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Chapter 10: Building the regression model II: Diagnostics

10.1 Model adequacy for a predictor variable – added variable plots

Review: 

1. Extra sum of squares: Measurement of the reduction of the sums of squares when a predictor variable is added to the model given a set of predictor variables are already in the model.  For example, SSR(X2|X1) = SSE(X1) – SSE(X1,X2).

2. ei vs. Xik plot (residuals vs. kth predictor variable): Determine the appropriateness of the specified relationship between Xk and Y.  For example, if there is a random scattering of points, the relationship between Xk and Y is specified correctly.  If there is a relationship between the points of ei vs. Xik (for example, a quadratic relationship), this suggests Xik is not specified correctly in the model.  

The problem with #2 is that it does not necessarily give information about the relationship between Xk and Y given all of the predictor variables in the model.  

Solution: Use added variable (partial regression) plots.    

Suppose there are only two predictor variables – X1 and X2.  The steps to create an added variable plot for X1 are:

1. Find the sample regression model using Y as the response variable and X2 as the predictor variable.  Obtain the residuals.  Symbolically, 
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2. Find the sample regression model using X1 as the response variable and X2 as the predictor variable.  Obtain the residuals.  Symbolically, 
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.  This is like removing the effect of X2 on X1.
3. Plot 
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If there are more than two predictor variables in the model, then plot 
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.  In addition, make the appropriate changes to construct added variable plots for X2, X3,…, Xp-1.

Interpretation:

The added variable plot helps to find the correct functional form of a predictor variable in a multiple regression model.  

Suppose the only predictor variables are X1 and X2.  Below are example of added variable plots: 
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Notes: 

1. Notice how interpreting these plots is somewhat different from interpreting plots of ei vs. Xik.  

2. Remember what a t-test does – it tests the linear relationship between Y and Xk given all of the other variables in the model.  Therefore, the added variable plots and t-tests partially give the same information.  With the added variable plots, there is also information about the type of relationship between Y and Xk.

3. The added variable plots are dependent on which predictor variables are present in a model.  

4. See Figure 10.2 of KNN for an additional interpretation of added variable plots.  This further helps to relate added variable plots to extra sum of squares.

5. Added variable plots also help to identify outliers and “leverage” or influential points (more on this later).  

6. Fox (2002) also discusses “component + residual” plots, which are similar to added variable plots.  The y-axis is an approximation to the y-axis for the added variable plot. The x-axis is the unadjusted variable of interest.  See p. 210 of Fox’s book for more information.  

Example: NBA guard data (nba_ch10.R)

From using the model selection procedures in Chapter 9, the “best” model so far includes the variables MPG, Height, FGP, and Age.  Next, we want to determine if changes to the predictor variables need to be made.  

The av.plots() function in the car package automatically produces these plots.  

> nba<-read.table(file = 
         "C:\\chris\\UNL\\STAT870\\Chapter6\\nba_data.txt", 
          header=TRUE, sep = "")

> head(nba)

   last.name first.initial games    PPM     MPG height  FTP  FGP age

1 Abdul-Rauf            M.    80 0.5668 33.8750    185 93.5 45.0  24

2      Adams            M.    69 0.4086 36.2174    178 85.6 43.9  30

3      Ainge            D.    81 0.4419 26.7037    196 84.8 46.2  34

4   Anderson            K.    55 0.4624 36.5455    185 77.6 43.5  23

5    Anthony            G.    70 0.2719 24.2714    188 67.3 41.5  26

6 Armstrsong          B.J.    81 0.3998 30.7654    188 86.1 49.9  26

> mod.fit<-lm(formula = PPM ~ MPG + height + FGP + 
                age, data = nba)
> library(car)
>  avPlots(model = mod.fit)
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Added-Variable Plots


The solid line is a simple linear regression model for the y and x-axis values.  
Plots discussion:
1) (1,1): At least a linear relationship, maybe (?) a quadratic relationship.  
2) (1,2): A linear relationship  
3) (2,1): A linear relationship  
4) (2,2): Possibly a linear relationship (maybe not much of one at all) 
10.2 Identifying outlying Y observations – studentized deleted residuals 

When there is only 1 predictor variable, identifying outliers is not too difficult.  Below is a partial reproduction of Figure 10.5 in KNN: 
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1. Outlying point with respect to its Y value.  May not be very influential to the regression model fit since there are similar X values.

