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binGroup: A Package for Group Testing
by Christopher R. Bilder, Boan Zhang, Frank
Schaarschmidt, and Joshua M. Tebbs

Abstract When the prevalence of a disease or of
some other binary characteristic is small, group
testing (also known as pooled testing) is fre-
quently used to estimate the prevalence and/or
to identify individuals as positive or negative.
We have developed the binGroup package as the
first package designed to address the estimation
problem in group testing. We present functions
to estimate an overall prevalence for a homoge-
neous population. Also, for this setting, we have
functions to aid in the very important choice of
the group size. When individuals come from a
heterogeneous population, our group testing re-
gression functions can be used to estimate an in-
dividual probability of disease positivity by us-
ing the group observations only. We illustrate
our functions with data from a multiple vector
transfer design experiment and a human infec-
tious disease prevalence study.

Introduction

Group testing, where individuals are composited
into pools to screen for a binary characteristic, has
a long history of successful application in areas
such as human infectious disease detection, veteri-
nary screening, drug discovery, and insect vector
pathogen transmission (Pilcher et al., 2005; Peck,
2006; Remlinger et al., 2006; Tebbs and Bilder, 2004).
Group testing works well in these settings because
the prevalence is usually small and individual spec-
imens (e.g., blood, urine, or cattle ear notches) can
be composited without loss of diagnostic test accu-
racy. Group testing is performed often by assigning
each individual to a group and testing every group
for a positive or negative outcome of the binary char-
acteristic. Using these group responses alone, esti-
mates of overall prevalence or subject specific prob-
abilities of positivity can be found. When further
individual identification of the binary characteristic
is of interest, retesting of specimens within positive
groups can be performed to decode the individual
positives from the negatives. There are other vari-
ants to how group testing is applied, and some will
be discussed in this paper. A recent review of group
testing for estimation and identification is found in
Hughes-Oliver (2006).

Our binGroup package (Zhang et al., 2010) is the
first dedicated to the group testing estimation prob-
lem within homogeneous or heterogeneous popula-
tions. We also provide functions to determine the op-
timal group size based on prior knowledge of what
the overall prevalence may be. All of our functions

have been written in familiar formats to those where
individual testing is used (e.g., binom.confint() in
binom (Dorai-Raj, 2009) or glm() in stats (R Devel-
opment Core Team, 2009)).

Homogeneous populations

Group testing has been used traditionally in settings
where one overall prevalence of a binary character-
istic within a homogeneous population is of interest.
Typically, one assumes that each individual is inde-
pendent and has the same probability p of the charac-
teristic, so that p is the overall prevalence. In the next
section, we will consider the situation where individ-
uals have different probabilities of positivity. Here,
we let θ denote the probability that a group of size s is
positive. One can show then p = 1− (1− θ)1/s when
diagnostic testing is perfect. This equation plays
a central role in making estimates and inferences
about individuals when only the group responses are
known and each individual is within only one group.

We have written two functions to calculate a con-
fidence interval for p. First, the bgtCI() function cal-
culates intervals for p when a common group size is
used throughout the sample. For example, Ornaghi
et al. (1999) estimate the probability the female Del-
phacodes kuscheli (planthopper) transfers the Mal Rio
Cuarto (MRC) virus to maize crops. In stage 4 of the
experiment, n = 24 enclosed maize plants each had
s = 7 planthopper vectors placed on them for forty-
eight hours, and there were y = 3 plants that tested
positive for the MRC virus after two months. The
95% confidence interval for the probability of trans-
mission p is calculated by

> bgtCI(n=24, y=3, s=7, conf.level=0.95,
+ alternative="two.sided", method="Score")

95 percent Score confidence interval:
[ 0.006325, 0.05164 ]

Point estimate: 0.0189

where the score (Wilson) interval was used. While
the score interval is usually one of the best in terms of
coverage (Tebbs and Bilder, 2004), other intervals cal-
culated by bgtCI() include the Clopper-Pearson, the
asymptotic second-order corrected, and the Wald.
The maximum likelihood estimate for p is 1 − (1 −
3/24)1/7 = 0.0189.

