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Introduction Objectives

Apply appropriate methods to analyze data in a contingency table
State, interpret, and fit logistic, baseline-category, proportional odds,
and Poisson regression models
Use appropriate variable-selection methods
Evaluate the fit of categorical regression models
Identify and solve overdispersion problems
Be comfortable with using R to analyze categorical data
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Introduction Textbook

Bilder and Loughin (2014)
published by CRC Press
Provides more depth and
additional material
www.chrisbilder.com/
categorical

All R programs available on the
website
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Introduction Additional items

8:30AM – 5:00PM: Course in session

When are the breaks?

10:15AM – 10:30AM: Break!
12:30PM – 2:00PM: Lunch!
3:15PM – 3:30PM: Break!

Recording

Computer screen, including annotations made on it
Live-action video of us
Post to www.chrisbilder.com/JSM within one week from today;
available for 1 month

R Index
Blue text – Added after handouts printed
This is not a workshop

5 / 39

www.chrisbilder.com/JSM


Introduction Additional items

8:30AM – 5:00PM: Course in session
When are the breaks?

10:15AM – 10:30AM: Break!
12:30PM – 2:00PM: Lunch!
3:15PM – 3:30PM: Break!

Recording

Computer screen, including annotations made on it
Live-action video of us
Post to www.chrisbilder.com/JSM within one week from today;
available for 1 month

R Index
Blue text – Added after handouts printed
This is not a workshop

5 / 39

www.chrisbilder.com/JSM


Introduction Additional items

8:30AM – 5:00PM: Course in session
When are the breaks?

10:15AM – 10:30AM: Break!
12:30PM – 2:00PM: Lunch!
3:15PM – 3:30PM: Break!

Recording

Computer screen, including annotations made on it
Live-action video of us
Post to www.chrisbilder.com/JSM within one week from today;
available for 1 month

R Index
Blue text – Added after handouts printed
This is not a workshop

5 / 39

www.chrisbilder.com/JSM


Introduction Additional items

8:30AM – 5:00PM: Course in session
When are the breaks?

10:15AM – 10:30AM: Break!
12:30PM – 2:00PM: Lunch!
3:15PM – 3:30PM: Break!

Recording

Computer screen, including annotations made on it
Live-action video of us
Post to www.chrisbilder.com/JSM within one week from today;
available for 1 month

R Index

Blue text – Added after handouts printed
This is not a workshop

5 / 39

www.chrisbilder.com/JSM


Introduction Additional items

8:30AM – 5:00PM: Course in session
When are the breaks?

10:15AM – 10:30AM: Break!
12:30PM – 2:00PM: Lunch!
3:15PM – 3:30PM: Break!

Recording

Computer screen, including annotations made on it
Live-action video of us
Post to www.chrisbilder.com/JSM within one week from today;
available for 1 month

R Index
Blue text – Added after handouts printed

This is not a workshop

5 / 39

www.chrisbilder.com/JSM


Introduction Additional items

8:30AM – 5:00PM: Course in session
When are the breaks?

10:15AM – 10:30AM: Break!
12:30PM – 2:00PM: Lunch!
3:15PM – 3:30PM: Break!

Recording

Computer screen, including annotations made on it
Live-action video of us
Post to www.chrisbilder.com/JSM within one week from today;
available for 1 month

R Index
Blue text – Added after handouts printed
This is not a workshop

5 / 39

www.chrisbilder.com/JSM


Analyzing a binary response, 2 × 2 tables

1 Introduction
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Binomial distribution
Estimation of π
Inference for π
Inference for π1 − π2
Relative risks
Odds ratios
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Analyzing a binary response, 2 × 2 tables Binomial distribution

Binary responses likely the most common type of categorical response
Define Y = 1 as a “success” with probability π
Define Y = 0 as a “failure” with probability 1− π

Bernoulli distribution

P(Y = y) = πy (1− π)1−y

for y = 0 or 1
E (Y ) = π and Var(Y ) = π(1− π)

Binomial distribution
Observe multiple Bernoulli random variables, say Y1, . . . ,Yn, through
repeated sampling or trials in identical settings
If all trials are identical and independent, W =

∑n
i=1 Yi has a binomial

distribution:
P(W = w) =

( n

w

)
πw (1− π)n−w

for w = 0, . . . , n
E (W ) = nπ and Var(W ) = nπ(1− π)

Goal: Estimate π
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Analyzing a binary response, 2 × 2 tables Estimation of π

Given observed data, what is the most plausible value of π?