2. Outlying point with respect to its X and Y value.  May not be very influential to the regression model fit since the Y value is consistent with the others.

3. Outlying point with respect to its X value.  May be influential since the X value is outlying and not consistent with respect to the other X values.  

In multiple regression, we generally can not look at plots as shown above (too many dimensions).  Therefore, we need to examine numerical measures that give information about a particular observation being outlying or not. 

Residuals and semistudentized residuals (Chapters 1 and 3)
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Remember that MSE is not quite the estimated variance of ei.  Thus, 
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 is not quite a random variable with variance of 1.  

Hat matrix (Chapters 5 and 6)

Remember that: 

H=X(X(X)-1X(, 
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Cov(e) = (2(I-H), and 
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Note that H is a n(n matrix with elements of
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And, Cov(e) is
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Thus, Cov(e1, e1) = Var(e1) = (2(1-h11), Var(e2) = 
(2(1-h22), … Var(en) = (2(1-hnn).  In general, Var(ei) = (2(1-hii)

The estimated variance of the ith residual is 
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The studentized residual is:
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 and ri~t(n-p)
Notes:

1) How would you detect outliers with this measure?

2) The mean of the ri values, 
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3) We will no longer examine semi-studentized residuals (
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Deleted residuals

From Chapter 9, PRESS prediction error = Yi - 
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Example: Let i=3.  Then the PRESS prediction error = Y3 - 
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, a regression model is fit to the data where observation 3 is removed from the data set.  For observation 3’s X1,…,Xp-1, the predicted Y value, 
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, is obtained.  

KNN calls di = Yi - 
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 the deleted residual for the ith observation.  

Notes: 

1. Suppose Xi is very influential on the regression model fit (for example, point #3 on p. 10.7).  Then the regression line will be “pulled” toward (Xi,Yi) resulting in a 
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 “close” to Yi.  If this observation is deleted from the data set and a new regression model is fit, 
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 will not be as “close” to Yi.  This will result in a di that is larger (in absolute value) than ei.  

2. Suppose Xi is not very influential on the regression model fit (for example, a point within the main cluster of points on p. 10.11).  The regression line will not be heavily influenced by (Xi,Yi).  Thus, di should be about the same as ei.

From Section 6.7, the estimated variance of a “new” observation is
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for Xh=(1, Xh1, Xh2, …, Xh,p-1)(.  This variance is used in calculating prediction intervals.  

Since the ith observation is removed from the data set in calculating di, the ith observation can be thought of as a “new” observation and the estimated variance from Section 6.7 can be used for its variance.  Thus, the studentized deleted residual is: 
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where MSE(i) is the MSE from the model where the ith observation is deleted.  Also, X(i) has the row of X corresponding to the ith observation deleted.  Note that ti~t(n-p-1) where the degrees of freedom comes from n-1 observations and p parameters.  

It can be shown that 
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so that fitting n different regression models is not necessary to calculate di.  Also, 
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from earlier. Thus, the studentized deleted residual can be rewritten as: 
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One more expression can be found for the studentized deleted residuals!  Note that 
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Thus,
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Therefore, n different regression models DO NOT need to be fit!

Test for outlying Y observations

KNN recommend doing the following (p. 396) for studentized deleted residuals:

Use a Bonferroni critical value of t[1-(/(2n); n-p-1] to determine if the observation is an outlier.  In other words, Ho: Not outlier vs. Ha: outlier.  If 

-t[1-(/(2n); n-p-1] < ti < t[1-(/(2n); n-p-1] 

then there is not sufficient evidence that the ith observation is an outlier.  Otherwise, if ti does not fall within the above interval, then the ith observation is an outlier.  

Use the same method for studentized residuals, but with n-p degrees of freedom. 

Problem: t[1-(/(2n); n-p-1] typically is large since the number of tests being done is n (n is equivalent to g in Chapter 4).  Therefore, this procedure will be VERY conservative. 