Group testing is applied usually with equally
sized groups. When a common group size is not
used, perhaps due to physical or design constraints,
our bgtvs()function can calculate the exact interval
proposed by Hepworth (1996, equation 5). The ar-
guments to bgtvs() include vectors for n, s, and y
providing the number of groups per unique group
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size, the corresponding group sizes to n, and the cor-
responding number of observed positive groups to n,
respectively. Note that the algorithm becomes com-
putationally expensive when the number of different
group sizes is more than three.

One of the most important design considerations
is the choice of the group size. Choosing a group
size too small may result in few groups testing posi-
tive, which leads to more tests than needed. Choos-
ing a group size too large may result in almost all
groups testing positive, which leads to a poor esti-
mate of p. As a rule-of-thumb, one tries to choose a
group size so that about half of the groups test pos-
itive. More formally, one can choose an s that mini-
mizes the mean square error (MSE) for a fixed n and a
prior estimate of p (Swallow, 1985). If we use a prior
prevalence estimate of 0.0189, 24 groups, and a max-
imum possible group size of 100, our est.Design()
function finds the optimal choice of s to be 43:

> estDesign(n = 24, smax = 100, p.tr = 0.0189)
group size s with minimal mse(p) = 43

$varp [1] 3.239869e-05

$mse [1] 3.2808e-05

$bias [1] 0.0006397784

$exp [1] 0.01953978

The function provides the corresponding variance,
MSE, bias, and expected value for the maximum like-
lihood estimator of p. While s = 43 is optimal for
this example, large group sizes can not necessarily
be used in practice (e.g., dilution effects may prevent
using a large group size), but this can still be used as
a goal.

Our other functions for homogeneous popula-
tion settings include bgtTest(), which calculates a
p-value for a hypothesis test involving p. Also,
bgtPower() calculates power for the hypothesis test.
Corresponding to bgtPower(), the nDesign() and
sDesign() functions calculate the power as n or s, re-
spectively, increase with plot.bgtDesign() provid-
ing a plot. These functions allow researchers to de-
sign their own experiment in a similar manner as in
Schaarschmidt (2007).

Heterogeneous populations

When covariates for individuals are available, we
can model the probability of positivity much like
with any binary regression model. However, the
complicating aspect here is that only the group re-
sponses may be available. Also, if both group re-
sponses and responses from retests are available, the
correlation between these responses makes the anal-
ysis more difficult. Vansteelandt et al. (2000) and Xie

(2001) both have proposed ways to fit these models.
Vansteelandt et al. (2000) use a likelihood function
written in terms of the initial group responses and
maximizes it to obtain the maximum likelihood es-
timates of the model parameters. This fitting proce-
dure can not be used when retests are available. Xie
(2001) writes the likelihood function in terms of the
unobserved individual responses and uses the EM
algorithm for estimation. This approach has an ad-
vantage over Vansteelandt et al. (2000) because it can
be used in more complicated settings such as when
retests are available or when individuals appear in
multiple groups (e.g., matrix or array-based pool-
ing). However, while Xie’s fitting procedure is more
general, it can be very slow to converge for some
group testing protocols.

The gtreg() function fits group testing regres-
sion models in situations where individuals appear
in only one group and no retests are performed. The
function call is very similar to that of glm() in the
stats package (R Development Core Team, 2009). Ad-
ditional arguments include 1) sensitivity and speci-
ficity of the group test, 2) group numbers for the in-
dividuals, and 3) specification of either the Vanstee-
landt or Xie fitting methods. Both model fitting
methods use optim() from the stats package (R De-
velopment Core Team, 2009) to maximize their like-
lihood functions. Also, both will produce approxi-
mately the same estimates and corresponding stan-
dard errors.

