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Multiple comparisons
  
If the hypothesis test for equality of means results in a “reject Ho”, there is at least one pair of means that are different. This section shows how to determine which pair(s) of means is(are) different. Thus, we will perform “multiple comparisons” for differences of mean pairs.  

How can we examine mean pairs?
· CI for i – i for i  i
· Hypothesis test for i – i for i  i

How many comparisons are possible?




For example, the Wheaties example has t = 4 leading to 6 possible comparisons: 

1. 1 – 2 
2. 1 – 3 
3. 1 – 4 
4. 2 – 3 
5. 2 – 4 
6. 3 – 4 

Suppose each comparison uses a level of  for the type I error rate in a hypothesis test. What is the probability of making AT LEAST one type I error for all multiple comparisons? 

NOT 

The probability of making at least one type I error is referred to as the experimentwise type I error rate. Some people refer to it as the familywise type I error rate too. We will denote this error rate as E. The individual type I error rate used for each test is denoted by I to help differentiate it. 

To see what the experimentwise type I error rate could be, consider the setting of 2 multiple comparisons. Let Aj be the event that a type I error occurs for the jth comparison of means. Then 





Because   0, we have the following inequality: 





If , then


. 

In general for m multiple comparisons, we have


.

Thus, E ≤ mI, so that the probability of at least one type I error could be as large as mI!. 

There have been MANY different multiple comparison methods proposed in order to control the experimentwise error rate at a pre-set level. In fact, whole courses are taught on this topic at some universities! The methods we will discuss are:

1) Fisher’s protected least significant differences (LSD) method
2) Bonferroni method
3) Tukey's honest significant differences (HSD) method

One book on this topic is “Multiple Comparisons Using R” by Bretz, Horthorn, and Westfall if you want to investigate these methods beyond those discussed in our class.



Fisher’s protected LSD

This procedure is VERY similar to finding a CI and/or performing a hypothesis test for the difference of two means as seen earlier in the course. The confidence interval is




The hypothesis test for Ho: i – i = 0 vs.  Ho: i – i  0 uses a test statistic of 


 



with critical values of . Equivalently, we could look at  for each (i, i) pair and compare it to 


. 

The “protected” part of the name comes from only performing these comparisons if Ho: 1 = … = t is rejected. The LSD part of the name comes from 


 

being the smallest (least) possible value where a “significant” difference in population means is found.

Unfortunately, this does not give us a measure of the experimentwise error rate.


Bonferroni

Because E  mI, we could adjust the value of I to achieve a desired experimentwise error level. Thus, for an experimentwise error rate of no more than E, use a I equal to E/m. For example, if we want E = 0.05 and m = 2, then use I = 0.05/2 = 0.025 to have an experimentwise error rate no larger than 0.05.

For m possible comparisons, the CI becomes 





The critical values are . The p-value needs to be < E/m to reject Ho: 1 – 2 = 0 using the projected LSD test statistic. Sometimes, p-values will be automatically adjusted for you (R does this) so you can compare the p-value directly to E. The p-value adjustment is simply min(p-value  m, 1). For example, if a p-value from the projected LSD test was 0.12. The adjusted p-value for a Bonferroni test would be the smallest of 0.12m or 1.  


Tukey's HSD

This procedure uses a different probability distribution to help make its comparisons. Specifically, we “could” use the test statistic


 

where 

· 
 is the largest sample mean among the t treatments
· 
 is the smallest sample mean among the t treatments. 

This test statistic looks very similar to the statistic that we first used for testing the difference between two means. However, because we have to wait to determine which is the largest and the smallest sample mean, the mathematics does not work out for the statistic to have a t distribution. Instead, it has a studentized range probability distribution. R has functions ptukey() and qtukey() that calculate probabilities and quantiles from this probability distribution, but there is no dtukey() function that would allow me to show you a plot of the distribution. 