Advice: 

1. Use KNN’s Bonferroni procedure.  

2. Also, examine t[1-(/2; n-p-1] as the critical value.  If |ti| > t[1-(/2; n-p-1], then the ith observation should be investigated further as a “possible” outlier.  Use a small ( level for this procedure (((0.01). 
Question: Suppose everything is o.k. with a model. Should one expect to see any |ti| > t[1-(/2; n-p-1] or |ri| > t[1-(/2; n-p]?
Example: NBA guard data (nba_ch10.R)

The studentized and studentized deleted residuals can be found from the rstandard() and rstudent() functions, respectively.  Note that this is somewhat confusing which function gives what measure!  
> mod.fit

Call:

lm(formula = PPM ~ MPG + height + FGP + age, data = nba)

Coefficients:

(Intercept)          MPG       height          FGP          age  

  -0.764257     0.003132     0.004337     0.009520    -0.005188  
>   #Studentized and studentized deleted residuals

>   r.i<-rstandard(model = mod.fit)

>   t.i<-rstudent(model = mod.fit)

>   r.i[1:5]

          1           2           3           4           5 

 1.22842017  0.26302737  0.09304872  0.15655550 -1.18452557 

>   t.i[1:5]

          1           2           3           4           5 

 1.23159041  0.26179951  0.09258632  0.15578985 -1.18694450 

>   r.i[abs(r.i)>qt(p = 1-0.01/2, df= mod.fit$df.residual)]

      37       52       72 

3.220897 3.079124 2.666432 

>   t.i[abs(t.i)>qt(p=1-0.01/2, df=mod.fit$df.residual-1)]

      37       52       53       72 

3.385149 3.220142 2.673179 2.752728
>   #Critical values

>   n<-length(mod.fit$fitted.values)

>   qt(p = 1-0.01/2, df = mod.fit$df.residual)

[1] 2.625891

>   qt(p = 1-0.01/2, df = mod.fit$df.residual-1)

[1] 2.626405

>   qt(p = 1-0.05/(2*n), df = mod.fit$df.residual)

[1] 3.612669

>   qt(p = 1-0.05/(2*n), df = mod.fit$df.residual-1)

[1] 3.613907

>  #r.i vs. Y.hat.i

>   plot(x = mod.fit$fitted.values, y = r.i, xlab = 
         "Estimated mean response", ylab = "Studentized 
         residuals", main = expression(paste(r[i], " vs. 
         estimated mean response")), panel.first = grid(col 
         = "gray", lty = "dotted"), ylim = c(min(qt(p = 
         0.05/(2*n), df = mod.fit$df.residual), min(r.i)), 
         max(qt(p = 1-0.05/(2*n), df = 
         mod.fit$df.residual), max(r.i))))

>   abline(h = 0, col = "darkgreen")

>   abline(h = c(qt(p = 0.01/2, df = 
           mod.fit$df.residual),qt(p = 1-0.01/2, df = 
           mod.fit$df.residual)), col = "red", lwd = 2)

>   abline(h = c(qt(p = 0.05/(2*n), df = 
           mod.fit$df.residual),qt(p = 1-0.05/(2*n), df = 
           mod.fit$df.residual)), col = "darkred", lwd = 2)

>   identify(x = mod.fit$fitted.values, y = r.i)

[1] 37 52 53 72 
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>   #t.i vs. Y.hat.i

>   plot(x = mod.fit$fitted.values, y = t.i, xlab = 
         "Estimated mean response", ylab = "Studentized 
         deleted residuals", main = expression(paste(t[i], 
         " vs. estimated mean response")), panel.first = 
         grid(col = "gray", lty = "dotted"), ylim = 
         c(min(qt(p = 0.05/(2*n), df = mod.fit$df.residual-
         1), min(t.i)), max(qt(p = 1-0.05/(2*n), df = 
         mod.fit$df.residual-1), max(t.i))))

>   abline(h = 0, col = "darkgreen")

>   abline(h = c(qt(p = 0.01/2, df = mod.fit$df.residual-
           1),qt(p = 1-0.01/2, df = mod.fit$df.residual-
           1)), col = "red", lwd = 2)

>   abline(h = c(qt(p = 0.05/(2*n), df = 
         mod.fit$df.residual-1),qt(p = 1-0.05/(2*n), df = 
         mod.fit$df.residual-1)), col = "darkred", lwd = 2)

>   identify(x = mod.fit$fitted.values, y = t.i)
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> #Fox and Weisberg's outlierTest() function gives the Bonferroni 
   adjusted p-value for the largest in absolute value 

   studentized deleted residual

> outlierTest(model = mod.fit)

