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Chapter 1

Text styles

Family is Roman
Family is Sans Serif

Family is Typewriter

Color is red
Toggle noun

Toggle emphasis
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Chapter 2

Equations

2.1 Summation symbols and nested elements

Suppose we have a random sample Yi for i = 1, . . . , n where E(Yi) = µ and
V ar(Yi) = σ2. Asymptotically, the sample mean Ȳ =

∑n
i=1 Yi/n has a normal

distribution where E(Ȳ ) = µ and V ar(Ȳ ) = σ2/n.
Display formula

Ȳ =

n∑
i=1

Yi/n

2.2 Numbering and referencing

Below is an example of a equation numbered

f(y) =
1

σ
√

2π
e

(y−µ)2

2σ2 (2.1)

f(y) =
1

σ
√

2π
e

(y−µ)2

2σ2 (2.2)

Both Equations 2.1 and 2.2 are exactly the same!

2.3 Multiline equations

My multiline equation:

f(y) =
1

σ
√

2π
e

(y−µ)2

2σ2 (2.3)

=
1

σ
√

2π
exp((y − µ)2/2σ2) (2.4)
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Chapter 3

Floating tables

Table 3.1 displays 95% con�dence intervals for π. Due to the large sample size,
we see that the intervals are similar with the Wald interval being the most
di�erent from the others. The lengths of the intervals are similar as well with
the Clopper-Pearson interval being a little longer the others.

Table 3.1: Con�dence intervals for the hepatitis C prevalence
Method Interval Length

Wald (0.0157, 0.0291) 0.0134

Agresti-Coull (0.0165, 0.0302) 0.0137

Wilson (0.0166, 0.0301) 0.0135

Clopper-Pearson (0.0162, 0.0302) 0.0140
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Chapter 4

Floating �gures

Figure 4.1 provides a comparison of the true con�dence levels for the Wald,
Wilson, Agresti-Coull, and Clopper-Pearson intervals for π. For each plot, n
is 40 and the stated con�dence level is 0.95 (α = 0.05). The true con�dence
level (coverage) for each interval method is plotted as a function of π. For
example, the true con�dence level at π = 0.157 is 0.8760 for the Wald, 0.9507
for the Wilson, 0.9507 for the Agresti-Coull, and 0.9740 for the Clopper-Pearson
intervals, respectively. Obviously, none of these intervals achieve exactly the
stated con�dence level on a consistent basis.
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CHAPTER 4. FLOATING FIGURES 6

Figure 4.1: True con�dence levels with n = 40 and α = 0.05.
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Chapter 5

Prevent line indenting

Often, one observes multiple Bernoulli random variable responses through re-
peated sampling or trials in identical settings. This leads to de�ning separate
random variables for each trial, Y1, . . . , Yn, where n is the number of trials. If all
trials are identical and independent, we can treat W =

∑n
i=1 Yi as a binomial

random variable with PMF of

P (W = w) =
( n
w

)
πw(1− π)n−w (5.1)

for w = 0, . . . , n. The combination function
(
n
w

)
= n!/[w!(n − w)!] counts the

number of ways w successes and n − w failures can be ordered. The expected
value ofW is E(W ) = nπ, and the variance ofW is V ar(W ) = nπ(1−π). Notice
that the Bernoulli distribution is a special case of the binomial distribution when
n = 1.
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Chapter 6

LATEX code

Suppose Yi for i = 1, . . . , n is a random sample from a normal population with
mean µ and variance σ2.
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Chapter 7

Code boxes

Continuing from the last example, below is how the calculations are performed
in R:

> p.tilde <- (w + qnorm(p = 1-alpha /2)^2 / 2) / (n +

qnorm(p = 1-alpha /2)^2)

> p.tilde

[1] 0.4277533

> #Wilson C.I.

> round(p.tilde + qnorm(p = c(alpha/2, 1-alpha /2)) *

sqrt(n) / (n + qnorm(p = 1-alpha /2) ^2) *

sqrt(pi.hat*(1-pi.hat) + qnorm(p =

1-alpha /2) ^2/(4*n)), 4)

[1] 0.1682 0.6873

> #Agresti -Coull C.I.

> var.ac <- p.tilde *(1-p.tilde) / (n + qnorm(p =

1-alpha /2) ^2)

> round(p.tilde + qnorm(p = c(alpha/2, 1-alpha /2)) *

sqrt(var.ac), 4)

[1] 0.1671 0.6884

After calculating π̃, we calculate the Wilson and Agresti-Coull intervals through
one line of code for each. Note that executing part of a line of code can help
highlight how it works. For example, one can execute qnorm(p = c(alpha/2,

1-alpha/2)) to see that it calculates -1.96 and 1.96.
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Chapter 8

Example references

Bilder (2009) examines how group testing can be used to determine who is
human and who is Cylon on the TV show Battlestar Galactica. If only the
humans on the Galactica knew of this research, they could have reach Earth
much faster.

Bilder et al. (2010) proposes �informative retesting� which is a method to
decrease the number of tests needed to screen a population for a disease.
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Appendix A

The big proof

This is a really big proof.
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