Below are the important items from using this procedure:

· 
CI:  


where  is the 1 – E quantile from a studentized range probability distribution where t is the total number of treatments and N – t is the degrees of freedom associated with MSE.

· 
Test statistic: 
· 
P-value:  

where X has the appropriate studentized range probability distribution

The experimentwise error rate is E. 


Comparisons of the multiple comparisons procedures

Control of the experimentwise error rate
· LSD: None
· Bonferroni:  E
· HSD: E

Of course, the above values are conditional on all of the assumptions behind ANOVA being correct. 

Typically, LSD is often called a “liberal” procedure because it may find more population mean differences than those that actually exist. Bonferroni is often called a “conservative” procedure because it may find less population mean differences than those that actually exist. 

Displaying the results

Once multiple comparisons are completed, there is a type of “plot” that is used to summarize this information: 

1) Order the treatment “symbols” by their sample means (from smallest to largest).  
2) Place bars over treatments where there is not sufficient evidence to show that their means are different.
 
For example, suppose there are four treatments (A, B, C, and D) with sample means:

	Treatment
	Sample Mean

	A
	1

	B
	4

	C
	3

	D
	2



Then



denotes 

· A’s population mean is different than C and B’s population mean.
· A’s population mean is not found to be different than D’s population mean.
· D, C, and B’s population means are not found to be different.  

Often this is worded as, “A is different from B and C. A is not significantly different than D. D, C, and B are not significantly different.”

Some books will draw the horizontal lines below the letters instead of above the letters. 


Example: Wheaties Cereal (wheaties.R, wheaties.csv) 

Which design type means are different? We need to compare 6 different mean pairs using  

Ho: i - i= 0
Ha: i - i  0

for i, i = 1, 2, 3, 4 and i < i with E = 0.05. Below is the R code and output where mod.fit contains the results from aov(). First, we examine the results from LSD:

> aggregate(x = Response ~ Design, data = wheaties,   [bookmark: _GoBack]Added after video recording: R has changed the syntax for aggregate(). In the video, I show formula = Response ~ Design. Now, the proper syntax is x = Response ~ Design. I made the correction here and in the program. 

    FUN = mean)
  Design Response
1      1       15
2      2       13
3      3       19
4      4       27

> pairwise.t.test(x = wheaties$Response, g = 
    wheaties$Design, p.adjust.method = "none", alternative 
    = "two.sided")

        Pairwise comparisons using t tests with pooled SD 

data:  wheaties$Response and wheaties$Design 

  1      2      3     
2 0.4589 -      -     
3 0.1646 0.0378 -     
4 0.0049 0.0015 0.0194

P value adjustment method: none 

The table above gives p-values. Using a I = 0.05 level, we have:  


If we used I = 0.01 instead, notice the plot changes to 



Using Bonferroni:

> pairwise.t.test(x = wheaties$Response, g = 
    wheaties$Design, p.adjust.method = "bonferroni",
    alternative = "two.sided")

        Pairwise comparisons using t tests with pooled SD 

data:  wheaties$Response and wheaties$Design 

  1      2      3     
2 1.0000 -      -     
3 0.9877 0.2270 -     
4 0.0294 0.0088 0.1166

P value adjustment method: bonferroni 
 
Using an experimentwise error rate of E = 0.05, we can compare 0.05 to the p-values in the above table to determine which means are different. This leads to:  



Notice that we obtain the same p-values if the LSD p-values are multiplied by 6 (the number of comparisons):

>LSD <- pairwise.t.test(x = wheaties$Response, g = 
   wheaties$Design, p.adjust.method = "none",
   alternative = "two.sided")
> names(LSD)
[1] "method"          "data.name"       "p.value"         
    "p.adjust.method"

> LSD$p.value
            1           2          3
2 0.458921723          NA         NA
3 0.164619744 0.037828182         NA
4 0.004907837 0.001461194 0.01944082

> LSD$p.value*6  
           1           2         3
2 2.75353034          NA        NA
3 0.98771846 0.226969090        NA
4 0.02944702 0.008767167 0.1166449

where a maximum value of 1 was given by pairwise.t.test() when the multiplication results in a value greater than 1. Equivalently, we could use E/6 with the LSD p-values to decide which mean pairs are different. 