Maximum likelihood estimation
Likelihood function measures the plausibility of different values of π
Bernoulli setting

L(π|y1, . . . , yn) = P(Y1 = y1)× · · · × P(Yn = yn)

=
n∏

i=1

πyi (1− π)1−yi

= πw (1− π)n−w

Binomial setting: L(π|w) = P(W = w) =
(
n
w

)
πw (1− π)n−w

The value of π which maximizes the likelihood function is considered
to be the most plausible

Maximum likelihood estimate (MLE)
Derive MLE to be π̂ = w/n
For more complicated likelihood functions, will need to use numerical
iterative methods

8 / 39



Analyzing a binary response, 2 × 2 tables Estimation of π

Given observed data, what is the most plausible value of π?
Maximum likelihood estimation

Likelihood function measures the plausibility of different values of π
Bernoulli setting

L(π|y1, . . . , yn) = P(Y1 = y1)× · · · × P(Yn = yn)

=
n∏

i=1

πyi (1− π)1−yi

= πw (1− π)n−w

Binomial setting: L(π|w) = P(W = w) =
(
n
w

)
πw (1− π)n−w

The value of π which maximizes the likelihood function is considered
to be the most plausible

Maximum likelihood estimate (MLE)
Derive MLE to be π̂ = w/n
For more complicated likelihood functions, will need to use numerical
iterative methods

8 / 39



Analyzing a binary response, 2 × 2 tables Estimation of π

Given observed data, what is the most plausible value of π?
Maximum likelihood estimation

Likelihood function measures the plausibility of different values of π
Bernoulli setting

L(π|y1, . . . , yn) = P(Y1 = y1)× · · · × P(Yn = yn)

=
n∏

i=1

πyi (1− π)1−yi

= πw (1− π)n−w

Binomial setting: L(π|w) = P(W = w) =
(
n
w

)
πw (1− π)n−w

The value of π which maximizes the likelihood function is considered
to be the most plausible

Maximum likelihood estimate (MLE)
Derive MLE to be π̂ = w/n
For more complicated likelihood functions, will need to use numerical
iterative methods

8 / 39



Analyzing a binary response, 2 × 2 tables Estimation of π

Maximum likelihood estimators have a normal distribution for a large
sample

Suppose θ̂ is MLE of θ
Mean is θ
Var(θ̂) is estimated by

−E
(
∂2

∂θ2 log[L(θ|W )]

)−1 ∣∣∣∣
θ=θ̂

where log(·) is the natural log function

Bernoulli/binomial:
π̂ = w/n is MLE
Mean is π
Estimated variance is

V̂ar(π̂) = −E
{
∂2log [L(π|W )]

∂π2

}−1
∣∣∣∣∣
π=π̂

= −E
{
−W

π2 +
n −W

(1− π)2

}−1
∣∣∣∣∣
π=π̂

=

[
n

π
− n

1− π

]−1
∣∣∣∣∣
π=π̂

=
π̂(1− π̂)

n

See Casella and Berger (2002) for more details about maximum
likelihood estimation
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Analyzing a binary response, 2 × 2 tables Inference for π

Wald interval

Use large-sample normality of maximum likelihood estimator
(1− α)100% confidence interval for π

π̂ ± Z1−α/2
√
π̂(1− π̂)/n

where Za is the ath quantile from a standard normal distribution (e.g.,
Z0.975= 1.96)

Problems:

Limits may be less than 0 or greater than 1
When w = 0 or n,

√
π̂(1− π̂)/n = 0, leading to an interval of (0,0) or

(1,1)
True confidence level (coverage) is very often less than (1− α)100%
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Analyzing a binary response, 2 × 2 tables Inference for π

Example: True confidence levels, interval for π (ConfLevel4Intervals.R)
n = 40 and α = 0.05
When π = 0.157, true confidence level is 0.8759 for Wald interval

Plots for 0 < π < 1:
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Analyzing a binary response, 2 × 2 tables Inference for π

Wilson (score) interval
H0 : π = π0 vs. Ha : π 6= π0
Score statistic

Z0 =
π̂ − π0√

π0(1− π0)/n

Approximate with a standard normal distribution and use ±Z1−α/2 as
critical values

Invert the test to find interval
Find all possible values for π0 that lead to a “do not reject” of H0

Results in

π̃ ±
Z1−α/2

√
n

n + Z 2
1−α/2

√
π̂(1− π̂) +

Z 2
1−α/2

4n

where

π̃ =
w + Z 2

1−α/2/2
n + Z 2

1−α/2

Benefits:
Limits always between 0 and 1
Decent true confidence level properties
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Analyzing a binary response, 2 × 2 tables Inference for π

Example: Corn seed germination (Corn.R)
My garden

Planted 64 corn seeds of a particular variety in one 4′ × 4′ raised bed
Followed seed packet directions
After 21 days, 48 seeds had sprouted (7-14 days was period given on
seed packet)

13 / 39



Analyzing a binary response, 2 × 2 tables Inference for π

Example: Corn seed germination (Corn.R)
> w <- 48
> n <- 64
> alpha <- 0.05
> pi.hat <- w/n
> pi.hat

[1] 0.75

> pi.tilde <- (w + qnorm(p = 1 - alpha/2)^2/2)/(n + qnorm(p = 1 -
alpha/2)^2)

> pi.tilde

[1] 0.735844

> wilson <- pi.tilde + qnorm(p = c(alpha/2, 1 - alpha/2)) * sqrt(n)/(n +
qnorm(p = 1 - alpha/2)^2) * sqrt(pi.hat * (1 - pi.hat) +
qnorm(p = 1 - alpha/2)^2/(4 * n))

> round(wilson, digits = 4)

[1] 0.6318 0.8399

> library(package = binom)
> binom.confint(x = w, n = n, conf.level = 1 - alpha, methods = "wilson")

method x n mean lower upper
1 wilson 48 64 0.75 0.6318372 0.8398507

Compare to 95% Wald interval: 0.6439 < π < 0.8561
14 / 39



Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

Compare responses of two
groups in a 2× 2 contigency
table
Larry Bird’s free throws for two
seasons (Wardrop, 1995)

Second
Made Missed Total

First Made 251 34 285
Missed 48 5 53
Total 299 39 338

15 / 39



Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

HIV vaccine clinical trials (Rerks-Ngarm et al., 2009)

Response
HIV No HIV Total

Treatment Vaccine 51 8,146 8,197
Placebo 74 8,124 8,198
Total 125 16,270 16,395 16 / 39



Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

Denote π1 and π2 as the probabilities of a success for the two groups
2× 2 contingency tables

Response Response
Success Failure Total Success Failure Total

Group 1 π1 1− π1 1 Group 1 w1 n1 − w1 n1

2 π2 1− π2 1 2 w2 n2 − w2 n2

Wj ∼ Binomial(nj , πj) for j = 1, 2
MLE for πj : π̂j = wj/nj
π̂j∼̇N(πj , V̂ar(π̂j)) for large nj , where V̂ar(π̂j) = π̂j(1− π̂j)/nj

(1− α)100% Wald interval

π̂1 − π̂2 ± Z1−α/2

√
π̂1(1− π̂1)

n1
+
π̂2(1− π̂2)

n2

Problems with Wald interval:
Limits may be less than -1 or greater than 1
When wj = 0 or nj , the π̂j(1− π̂j)/nj part of the variance becomes 0
True confidence level (coverage) is very often less than (1− α)100%
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Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

