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Chapter 7: Multiple Regression II

7.1 Extra sums of squares

Measurement of the reduction of the sums of squares when an predictor variable is added to the model given a set of predictor variables are already in the model.  

Review SSTO, SSE, and SSR

· SSTO = total sum of squares

· SSE = sum of squared errors (remaining variability of Y not explained by the X1,…,Xp-1) 

· SSR =  regression sum squares (variability of Y accounted for by the X1,…,Xp-1) 

SSE can be calculated for different sets of variables  

· SSE(X1) = Sum of squared errors using only X1 in the model (Yi=(0+(1X1i+(i)

· SSE(X1,X2) = Sum of squared errors using only X1 and X2 in the model (Yi=(0+(1X1i+(2X2i+(i)

· SSE(X1,X3) = Sum of squared errors using only X1 and X3 in the model (Yi=(0+(1X1i+(3X3i+(i)

(
Remember that as more variables are added to the model the corresponding SSE stays the same or is reduced.  For example, SSE(X1) ( SSE(X1,X2) 

SSR can be partitioned  

SSR(X1) = regression sum squares with only X1 in the model

SSR(X2|X1) = reduction in sum squared errors when X2 is added to the model given that X1 is already in the model

SSR(X2|X1) = SSE(X1) - SSE(X1,X2) 

This is the “extra sum of squares” explained by using the regression model with addition of X2  

SSR(X3|X1,X2) = reduction in regression sum squares due to when X3 is added to the model given that X1 and X2 are already in the model

SSR(X3|X1,X2) = SSE(X1,X2) - SSE(X1,X2,X3) 

This is the “extra sum of squares” explained by using the regression model with addition of X3  

Suppose there are only three variables under consideration – X1, X2, and X3.  Then the “usual” SSR is: 

SSR = SSR(X1) + SSR(X2|X1) + SSR(X3|X1,X2) 

ANOVA table containing decomposition of SSR:

	Source of 
variation
	df
	SS
	MS

	Regression
	3
	SSR
	MSR

	X1
	1
	SSR(X1)
	MSR(X1)

	X2|X1
	1
	SSR(X2|X1) 
	MSR(X2|X1) 

	X3|X1,X2
	1
	SSR(X3|X1,X2) 
	MSR(X3|X1,X2) 

	Error
	n-4
	SSE
	MSE

	Total
	n-1
	SSTO
	


where MSR = SSR/df

This is what the anova() function in R gives.

There are many other extra sums of squares that could be examined.  For example, SSR(X3,X2|X1) = SSE(X1) - SSE(X1,X2,X3).  

7.2 Uses of extra sums of squares in tests for regression coefficients 

Model A is nested within model B 

Model B has all the terms of model A and at least an additional term (Note: A model term is for example, 
[image: image1.wmf]2

1

X

) 

Reduced Model: Model A

Complete 
Model: Model B

Example: 

Reduced Model: E(Yi)=(0 + (1Xi1 

Complete Model: E(Y)=(0 + (1Xi1 + (2Xi2
Example: 

Reduced Model: E(Y)=(0 + (1Xi1 + (2Xi2 

Complete Model: E(Y)=(0 + (1Xi1 + (2Xi2 + (3Xi3 

Complete Model: E(Y)=(0 + (1Xi1 + (2Xi2 + (3Xi3 + (4Xi4
etc…

Hypothesis test steps for a partial (nested) F-test 

1) H0: Reduced Model – E(Y)=(0 + (1X1 + ( + (gXg 

Ha: Complete Model – E(Y) = (0+ (1X1 + ( + (gXg + 

                                    



(g+1Xg+1+ ( + (p-1Xp-1
where g < p – 1

Restated another way:

H0: (g+1 = ( = (p-1=0  (Note: there are p-1-g (’s =0)

Ha: At least one of the (’s in H0 are 

      not 0 

2)   Test statistic
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Note:

· SSE(X1,…,Xg,Xg+1,….,Xp-1) measures the prediction error in the complete model.

· SSE(X1,…,Xg) measures the prediction error in the reduced model.

· Since SSE(X1,…,Xg) measures the error of a model with less variables than the complete model, SSE(X1,…,Xg) ( SSE(X1,…,Xg,Xg+1,….,Xp-1).

· SSE(X1,…,Xg) – SSE(X1,…,Xg,Xg+1,….,Xp-1) = SSR(Xg+1,….,Xp-1|X1,…,Xg) measures how much the prediction error would be increased by removing the p-1-g variables from the complete model.