Using HSD:

> TukeyHSD(x = mod.fit, conf.level = 0.95)

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Response ~ factor(Design), data = wheaties)

$`factor(Design)`
    diff         lwr       upr     p adj
2-1   -2 -10.7499087  6.749909 0.8561049
3-1    4  -4.7499087 12.749909 0.4522099
4-1   12   2.4149552 21.585045 0.0190946
3-2    6  -1.8261563 13.826156 0.1304578
4-2   14   5.2500913 22.749909 0.0058766
4-3    8  -0.7499087 16.749909 0.0707158

Using an experimentwise error rate of E = 0.05 level, we can compare 0.05 to the p-values in the above table to determine which means are different. This leads to:  



Summary of the results:
· Design type 1 and 2 are different from design type 4. Because the confidence intervals are all positive for 4 – 1 and 4 – 2, design type 4’s mean sales are larger than design type 1 and 2’s mean sales. 
· There is not sufficient evidence to indicate a difference between design types 3 and 4 means.
· There is not sufficient evidence to indicate a difference between design types 1, 2, and 3 means.

How could you determine that design type 4’s population mean is greater than design type 2’s population mean using the output from pairwise.t.test()? 



Only the p-values are given so you can not directly. However, you can look at the sample means. Because  AND the p-value is small, we know that . 

Which package design should General Mills use?


There are packages specifically designed for multiple comparisons:

· agricolae

> library(package = agricolae)  
> save.LSD <- LSD.test(y = mod.fit, trt = 
    "factor(Design)", alpha = 0.05, group = FALSE, p.adj 
    = "none", main = "Wheaties box design")
> names(save.LSD)
[1] "statistics" "parameters" "means"      "comparison" 
    "groups"    

> save.LSD
$statistics
   MSerror Df Mean       CV
  7.666667  6   18 15.38264

$parameters
        test p.ajusted         name.t ntr alpha
  Fisher-LSD      none factor(Design)   4  0.05

$means
  Response      std r       LCL      UCL Min Max  Q25 Q50  Q75
1       15 4.242641 2 10.209216 19.79078  12  18 13.5  15 16.5
2       13 1.000000 3  9.088341 16.91166  12  14 12.5  13 13.5
3       19 2.000000 3 15.088341 22.91166  17  21 18.0  19 20.0
4       27 4.242641 2 22.209216 31.79078  24  30 25.5  27 28.5

$comparison
      difference pvalue signif.        LCL        UCL
1 - 2          2 0.4589          -4.184876  8.1848759
1 - 3         -4 0.1646         -10.184876  2.1848759
1 - 4        -12 0.0049      ** -18.775192 -5.2248079
2 - 3         -6 0.0378       * -11.531921 -0.4680788
2 - 4        -14 0.0015      ** -20.184876 -7.8151241
3 - 4         -8 0.0194       * -14.184876 -1.8151241

$groups
NULL

attr(,"class")
[1] "group" 

> save.Bon <- LSD.test(y = mod.fit, trt = 
    "factor(Design)", alpha = 0.05, group = FALSE, p.adj 
    = "bonferroni", main = "Wheaties box design")
> save.Bon
$statistics
   MSerror Df Mean       CV
  7.666667  6   18 15.38264

$parameters
        test  p.ajusted         name.t ntr alpha
  Fisher-LSD bonferroni factor(Design)   4  0.05

$means
  Response      std r       LCL      UCL Min Max  Q25 Q50  Q75
1       15 4.242641 2 10.209216 19.79078  12  18 13.5  15 16.5
2       13 1.000000 3  9.088341 16.91166  12  14 12.5  13 13.5
3       19 2.000000 3 15.088341 22.91166  17  21 18.0  19 20.0
4       27 4.242641 2 22.209216 31.79078  24  30 25.5  27 28.5