Example: True confidence levels, interval for π1 − π2
(ConfLevelTwoProb.R)

n1 = n2 = 10, π2 = 0.4, and α = 0.05
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Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

Example: True confidence levels, interval for π1 − π2
(ConfLevelTwoProb.R)

n1 = n2 = 50, π2 = 0.4, and α = 0.05
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Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

(1− α)100% Agresti-Caffo interval

π̃1 − π̃2 ± Z1−α/2

√
π̃1(1− π̃1)
n1 + 2

+
π̃2(1− π̃2)
n2 + 2

where
π̃1 =

w1 + 1
n1 + 2

and π̃2 =
w2 + 1
n2 + 2

Benefit: True confidence level is much closer to (1−α)100% than Wald

Score interval

H0 : π1 − π2 = d vs. Ha : π1 − π2 6= d
Invert test
Performs similarly to Agresti-Caffo interval
No closed form expression
See p. 57 of Bilder and Loughin (2014)
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Analyzing a binary response, 2 × 2 tables Inference for π1 − π2
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Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

Example: Larry Bird free throws (Bird.R)

> c.table <- array(data = c(251, 48, 34, 5), dim = c(2, 2),
dimnames = list(First = c("made", "missed"), Second = c("made",

"missed")))
> c.table

Second
First made missed

made 251 34
missed 48 5

> c.table[1, 2] #Row 1, column 2 count

[1] 34

> pi.tilde1 <- (c.table[1, 1] + 1)/(sum(c.table[1, ]) + 2)
> pi.tilde2 <- (c.table[2, 1] + 1)/(sum(c.table[2, ]) + 2)
> var.AC <- pi.tilde1 * (1 - pi.tilde1)/(sum(c.table[1, ]) +

2) + pi.tilde2 * (1 - pi.tilde2)/(sum(c.table[2, ]) +
2)

> alpha <- 0.05
> pi.tilde1 - pi.tilde2 + qnorm(p = c(alpha/2, 1 - alpha/2)) *

sqrt(var.AC)

[1] -0.10353254 0.07781192
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Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

Example: Larry Bird free throws (Bird.R)
> library(PropCIs)
> wald2ci(x1 = c.table[1, 1], n1 = sum(c.table[1, ]), x2 = c.table[2,

1], n2 = sum(c.table[2, ]), conf.level = 0.95, adjust = "AC")

data:

95 percent confidence interval:
-0.10353254 0.07781192

sample estimates:
[1] -0.01286031

With 95% confidence, the difference in the probability of success on
the second attempt is between −0.1035 and 0.07781 when the first
free throw is made vs. when the first free throw is missed
Wald: −0.1122 < π1 − π2 < 0.0623; use adjust = "Wald" with
wald2ci()
Could enter values of w1, n1,w2, n2 directly into R rather than use
contingency table structure
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Analyzing a binary response, 2 × 2 tables Inference for π1 − π2

Example: Larry Bird free throws (Bird.R)
What if the data was not already summarized in a contingency table
format?
Observation First Second

1 Made Made
2 Missed Made
3 Made Made
...

...
...

338 Made Missed

Suppose all.data2 contains this form of the data
> bird.table2 <- xtabs(formula = ~first + second, data = all.data2)
> bird.table2

second
first made missed

made 251 34
missed 48 5

> # table(all.data2$first, all.data2$second) #This also works

Proceed with using bird.table2 object in place of c.table
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Analyzing a binary response, 2 × 2 tables Relative risks

Meaning of π1 − π2 changes depending on the sizes of these
probabilities

Two examples:
1 π1 = 0.51 and π2 = 0.50
2 π1 = 0.011 and π2 = 0.001

Both have π1 − π2 = 0.01, but
1 Difference is small relative to size of probabilities
2 Difference is large relative to size of probabilities