· If SSR(Xg+1,….,Xp-1|X1,…,Xg) is small, then F* will be small leading to a “don’t reject H0” result.  This suggests that since the prediction error is not affected much by the removal of variables, the reduced model may be better than the complete model. 

· If SSR(Xg+1,….,Xp-1|X1,…,Xg) is large, then F* will be large leading to a “Reject H0” result.  This suggests that the prediction error has increased by a lot when the group of predictor variables are removed.  Therefore, use the complete model. 

3) F(1-(, p-1-g, n-p)

p-1-g = numerator D.F.

n-p = denominator D.F.

4) Reject or don’t reject H0
5) Conclusion

· Reject H0: At least one of the ____ variables are important in predicting  Y (complete model is better).

· Don’t reject H0: There is not sufficient evidence to show that _____  variables are important in predicting  Y (reduced model may be better
).

Suppose there are only three variables under consideration – X1, X2, and X3.  Special cases of the partial F test: 

1) Test (g+1=0 where g+1=3 for this example
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2) Test (1=(2=(3=0
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Example: NBA data (nba_ch7.R)

Determine if FGP (field goal percentage) and FTP (free throw percentage) are important in estimating PPM for the model E(PPM) = (0 + (1MPG + (2Height + (3FTP + (4FGP (this is the complete model).  Use (=0.05.

>   mod.fit.comp<-lm(formula = PPM ~ MPG + height + FTP + 
                    FGP, data = nba)

>   mod.fit.red<-lm(formula = PPM ~ MPG + height, data = 
                    nba)

>   anova.red<-anova(mod.fit.red)
>   #Partial F test

>   p<-length(mod.fit.comp$coefficients)  #Number of betas 
                                           in model is p

>   g<-length(mod.fit.red$coefficients)-1 #Number of 
              variables remaining in the reduced model is g

>   F.star<-(anova.red$"Sum Sq"[3] – 
             anova.comp$"Sum Sq"[5])/(p-1-g) / 
             anova.comp$"Mean Sq"[5]

>   F.star

[1] 7.537712
>   alpha<-0.05

>   qf(p = 1-alpha, df1 = p-1-g, df2 = 
       mod.fit.comp$df.residual)

[1] 3.087296

>   1 - pf(q = F.star, df1 = p-1-g, df2 = 
           mod.fit.comp$df.residual)

[1] 0.0008930397

>   #Easier way to do partial F test :)

>   anova(mod.fit.red, mod.fit.comp, test = "F")  #test = 
                                             "F" is default

Analysis of Variance Table

Model 1: PPM ~ MPG + height + FTP + FGP

Model 2: PPM ~ MPG + height

  Res.Df      RSS  Df Sum of Sq      F   Pr(>F)    

1    100  1.00056                                  

2    102  1.15139   2   0.15084 7.5377 0.000893 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
>   #Shows how to get just F statistic out

>   anova.compare<-anova(mod.fit.red, mod.fit.comp, test = 
       "F")  #test = "F" is default

>   names(anova.compare)

[1] "Res.Df"    "RSS"       "Df"        "Sum of Sq" "F"         "Pr(>F)"   

>   anova.compare$F

[1]       NA 7.537712

>   anova.compare$F[2]

[1] 7.537712

>   anova.compare$Pr(>F) #Does not work

Error: unexpected '>' in "  anova.compare$Pr(>"

>   anova.compare$"Pr(>F)" #Can always put quotes around 
                            list component

[1]           NA 0.0008930397

>   anova.compare$"Pr(>F)"[2]

[1] 0.0008930397
1)   H0: (3=(4=0

Ha: At least one of the (’s does not equal to 0
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2) F(1-(, p-1-g, n-p)=F(0.95, 2, 100) = 3.0873
3) Since 7.54 > 3.0873, reject Ho
4) At least one of the FGP and FTP variables are important in estimating PPM.  The complete model is better than the reduced model.  
The p-value is 0.000893.  Pay special attention to how I was able to extract the F statistic and corresponding p-value out of the anova.compare object.  