$comparison
      difference pvalue signif.        LCL       UCL
1 - 2          2 1.0000          -7.764192 11.764192
1 - 3         -4 0.9877         -13.764192  5.764192
1 - 4        -12 0.0294       * -22.696137 -1.303863
2 - 3         -6 0.2270         -14.733359  2.733359
2 - 4        -14 0.0088      ** -23.764192 -4.235808
3 - 4         -8 0.1166         -17.764192  1.764192

$groups
NULL

attr(,"class")
[1] "group"

Notice how the factor was specified in the LSD.test() function. This needs to be the name as displayed by summary(object = mod.fit). Again, factor() would be unnecessary if the factor levels were not coded strictly as numeric. 

There are no options in this function for HSD. However, there is a HSD.test() function available for it. 

> save.HSD <- HSD.test(y = mod.fit, trt = 
    "factor(Design)", alpha = 0.05, group = FALSE, main = 
    "Wheaties box design")
> save.HSD
$statistics
   MSerror Df Mean       CV
  7.666667  6   18 15.38264

$parameters
   test         name.t ntr StudentizedRange alpha
  Tukey factor(Design)   4         4.895599  0.05

$means
  Response      std r Min Max  Q25 Q50  Q75
1       15 4.242641 2  12  18 13.5  15 16.5
2       13 1.000000 3  12  14 12.5  13 13.5
3       19 2.000000 3  17  21 18.0  19 20.0
4       27 4.242641 2  24  30 25.5  27 28.5

$comparison
      difference pvalue signif.        LCL        UCL
1 - 2          2 0.8561          -6.749909 10.7499087
1 - 3         -4 0.4522         -12.749909  4.7499087
1 - 4        -12 0.0191       * -21.585045 -2.4149552
2 - 3         -6 0.1305         -13.826156  1.8261563
2 - 4        -14 0.0059      ** -22.749909 -5.2500913
3 - 4         -8 0.0707       . -16.749909  0.7499087

$groups
NULL

attr(,"class")
[1] "group"

· multcomp – This is the most advanced package in R for multiple comparisons, but it often requires an experimental design course understanding for multiple comparisons. Note that this package corresponds to the Bretz, Horthorn, and Westfall (2011) book. 

Multiple comparisons using HSD:

> library(package = multcomp)
> HSD <- glht(model = mod.fit, linfct = 
    mcp("factor(Design)" = "Tukey"))
> summary(object = HSD)

         Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Fit: aov(formula = Response ~ factor(Design), data = wheaties)

Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)   
2 - 1 == 0   -2.000      2.528  -0.791  0.85554   
3 - 1 == 0    4.000      2.528   1.583  0.45121   
4 - 1 == 0   12.000      2.769   4.334  0.01887 * 
3 - 2 == 0    6.000      2.261   2.654  0.13021   
4 - 2 == 0   14.000      2.528   5.539  0.00608 **
4 - 3 == 0    8.000      2.528   3.165  0.07028 . 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- single-step method) 

> confint(object = HSD, level = 0.95)

         Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts


Fit: aov(formula = Response ~ factor(Design), data = wheaties)

Quantile = 3.459
95% family-wise confidence level
 

Linear Hypotheses:
           Estimate lwr      upr     
2 - 1 == 0  -2.0000 -10.7430   6.7430
3 - 1 == 0   4.0000  -4.7430  12.7430
4 - 1 == 0  12.0000   2.4225  21.5775
3 - 2 == 0   6.0000  -1.8200  13.8200
4 - 2 == 0  14.0000   5.2570  22.7430
4 - 3 == 0   8.0000  -0.7430  16.7430  

> plot(HSD) 

[image: ]

Please see the corresponding program for how to do the multiple comparisons using LSD and Bonferroni.
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