Relative risk
RR = π1/π2

1 RR = 0.51/0.50 = 1.02 – Group 1 is 1.02 times as likely as group 2
2 RR = 0.011/0.001 = 11.0 – Group 1 is 11 times as likely as group 2

Interpretation for 2.:

A success is 11 times as likely for group 1 than for group 2
A success is 10 times more likely for group 1 than for group 2

What if RR = 1?
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Analyzing a binary response, 2 × 2 tables Relative risks

MLE: R̂R = π̂1/π̂2

Wald confidence interval
Normal approximation is better for log(π̂1/π̂2) than for π̂1/π̂2

Estimated variance

V̂ar(log(π̂1/π̂2)) =
1
w1
− 1

n1
+

1
w2
− 1

n2

Interval for log(RR)

log(π̂1/π̂2)± Z1−α/2

√
1
w1
− 1

n1
+

1
w2
− 1

n2

Interval for RR

exp

[
log(π̂1/π̂2)± Z1−α/2

√
1
w1
− 1

n1
+

1
w2
− 1

n2

]
What if w1 or w2 = 0? Possible ad-hoc solutions:

Add 0.5 to the count
Add 0.5 to all counts
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Analyzing a binary response, 2 × 2 tables Relative risks

Example: HIV vaccine (HIVvaccine.R)

> c.table <- array(data = c(51, 74, 8146, 8124), dim = c(2, 2),
dimnames = list(Trt = c("vaccine", "placebo"), Response = c("HIV",

"No HIV")))
> c.table

Response
Trt HIV No HIV

vaccine 51 8146
placebo 74 8124

> n1 <- sum(c.table[1, ])
> n2 <- sum(c.table[2, ])
> pi.hat1 <- c.table[1, 1]/n1
> pi.hat2 <- c.table[2, 1]/n2
> pi.hat1/pi.hat2

[1] 0.6892733

Article said “cut the risk of becoming infected with HIV by more than
31 percent”
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Analyzing a binary response, 2 × 2 tables Relative risks

Example: HIV vaccine (HIVvaccine.R)
> alpha <- 0.05
> var.log.RR <- 1/c.table[1, 1] - 1/n1 + 1/c.table[2, 1] - 1/n2
> RR.ci <- exp(log(pi.hat1/pi.hat2) + qnorm(p = c(alpha/2, 1 -

alpha/2)) * sqrt(var.log.RR))
> round(RR.ci, 2)

[1] 0.48 0.98

> rev(round(1/RR.ci, 2))

[1] 1.02 2.07

With 95% confidence,
HIV infection is between 0.48 and 0.98 times as likely for the vaccine
group than for the placebo group
the probability of HIV infection is between 0.48 and 0.98 times as large
for the vaccine group than for the placebo group

the vaccine reduces the probability of HIV infection by 2% to 52%
HIV infection is between 1.02 to 2.07 times as likely for the placebo
group than for the vaccine group
HIV infection is between 0.02 to 1.07 times more likely for the placebo
group than for the vaccine group
the probability of HIV infection is between 0.02 to 1.07 times larger for
the placebo group than for the vaccine group

27 / 39



Analyzing a binary response, 2 × 2 tables Relative risks

Example: HIV vaccine (HIVvaccine.R)
> alpha <- 0.05
> var.log.RR <- 1/c.table[1, 1] - 1/n1 + 1/c.table[2, 1] - 1/n2
> RR.ci <- exp(log(pi.hat1/pi.hat2) + qnorm(p = c(alpha/2, 1 -

alpha/2)) * sqrt(var.log.RR))
> round(RR.ci, 2)

[1] 0.48 0.98

> rev(round(1/RR.ci, 2))

[1] 1.02 2.07

With 95% confidence,
HIV infection is between 0.48 and 0.98 times as likely for the vaccine
group than for the placebo group
the probability of HIV infection is between 0.48 and 0.98 times as large
for the vaccine group than for the placebo group
the vaccine reduces the probability of HIV infection by 2% to 52%