No Studentized residuals with Bonferonni p < 0.05

Largest |rstudent|:

   rstudent unadjusted p-value Bonferonni p

37 3.385149           0.001021      0.10721

>   t.i[37]

      37 

3.385149 

> #Unadjusted
>   2*(1-pt(abs(t.i[37]), df = mod.fit$df.residual - 1)) 

        37 

0.00102104 

> #Adjusted
>  105*2*(1-pt(abs(t.i[37]), df = mod.fit$df.residual - 1)) 

       37 

0.1072092
Notes: 

1. The ri vs. 
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2. Using critical values without Bonferroni adjustments produces a few potential outliers.  Using critical values with Bonferroni adjustments does not produce any outliers.  These potential outliers should be examined more closely (we will later).  Notice the difference between the critical values!  

3. In general, a Bonferroni adjusted p-value (done here by the outlierTest() function) just takes a regular p-value and multiplies it by g (number of tests performed).  This can be compared then to the usual ( level to determine reject or not reject.  Note that the help for outlierTest() says that it uses studentized residuals.  However, you can see from the implementation of the function it is actually using studentized DELETED residuals.  
10.3 Identifying outlying X observations – hat matrix leverage values

The diagonal elements of the hat matrix, hii, are useful in detecting outlying X observations.  

hii is a measurement of distance (not Euclidean) of the ith observation to the mean (center) of all observations.  The “farther away” from the mean, the larger the hii.  See Figure 10.6 of KNN.  

Example: Advertisement responses (ad_responses_ch10.R) 

This is the same example from Chapter 6.  The purpose is to use size (inches2) of an advertisement and the circulation (10,000) of the newspaper to predict the number of advertisement responses.  

	Ad. Responses
	Size
	Circulation

	100
	1
	20,000

	400
	8
	80,000

	100
	3
	10,000

	300
	5
	70,000

	200
	6
	40,000

	400
	10
	60,000


The hii values are obtained using the hatvalues() function in R. 

> ad.responses<-c(100, 400, 100, 300, 200, 400)

> size<-c(1, 8, 3, 5, 6, 10)

> circulation<-c(20000, 80000, 10000, 70000, 40000, 60000)

> set1<-data.frame(ad.responses, size, circulation)

> mod.fit<-lm(formula = ad.responses ~ size + circulation, 
               data = set1)

> h.ii<-hatvalues(model = mod.fit)

> h.ii

        1         2         3         4         5         6 

0.5472759 0.4551845 0.5270650 0.5678383 0.2260105 0.6766257

Below is a plot of the size vs. circulation (see program for code).   
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The values plotted with the points are the actual hii values.  Notice that as the points get farther from the mean, the hii values generally increase.  Be careful with the interpretation of the above plot since size and circulation are on different scales.  

Notes:

1) Properties of hii’s: 0 ( hii ( 1 and 
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2) hii is often called the “leverage” of the ith observation. 

3) If the ith observation is outlying in terms of the X values, it has substantial leverage on determining the value for 
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.  This is a good way to think of the “distance” from the mean for the hii.      

4) The closer to 1 that hii is, the more important Yi is to determining 
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 is a linear combination of hii’s.  

5) The larger the hii, the smaller the denominators of rj and ti since 
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.    Examine what happens in the extreme case of hii close to 1.  

6) Since the sample regression line is pulled toward observations with high leverage, ei may not be large relative to the rest of the residuals.  

7) Rule of thumb for determining if hii is “large”: 

a) hii > 2p/n where p/n is the mean of hii
b) hii > 0.5 indicates very high leverage, 0.2<hii(0.5 indicate moderate leverage.  

These rules apply only when the sample size is “large” relative to the number of parameters in the model (see KNN example on p. 399-400).  

8) Large hii are values are not necessarily bad!  
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9) Read “Use hat matrix to identify hidden extrapolation” on your own.

Example: HS and College GPA data set (HS_GPA_ch10.R)

Suppose the following value is added to the data set 
(HS GPA, College GPA) = (X, Y) = (4.35, 1.5).  Therefore, the student had a good GPA in HS, but a low GPA in college. 