The anova() function in the stats package can be used a different way than seen so far.  For example, 

>   anova.comp<-anova(object = mod.fit.comp)

>   anova.comp

Analysis of Variance Table

Response: PPM

           Df  Sum Sq Mean Sq F value    Pr(>F)    

MPG         1 0.18002 0.18002 17.9921  4.96e-05 ***

height      1 0.06530 0.06530  6.5261 0.0121379 *  

FTP         1 0.00256 0.00256  0.2556 0.6143010    

FGP         1 0.14828 0.14828 14.8199 0.0002087 ***

Residuals 100 1.00056 0.01001                        

produces

	SSR
	Value

	SSR(X1)
	0.18002

	SSR(X2|X1)
	0.06530

	SSR(X3|X1,X2)
	0.00256

	SSR(X4|X1,X2,X3)
	0.14828


where X1=MPG, X2=Height, X3=FTP, and X4=FGP.  Note that 0.18002 + 0.06530 + 0.00256 + 0.14828 = 0.39616 = SSR.  Notice 

> 0.39616/(0.39616+1.00056)

[1] 0.2836359

is R2, which can be found as well through the summary() function.  
> summary(mod.fit.comp)$r.squared

[1] 0.2836347
Be careful with the hypothesis tests shown in the output.  The intent of these hypothesis tests is to be of the form:

Test #1: 

H0: E(PPM) = (0

Ha: E(PPM) = (0 + (1MPG 

Test #2: 

H0: E(PPM) = (0 + (1MPG 
Ha: E(PPM) = (0 + (1MPG + (2Height 

Test #3: 

H0: E(PPM) = (0 + (1MPG + (2Height 
Ha: E(PPM) = (0 + (1MPG + (2Height + (3FTP 

Test #4: 

H0: E(PPM) = (0 + (1MPG + (2Height + (3FTP 
Ha: E(PPM) = (0 + (1MPG + (2Height + (3FTP + 

                       (4FGP 

BUT, they incorrectly use MSE(MPG, height, FTP, FGP) in the denominator of F for all of the hypothesis tests (the only time this would be correct is for the last hypothesis test).  For example, below is some output used to do test #2.  Notice the correct p-value for the test given below is different than what was given by the anova() output.  

>################################################### 

 #Test Ho: E(Y) = beta0 + beta1*MPG

 #     Ha: E(Y) = beta0 + beta1*MPG + beta2*height

>   #Initial code

>   mod.fit.temp<-lm(formula = PPM ~ MPG + height, 
       data = nba)

>   anova.temp<-anova(mod.fit.temp)

>   anova.temp

Analysis of Variance Table

Response: PPM

           Df  Sum Sq Mean Sq F value    Pr(>F)    

MPG         1 0.18002 0.18002 15.9477 0.0001230 ***

height      1 0.06530 0.06530  5.7846 0.0179696 *  

Residuals 102 1.15139 0.01129                      

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The Anova() function in the car package can be used to produce the usual t-tests give from summary(), but now through partial F-tests.    
>   summary(mod.fit.comp)$coefficients

                 Estimate  Std. Error    t value     Pr(>|t|)

(Intercept) -0.8423465759 0.304592589 -2.7654861 0.0067698589

MPG          0.0028959657 0.001121044  2.5832752 0.0112332760

height       0.0041358871 0.001396577  2.9614459 0.0038250550

FTP         -0.0001502908 0.001179521 -0.1274168 0.8988663542

FGP          0.0093212453 0.002421318  3.8496580 0.0002086757

>   library(car)

>   Anova(mod.fit.comp)

Anova Table (Type II tests)

Response: PPM

           Sum Sq  Df F value    Pr(>F)    

MPG       0.06677   1  6.6733 0.0112333 *  

height    0.08775   1  8.7702 0.0038251 ** 

FTP       0.00016   1  0.0162 0.8988664    

FGP       0.14828   1 14.8199 0.0002087 ***

Residuals 1.00056 100                      

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

This function produces what some of you may have heard called “type II” sums of squares.  These sums of squares are SSR(MPG | height, FTP, FGP) = 0.06677, …, SSR(FGP | MPG, height, FTP) = 0.14828, where we are examining the contribution of one variable given the other variables are in the model.  

7.3 Summary of tests concerning regression coefficients

1) Overall F test – Tests the importance of all variables at once.  The null hypothesis is H0:(1=…=(p-1=0

2) T test – Tests the importance of only one variable at a time given the other variables are in the model.  The null hypothesis is H0:(g=0

3) Partial F test – Tests the importance of a group of variables at the same time.  The null hypothesis is H0:(g+1=…=(p-1=0 where there are g(p-1 predictor variables in the reduced model.  

The overall F test and the t test are special cases of the partial F test.  

7.4 Coefficients of partial determination 

Extra sums of squares can be used in calculating a R2 given other variables are in the model.  