HIV infection is between 1.02 to 2.07 times as likely for the placebo
group than for the vaccine group
HIV infection is between 0.02 to 1.07 times more likely for the placebo
group than for the vaccine group
the probability of HIV infection is between 0.02 to 1.07 times larger for
the placebo group than for the vaccine group

27 / 39



Analyzing a binary response, 2 × 2 tables Relative risks

Example: HIV vaccine (HIVvaccine.R)
> alpha <- 0.05
> var.log.RR <- 1/c.table[1, 1] - 1/n1 + 1/c.table[2, 1] - 1/n2
> RR.ci <- exp(log(pi.hat1/pi.hat2) + qnorm(p = c(alpha/2, 1 -

alpha/2)) * sqrt(var.log.RR))
> round(RR.ci, 2)

[1] 0.48 0.98

> rev(round(1/RR.ci, 2))

[1] 1.02 2.07

With 95% confidence,
HIV infection is between 0.48 and 0.98 times as likely for the vaccine
group than for the placebo group
the probability of HIV infection is between 0.48 and 0.98 times as large
for the vaccine group than for the placebo group
the vaccine reduces the probability of HIV infection by 2% to 52%
HIV infection is between 1.02 to 2.07 times as likely for the placebo
group than for the vaccine group
HIV infection is between 0.02 to 1.07 times more likely for the placebo
group than for the vaccine group
the probability of HIV infection is between 0.02 to 1.07 times larger for
the placebo group than for the vaccine group 27 / 39



Analyzing a binary response, 2 × 2 tables Relative risks

Example: HIV vaccine (HIVvaccine.R)
The twoby2() function from the Epi package produces the same
calculations

> library(package = Epi)
> twoby2(c.table, alpha = 0.05)
2 by 2 table analysis:
------------------------------------------------------
Outcome : HIV
Comparing : vaccine vs. placebo

HIV No HIV P(HIV) 95% conf. interval
vaccine 51 8146 0.0062 0.0047 0.0082
placebo 74 8124 0.0090 0.0072 0.0113

95% conf. interval
Relative Risk: 0.6893 0.4831 0.9834

Sample Odds Ratio: 0.6873 0.4805 0.9832
Probability difference: -0.0028 -0.0055 -0.0001

Asymptotic P-value: 0.0401
------------------------------------------------------
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Analyzing a binary response, 2 × 2 tables Odds ratios

Odds of a success
Rescaling of the probability of a success
(probability of a success)/(probability of a failure) = π/(1− π)
If π = 0.1, then odds = 0.1/(1− 0.1) = 1/9

“9-to-1 odds against” because the probability of failure is 9 times the
probability of success

Group 1: odds1 = π1/(1− π1)
Group 2: odds2 = π2/(1− π2)

Odds ratio

OR =
odds1
odds2

=
π1/(1− π1)
π2/(1− π2)

=
π1(1− π2)
π2(1− π1)

Interpretation
The odds of a success are OR times as large for group 1 than for group
2
The odds of a success are 1/OR times as large for group 2 than for
group 1
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Analyzing a binary response, 2 × 2 tables Odds ratios

Odds of a failure: (1− π)/π
Odds ratio:

(1− π1)/π1
(1− π2)/π2

=
π2(1− π1)
π1(1− π2)

=
1
OR

Interpretation:
The odds of a failure are 1/OR times as large for group 1 than for
group 2
The odds of a failure are OR times as large as for group 2 than for
group 1

What if OR = 1?
Odds ratio written in terms of expected counts

Expected number of successes: E (Wj) = njπj
Expected number of failures: nj − E (Wj) = nj(1− πj)
Odds of a success:

oddsj = πj/(1− πj)
= njπj/[nj(1− πj)]
= E (Wj)/[nj − E (Wj)]
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Analyzing a binary response, 2 × 2 tables Odds ratios

Contingency table
Response

1 2 Total

Group
1 w1 n1 − w1 n1
2 w2 n2 − w2 n2

MLE:

