c \\ \hline & c c c \\ \hline & c c c c \\ \hline & c c c c c c c c c \\$	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			

where $r_{ab(ij)}$ is a standardized Pearson residual, $\tilde{\theta}_{obs,ij} = m_{11(ij)}m_{00(ij)}/(m_{01(ij)}m_{10(ij)})$ with 95% confidence intervals, $\hat{\theta}_{mod,ij} = \hat{\mu}_{11(ij)} \hat{\mu}_{00(ij)} / (\hat{\mu}_{01(ij)} \hat{\mu}_{10(ij)})$ with 95% confidence intervals

Kansas farmer example

- Possible lack of fit indicated for salt-testing with lagoon storage
 - Add a new model parameter
 - Indicate whether or not the subtable count is for testing waste for salt and lagoon waste storage
 - □ Forces a perfect fit to the corresponding subtable
 - Test new model versus saturated
 - Pearson statistic = 1.81
 - Bootstrap p-value is 0.3952 with B=5,000 resamples
 - Second-order Rao-Scott adjustment p-value is 0.5325

Kansas farmer example

- Results from model
 - Allows researchers to better understand the association structure between testing waste and waste storage

			_ Waste storage methods _					
				Natural Holding				
			Lagoon	Pit	Drainage	Tank		
h Nitherman ($\hat{\theta}_{mod,ij} =$	2.48	1.57	0.09	0.79		
for	Nitrogen	C.I. _{mod} =	(1.35, 4.54)	(0.87, 2.84)	(0.02, 0.34)	(0.22, 2.85)		
waste	Phosphorus	$\hat{\theta}_{mod,ij} =$	2.48	1.57	0.09	0.79		
	Filosphorus	C.I. _{mod} =	(1.35, 4.54)	(0.87, 2.84)	(0.02, 0.34)	(0.22, 2.85)		
Test П	Solt	$\hat{\theta}_{mod,ij} =$	10.27	1.57	0.09	0.79		
⊢ Salt			(2.97, 35.47)	(0.87, 2.84)	(0.02, 0.34)	(0.22, 2.85)		

- Lagoon waste storage has the strongest positive association with the waste testing
- Natural drainage waste storage is negatively associated with testing waste for the three contaminants
 - Waste management implications for the farmers?

```
www.chrisbilder.com
```

3 or more MRCVs

Example

- Kansas farmer survey example also had a question about "sources of veterinary information"
 - □ Represent as a MRCV, Z, with 5 items
- Best model for all three MRCVs:

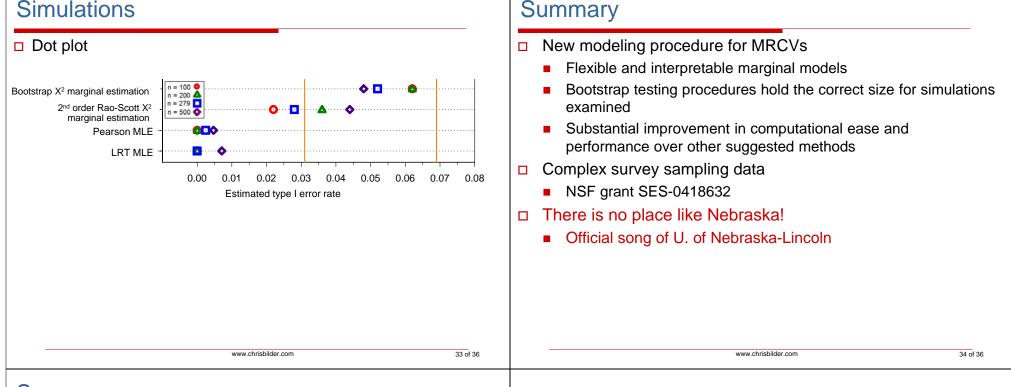
$$\log(\mu_{abc(ijk)}) = \gamma_{ijk} + \eta^{W}_{a(ijk)} + \eta^{Y}_{b(ijk)} + \eta^{Z}_{c(ijk)} + \lambda_{ab} + \lambda^{W}_{ab(i)} + \lambda^{Y}_{ab(j)} + \lambda^{WY}_{ab(ij)}$$

$$+\delta_{bc} + \delta_{bc(j)}^{Y} + \delta_{bc(k)}^{Z} + \delta_{bc(jk)}^{YZ}$$

- □ H_o: Model above vs. H_a: Saturated
 - Pearson statistic = 72.01
 - Bootstrap p-value of 0.8906 with B=5,000 resamples
 - 2nd-order Rao-Scott adjustment p-value is 0.8354
- No significant standardized Pearson residuals

3 or more MRCVs

- Subtables are a 2^d-cell representation of the cross-classified individual item responses
 - d = number of MRCVs
- One subtable for each combination of items from the different MRCVs
 - When d = 3, there are IJK different 2×2×2 subtables where K is the number of items for a third MRCV
- Many different possible models!
 - Association structure can be modelled to vary according to items of MRCVs


www.chrisbilder.com

Simulations

- Investigate type I error
 - H_o:SPMI model, H_a:Saturated model
- Settings:
 - 2 MRCVs
 - 500 simulated data sets for each simulation
 - Nominal level = 0.05
 - B = 1,000 resamples
 - 150 iterations for MLE (convergence: 69% to 95%)
 - 95% expected range of estimated type I error rates: (0.031, 0.069)
 - Emulate observed values from the Kansas farmer data
 I = 3 and J = 4

29 of 36

Simulations

35 of 36

Summary

There is no place like Nebraska!

Modeling Association Between Two or More Multiple-Response Categorical Variables

Christopher R. Bilder **Department of Statistics** University of Nebraska-Lincoln www.chrisbilder.com chris@chrisbilder.com

This research was supported in part by National Science Foundation grant SES-0207212

www.chrisbilder.com