We illustrate the gtreg() function with data
from Vansteelandt et al. (2000). The data were ob-
tained through a HIV surveillance study of pregnant
women in rural parts of Kenya. For this example, we
model the probability a women is HIV positive by
using age and the highest attained education level
(treated as ordinal) as covariates. The data structure
is

> data(hivsurv)
> tail(hivsurv[,c(3,5,6:8)], n = 7)

AGE EDUC. HIV gnum groupres
422 29 3 1 85 1
423 17 2 0 85 1
424 18 2 0 85 1
425 18 2 0 85 1
426 22 3 0 86 0
427 30 2 0 86 0
428 34 3 0 86 0

Each individual within a group (gnum is the
group number) is given the same group response
(groupres) within the data set. For example, indi-
vidual #422 is positive (1) for HIV, and this leads to
all individuals within group #85 to have a positive
group response. Note that the individual HIV re-
sponses are known here because the purpose of the
original study was to show group testing works as
well as individual testing (Verstraeten et al., 1998).
Continuing, the gtreg() function fits the model, and
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the fit is summarized with summary():

> fit1 <- gtreg(formula = groupres ~ AGE + EDUC.,
+ data = hivsurv, groupn = gnum, sens = 0.99,
+ spec = 0.95, linkf = "logit", method =
+ "Vansteelandt")
> summary(fit1)

Call: gtreg(formula = groupres ~ AGE + EDUC.,
data = hivsurv, groupn = gnum, sens = 0.99,
spec = 0.95, linkf = "logit", method =
"Vansteelandt")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.1811 -0.9384 -0.8219 1.3299 1.6696

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.99154 1.59969 -1.870 0.0615 .
AGE -0.05160 0.06751 -0.764 0.4447
EDUC. 0.73625 0.43904 1.677 0.0936 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1

Null deviance: 191.4 on 427 degrees of freedom
Residual deviance: 109.4 on 425 degrees of freedom
AIC: 115.4

Number of iterations in optim(): 284

The results from gtreg() are stored in fit1 here,
which has a "gt" class type. The estimated model
can be written as

logit( p̂ik) = −2.99 − 0.0516Ageik + 0.7363Educ.ik

where p̂ik is the estimated probability that the ith in-
dividual in the kth group is positive. In addition to
the summary.gt() function, method functions to find
residuals and predicted values are available.

We have also written a function sim.g() that sim-
ulates group test responses for a given binary regres-
sion model. The current options within it allow for
one covariate that is simulated from a gamma distri-
bution. Individuals are randomly put into groups of
a specified size by the user. The function can also be
used to simulate group testing data from a homoge-
neous population by specifying a zero coefficient for
the covariate.

One of the most important innovations in group
testing is the development of matrix or array-based
pooling (Phatarfod and Sudbury, 1994; Kim et al.,
2007). In this setting, specimens are placed into a
matrix-like grid so that they can be pooled within
each row and within each column. Potentially pos-
itive individuals occur at the intersection of positive
rows and columns. If identification of these positive
individuals is of interest, individual retesting can be
done on specimens at these intersections. With the
advent of high throughput screening, matrix pooling

has become easier to perform because pooling and
testing is done with minimal human intervention.

The gtreg.mp() function fits a group testing re-
gression model in a matrix pooling setting. The row
and column group responses can be used alone to fit
the model. If individual retesting is performed on the
positive row and column intersections, these retests
can be included when fitting the model. Note that
the speed of model convergence can be improved by
including retests. Within gtreg.mp(), we implement
the general EM algorithm given by Xie (2001) for any
setting where individuals may appear in multiple
groups or retests are performed. Due to the compli-
cated response nature of matrix pooling, this algo-
rithm involves using Gibbs sampling for the E-step
in order to approximate the conditional expected val-
ues of a positive individual response.