> #Read in the data

> gpa<-read.table(file = 
       "C:\\chris\\UNL\\STAT870\\Chapter1\\gpa.txt", 
       header=TRUE, sep = "")

> #head(gpa)

> gpa2<-rbind(gpa, data.frame(HS.GPA = 4.35, College.GPA = 
              1.5))

> mod.fit<-lm(formula = College.GPA ~ HS.GPA, data = gpa2)

> summary(mod.fit)

Call:

lm(formula = College.GPA ~ HS.GPA, data = gpa2)

Residuals:

     Min       1Q   Median       3Q      Max 

-1.81158 -0.25298  0.06158  0.32463  0.66473 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   1.1203     0.3492   3.208  0.00463 ** 

HS.GPA        0.5037     0.1237   4.072  0.00065 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.5461 on 19 degrees of freedom

Multiple R-Squared: 0.466,      Adjusted R-squared: 0.4379 

F-statistic: 16.58 on 1 and 19 DF,  p-value: 0.0006496 

> h.ii<-hatvalues(model = mod.fit)

> plot(x = gpa2$HS.GPA, y = gpa2$College.GPA, xlab = "HS 
    GPA", ylab = "College GPA", main = "College GPA vs. HS 
    GPA", panel.first = grid(col = "gray", lty = "dotted"), 
    lwd = 2, col = "red", xlim = c(0, 4.5), ylim = c(0,4))

> text(x = gpa2$HS.GPA, y = gpa2$College.GPA+0.1, labels = 
       round(h.ii,2), cex = 0.75) 
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Notice that (4.35, 1.5) has a large hii relative to most of the other observations – although it is not the largest.  

To compare the sample model with and without the (4.35, 1.5) observation, the plot below is produced.  Notice that the estimated regression line is pulled toward (4.35, 1.5).  The plotted hii values correspond to the model with (4.35, 1.5).   

> #Put regression lines on plot

> curve(expr = mod.fit$coefficients[1] + 
               mod.fit$coefficients[2]*x, col = "darkblue", 
        lty = "solid", lwd = 1, add = TRUE, xlim = 
        c(min(gpa$HS.GPA), max(gpa$HS.GPA)))
> mod.fit.wo<-lm(formula = College.GPA ~ HS.GPA, data=gpa)

> curve(expr = mod.fit.wo$coefficients[1] + 
               mod.fit.wo$coefficients[2]*x, col = 
        "darkgreen", lty = "dashed", lwd = 1, add = TRUE, 
        xlim = c(min(gpa$HS.GPA), max(gpa$HS.GPA)))

> legend(locator(1), legend = c("Sample model w/ obs.", 
         "Sample model w/o obs."), col = c("darkblue", 
         "darkgreen"), lty = c("solid", "dashed"), bty = 
         "n", cex = 0.75)
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The extra observation has a lot of “leverage” with regards to being able to pull the estimated regression toward itself.  

Below are two more plots.  The left plot uses the additional observation of (4, 1.5) and the right plot uses (4.9, 1.5).  Examine hii and the estimated regression line.  The plotted hii values correspond to the model with the extra observation.   
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Example: NBA guard data (nba_ch10.R)
>   h.ii<-hatvalues(model = mod.fit)

>   p<-length(mod.fit$coefficients)

>   n<-length(mod.fit$residuals)

>   h.ii[h.ii>2*p/n]

>   round(h.ii[h.ii>2*p/n],2)

   7   14   21   24   37   48   98  104 

0.15 0.20 0.17 0.10 0.11 0.21 0.11 0.10

>   plot(x = 1:n, y = h.ii, ylab = expression(h[ii]), xlab 
         = "Observation number", main = 
         expression(paste("Index plot of ", h[ii])))

>   abline(h = 2*p/n, col = "red", lty = "dashed")

>   abline(h = c(0.2,0.5), col = "blue", lty = "dotted")

>   identify(x = 1:n, y =h.ii)

[1]   7  14  21  24  37  48  98 104
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Horizontal lines are drawn at 2p/n = 2(5/105 = 0.095, 0.2, and 0.5 to help show large hii values.  More will be done with these observations later. 

�Due to the dividing my (1-h_i) - will still be close to 0


�See p. 258-9 of Gunst and Mason (1980) textbook for proof; I have the Hoaglin and Welsch (1978) reference 
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