R2 - measures the proportion reduction in the variation of Y achieved by using all of the predictor variables in the model.  
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 - measures the proportion reduction in SSE by adding X3 to the model given that X1 and X2  are already in the model (this is one specific example).

The “coefficient of partial determination” is calculated the following way for these examples: 
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Notes:

1) The coefficient of partial determination is between 0 and 1.  The closer to 1, the more the reduction in SSE.  

2) The coefficient of partial determination is often used in “model building” procedures.  To determine what predictor variables should be added to a model, the coefficient of partial determination can be examined to see which predictor variable reduces SSE the most.  

Example: NBA data (nba_ch7.R)

Determine which predictor variable – Age or FGP – would be the best to add to the model E(PPM) = (0 + (1MPG + (2Height + (3FTP.

Let X1=MPG, X2=Height, X3=FTP, X4=FGP, and X5=Age
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>   mod.fit.comp1<-lm(formula = PPM ~ MPG + height + FTP + 
                                      FGP, data = nba)

>   anova.comp1<-anova(mod.fit.comp1)

>   mod.fit.comp2<-lm(formula = PPM ~ MPG + height + FTP + 
                                      age, data = nba)

>   anova.comp2<-anova(mod.fit.comp2)

>   mod.fit.red<-lm(formula = PPM ~ MPG + height + FTP, 
                    data = nba)

>   anova.red<-anova(mod.fit.red)

>   ssr.4.123<-anova.comp1$"Sum Sq"[4]

>   ssr.5.123<-anova.comp2$"Sum Sq"[4]

>   sse<-anova.red$"Sum Sq"[4]

>   anova.comp1$"Sum Sq"[4]/sse  #Rsq.4.123

[1] 0.1290706

>   anova.comp2$"Sum Sq"[4]/sse  #Rsq.5.123

[1] 0.02357182

7.5 Standardized multiple regression model

Read on your own

7.6 Multicollinearity and its effects

When predictor variables are highly correlated with each other, “intercorrelation” or “multicollinearity” is said to exist.  This can cause estimates of the (’s to be “unstable” (meaning that from sample-to-sample-to-sample, the bj’s have a lot of variability).  Therefore, interpretation of how a predictor and response variable are related by examining the bj may not give good results.  

Example: multicollinearity.R 

Data is simulated so that the predictor variables X1 and X2 are highly correlated.  Regression models including X1, X2, and X1 and X2 as predictor variables are fit to the data.  

> #Simulate observations

> set.seed(8171)  #set.seed(7110)  

> X1<-seq(from = 1, to = 50, by = 1)

> X2<-X1 + 0.1*rnorm(n = 50, mean = 0, sd = 1)

> epsilon<-rnorm(n = 50, mean = 0, sd = 100)

> Y<-2 + 3*X1 + 4*X2 + epsilon

> set1<-data.frame(Y, X1, X2)

> cor(x = set1, method = "pearson")

          Y       X1       X2

Y  1.000000 0.666022 0.665084

X1 0.666022 1.000000 0.999980
X2 0.665084 0.999980 1.000000

> library(car)

> scatterplotMatrix(x = ~Y+X1+X2, data=set1, 
                     reg.line=lm, smooth=TRUE, span=0.5, 
                     diagonal = 'histogram')
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> mod.fit1<-lm(formula = Y ~ X1, data = set1)

> summary(mod.fit1)$coefficients

             Estimate Std. Error  t value     Pr(>|t|)

(Intercept) 38.622047 26.8541153 1.438217 1.568609e-01

X1           5.669576  0.9165174 6.186000 1.302648e-07

> mod.fit2<-lm(formula = Y ~ X2, data = set1)

> summary(mod.fit2)$coefficients

             Estimate Std. Error  t value     Pr(>|t|)

(Intercept) 38.639980 26.9104267 1.435874 1.575235e-01

X2           5.666602  0.9183573 6.170367 1.376431e-07

> mod.fit12<-lm(formula = Y ~ X1 + X2, data = set1)

> summary(mod.fit12)$coefficients

              Estimate Std. Error   t value  Pr(>|t|)

(Intercept)   45.19421   27.03793  1.671511 0.1012668

X1           202.97928  143.78277  1.411708 0.1646224

X2          -197.48828  143.91003 -1.372304 0.1764830
Notes: 

1) The estimated correlation between X1 and X2 is 0.99998.  

2) The sample regression models are: 
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3) Notice the change in the estimated bj’s between the models.  Also, notice the large estimated standard errors.  