Through personal communication with Minge
Xie, we discovered that while he suggested the
model fitting procedure could be used for matrix
pooling, he had not implemented it; therefore, to our
knowledge, this is the first time group testing regres-
sion models for a matrix pooling setting have been
put into practice. Zhang and Bilder (2009) provide
a technical report on the model fitting details. We
hope that the gtreg.mp() function will encourage re-
searchers to include covariates when performing ma-
trix pooling rather than assume one common p, as
has been done in the past.

The sim.mp() function simulates matrix pooling
data. In order to simulate the data for a 5 × 6 and a
4 × 5 matrix, we can implement the following:

> set.seed(9128)
> sa1a<-sim.mp(beta.par=c(-7,0.1), rown=c(5,4),
+ coln=c(6,5), sens=0.95, spec=0.95)
> sa1<-sa1a$dframe
> head(sa1)

x col.resp row.resp coln rown sqn retest
1 29.96059 0 0 1 1 1 NA
2 61.28205 0 1 1 2 1 NA
3 34.27341 0 0 1 3 1 NA
4 46.19001 0 0 1 4 1 NA
5 39.43801 0 1 1 5 1 NA
6 45.88038 1 0 2 1 1 NA

where sa1 contains the row, column, and retest re-
sponses along with one covariate x. The covari-
ate is simulated from a gamma distribution with a
default shape parameter 20 and scale parameter 2.
The beta.par argument gives the coefficients in the
model of logit(pijk) = −7 + 0.1xijk where xijk and pijk
are the covariate and positivity probability, respec-
tively, for the individual in row i, column j, and ma-
trix k. We fit a model to the data using the following:

> fit1mp <- gtreg.mp(formula = cbind(col.resp,
+ row.resp) ~ x, data = sa1, col.groupn = coln,
+ row.groupn = rown, arrayn = sqn, sens = 0.95,
+ spec = 0.95, linkf = "logit", n.gibbs = 1000,
+ tol = 0.005)
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beta is: -0.9016617 -0.05124357 diff is: 1.430439
beta is: -3.111479 0.00532731 diff is: 2.450828
beta is: -5.394209 0.05974018 diff is: 10.21395
beta is: -6.759175 0.08955853 diff is: 0.499134
beta is: -7.312305 0.1007532 diff is: 0.1249984
beta is: -7.568249 0.1058028 diff is: 0.05011857
beta is: -7.668952 0.1075647 diff is: 0.01665225
beta is: -7.727166 0.1082272 diff is: 0.0075908
beta is: -7.660589 0.1073028 diff is: 0.008615887
beta is: -7.667813 0.1071231 diff is: 0.001674842

Number of minutes running: 2.139

The model estimates are similar to those used to sim-
ulate the data. Method functions to summarize the
model’s fit and to perform predictions are available
as well.

Conclusion

Group testing is used in a vast number of applica-
tions where a binary characteristic is of interest and
individual specimens can be composited. Our pack-
age combines together the most often used and rec-
ommended confidence intervals for p. Also, our
package makes the regression methods of Vanstee-
landt et al. (2000) and Xie (2001) easily accessible
for the first time. We hope this will encourage re-
searchers to take into account potentially important
covariates in a group testing setting.

We see the current form of the binGroup pack-
age as a beginning rather than an end to meeting re-
searcher needs. There are many additions that would
be further helpful to researchers. For example, there
are a number of retesting protocols, such as halving
(Gastwirth and Johnson, 1994) or sub-dividing posi-
tive groups of any size (Kim et al., 2007), that could
be implemented, but would involve a large amount
of new programming due to the complex nature of
the retesting. Also, the binGroup package does not
have any functions solely for individual identifica-
tion of a binary characteristic. For example, the op-
timal group size to use for identification alone is
usually different than the optimal group size to use
when estimating p. Given these desirable extensions,
we encourage others to send us their functions or
write new functions of their own. We would be will-
ing to work with anyone to include them within the
binGroup package. This will enable all researchers
to have one group testing package rather than hav-
ing many small packages with much duplication.
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