ÔR =
π̂1(1− π̂2)
π̂2(1− π̂1)

=
(w1/n1)[(n2 − w2)/n2]

(w2/n2)[(n1 − w1)/n1]
=

w1(n2 − w2)

w2(n1 − w1)

What if a cell count is 0? Possible ad-hoc solutions:

Add 0.5 to the count
Add 0.5 to all counts
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ÔR =
π̂1(1− π̂2)
π̂2(1− π̂1)

=
(w1/n1)[(n2 − w2)/n2]

(w2/n2)[(n1 − w1)/n1]
=

w1(n2 − w2)

w2(n1 − w1)

What if a cell count is 0? Possible ad-hoc solutions:

Add 0.5 to the count
Add 0.5 to all counts

31 / 39



Analyzing a binary response, 2 × 2 tables Odds ratios

Wald confidence interval

Normal approximation is better for log(ÔR) than for ÔR

Estimated variance

V̂ar(log(ÔR)) =
1
w1

+
1

n1 − w1
+

1
w2

+
1

n2 − w2

Problems when a cell count is 0

Interval for log(OR)

log
(
ÔR
)
± Z1−α/2

√
1
w1

+
1

n1 − w1
+

1
w2

+
1

n2 − w2

Interval for OR

exp

[
log
(
ÔR
)
± Z1−α/2

√
1
w1

+
1

n1 − w1
+

1
w2

+
1

n2 − w2

]
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ÔR
)
± Z1−α/2

√
1
w1

+
1

n1 − w1
+

1
w2

+
1

n2 − w2

]

32 / 39



Analyzing a binary response, 2 × 2 tables Odds ratios

Example: HIV vaccine (HIVvaccine.R)
> OR.hat <- c.table[1, 1] * c.table[2, 2]/(c.table[2, 1] * c.table[1,

2]) # w1*(n2-w2)/[w2*(n1-w1)]
> round(OR.hat, 2)

[1] 0.69

> alpha <- 0.05
> var.log.or <- 1/c.table[1, 1] + 1/c.table[1, 2] + 1/c.table[2,

1] + 1/c.table[2, 2] # 1/w1 + 1/(n1-w1) + 1/w2 + 1/(n2-w2)
> OR.CI <- exp(log(OR.hat) + qnorm(p = c(alpha/2, 1 - alpha/2)) *

sqrt(var.log.or))
> round(OR.CI, 2)

[1] 0.48 0.98

> rev(round(1/OR.CI, 2))

[1] 1.02 2.08
With 95% confidence,

the odds of contracting HIV are between 0.48 and 0.98 times as large
for the vaccine group than for the placebo group
the vaccine reduces the odds of HIV infection by 2% to 52%

the odds of contracting HIV are between 1.02 and 2.08 times as large
for the placebo group than for the vaccine group
the odds of being HIV free are between 1.02 and 2.08 times as large for
the vaccine group than for the placebo group
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Example: HIV vaccine (HIVvaccine.R)
The twoby2() function from the Epi package produces the same
calculations

Similar values for the relative risk and odds ratio here

OR = π1(1−π2)
π2(1−π1)

= RR
(

1−π2
1−π1

)
May not occur for other 2× 2 tables
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Conclusion Objectives

Apply appropriate methods to analyze data in a contingency table
State, interpret, and fit logistic, baseline-category, proportional odds,
and Poisson regression models
Use appropriate variable-selection methods
Evaluate the fit of categorical regression models
Identify and solve overdispersion problems
Be comfortable with using R to analyze categorical data
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R Index
array(), 40
binom package, 29
binom.confint(), 29
Bird.R, 40
ConfLevel4Intervals.R, 23, 24
ConfLevelTwoProb.R, 36
Corn.R, 28
Epi package, 58
HIVvaccine.R, 54, 73, 74
PropCIs package, 41
table(), 42, 43
twoby2(), 58
wald2ci(), 41
xtabs(), 42, 43
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