4) I simulated another sample from the population (see the second seed in the program) to illustrate the effect that multicollinearity has on the bj’s.  The sample regression models are 
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.  Notice the differences between the bj’s for the last model here and the last model in 2).  

When multicollinearity does not exist, the bj values should not greatly change when variables are added or removed from the model.  

Example: NBA data (nba_ch7.R)

>   #columns 1:3 are the name of the player and the number 
      of games played

>   round(cor(x = nba[,-(1:3)], method = "pearson"),2)

         PPM   MPG height   FTP   FGP   age

PPM     1.00  0.36   0.21  0.17  0.41 -0.05

MPG     0.36  1.00  -0.01  0.39  0.34  0.18

height  0.21 -0.01   1.00 -0.06 -0.11  0.07

FTP     0.17  0.39  -0.06  1.00  0.28  0.25

FGP     0.41  0.34  -0.11  0.28  1.00  0.11

age    -0.05  0.18   0.07  0.25  0.11  1.00

Notice that the strongest estimated correlation between the predictor variables is 0.39 and the smallest is 
–0.11.  

To investigate the changes in the bj’s, variables are added to the model one at a time.  Notice that the bj’s do not change too much.  

>   #Investigate what happens to the b's when one variable is 
       added at a time

>   mod.fit1<-lm(formula = PPM ~ MPG            , data = nba)

>   summary(mod.fit1)$coefficients

               Estimate  Std. Error   t value     Pr(>|t|)

(Intercept) 0.320975692 0.028335757 11.327585 8.392124e-20

MPG         0.004220659 0.001081162  3.903818 1.692911e-04

>   mod.fit2<-lm(formula = PPM ~ MPG + height      , data = nba)

>   summary(mod.fit2)$coefficients

                Estimate  Std. Error   t value     Pr(>|t|)

(Intercept) -0.353279837 0.281707620 -1.254066 0.2126845927

MPG          0.004247151 0.001056950  4.018307 0.0001123449

height       0.003542129 0.001472749  2.405114 0.0179696183
>   mod.fit3<-lm(formula = PPM ~ MPG + height + FTP, data = nba)

>   summary(mod.fit3)$coefficients

                 Estimate  Std. Error    t value     Pr(>|t|)

(Intercept) -0.4021933208 0.301014824 -1.3361246 0.1845111648

MPG          0.0040331041 0.001153043  3.4977918 0.0006989877

height       0.0035858278 0.001481248  2.4208156 0.0172708941

FTP          0.0005883381 0.001240881  0.4741292 0.6364311575

>   mod.fit4<-lm(formula = PPM ~ MPG + height + FTP + FGP, data 
                 = nba)

>   summary(mod.fit4)$coefficients

                 Estimate  Std. Error    t value     Pr(>|t|)

(Intercept) -0.8423465759 0.304592589 -2.7654861 0.0067698589

MPG          0.0028959657 0.001121044  2.5832752 0.0112332760

height       0.0041358871 0.001396577  2.9614459 0.0038250550

FTP         -0.0001502908 0.001179521 -0.1274168 0.8988663542

FGP          0.0093212453 0.002421318  3.8496580 0.0002086757

>   mod.fit5<-lm(formula = PPM ~ MPG + height + FTP + FGP + age, 
                 data = nba)

>   summary(mod.fit5)$coefficients

                 Estimate  Std. Error    t value     Pr(>|t|)

(Intercept) -0.7789793864 0.303498602 -2.5666655 0.0117653419

MPG          0.0030577913 0.001112990  2.7473662 0.0071388463

height       0.0043557998 0.001387429  3.1394748 0.0022310525

FTP          0.0002588242 0.001189714  0.2175517 0.8282262122

FGP          0.0094399054 0.002396752  3.9386243 0.0001526399

age         -0.0053145895 0.002999118 -1.7720505 0.0794626630

Notes: 

1) A simple solution to multicollinearity problems is to just use one of the predictor variables because they are measuring similar things.  

2) In Section 10.5, other methods are introduced to detect multicollinearity.  

3) In Section 11.2, remedial measures are introduced to lessen the effect of multicollinearity.  

4) Multicollinearity generally does not affect predicting Y or the C.I.s for E(Y) and P.I.s for Y.  

�Many people will refer to this as the "full" model


�or "just as good" as complete model - given a choice between two different models that fit similarly, usually prefer the model with smaller number of predictor variables.  


�PAGE \# "'Page: '#'�'"  ��In future, could try to reproduce plot on p. 282
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