
Shiny.1

R Shiny

Shiny is a RStudio package that provides a web application frame-
work for R. It can be used to easily build interactive web applica-
tions with R. It is meant for R users with little to no experience
with web page development, and does not require HTML/CSS/-
JavaScript knowledge. With Shiny, we can create an interactive
web page that can communicate with R and display R objects
such as plots, tables, and calculations. Pretty much anything we
can do in R can be done through a Shiny app, and results can
be displayed nicely for users. The primary bene�t of a Shiny app
is the ability to share an R analysis with a non-statistician or
someone who has little to no experience with coding.
The purpose of this section is to walk through the steps of build-

ing a Shiny app using one of the datasets we've already explored
in this course. There are many additional features of Shiny that
will not be discussed in this section, but I encourage you to ex-
plore for yourself. You can always do a Google search for speci�c
features you want to add to a Shiny app, but there are a num-
ber of good tutorials for an overall introduction to the interface.
These notes are primarily based on Dean Attali's Shiny tutorial1,
with a little bit of information from Hadley Wickham's �Master-
ing Shiny� book2. Other good resources include the o�cial Shiny
tutorial from RStudio3, a tutorial and examples from Zev Ross4,
and the RStudio cheat sheet5. There are many examples of Shiny
apps available from Shiny users at http://ShowMeShiny.com.
All programs and data sets used for these notes are available
from the course website. New �les that we have not used be-
fore include Cooler.zip, Cooler_conditional.zip, Cooler_tabs.zip,

1https://deanattali.com/blog/building-shiny-apps-tutorial/
2https://mastering-shiny.org/
3https://shiny.rstudio.com/tutorial/
4http://zevross.com/blog/2016/04/19/r-powered-web-applications-with-shiny-a-tutorial-and-cheat-sheet-with-40-example-apps/
5https://rstudio.com/resources/cheatsheets/

http://ShowMeShiny.com

Shiny.2

dataset_app.zip, empty_app.zip, emtpy_app_separate.zip, uiOut-
put_example.zip, and ShinyExamples.R.

Shiny app basics

First, we need to install the shiny package in RStudio. Then we'll
run one of the demo apps to make sure Shiny was successfully
installed.
install.packages ("shiny")

library(shiny)

runExample ("01 _hello ")

Close the internet browser and press ESC to close the app. Now
we're ready to use Shiny!
A Shiny app is composed of two parts: a web page that displays

the app for the user, and a computer that runs R and powers the
app. The computer running the app can be a personal computer
(where you run the app in RStudio) or a server somewhere else.
For now, we'll run the apps in RStudio from a personal computer,
and later, we'll talk about how to share our app to a server.
In Shiny, these two parts are called the UI (user interface) and
server. The UI is a web document with HTML written by Shiny's
functions. It creates the layout of the app and tells Shiny where to
put things inside the app. The server tells the app what to show
when the user interacts with the app. In my example app, the UI
is responsible for creating the user inputs and telling Shiny where
to place controls and outputs such as plots and data tables, while
the server uses the inputs to actually create the plots or data
tables.

Our �rst Shiny app

All Shiny apps must incorporate the UI and server, and follow a
similar template. This template can be found in the app.R �le

Shiny.3

inside the empty_app folder.
library(shiny)

ui <- fluidPage ()

server <- function(input , output){}

shinyApp(ui = ui , server = server)

Notes:

• This template is actually a Shiny app by itself. It initializes an
empty UI and an empty server, and runs an app using these
parts.

• There should not be any code after the shinyApp(ui = ui,
server = server) line. This needs to be the last line in the
app.R �le.

• The �le must be saved as �app.R�. This allows RStudio to rec-
ognize it as a Shiny app. Once this happens, the Run botton
will change into a Run App button. (Note: We will run the
entire app and will not run individual lines of code in the R
console.) If you don't see the Run App button, you either
don't have Shiny installed or didn't name the �les properly.

• We can also use a keyboard shortcut to run the app: Cmd/Ctrl
+ Shift + Enter.

• It is best practice to place each app in its own folder without
other R scripts or �les. Only �les that are used by the app
should be included in this folder. The directory name is the
name of the app.

When we run the empty app, not much will happen because we
have not added anything to the UI or server. However, a stop
sign will appear in the top right corner of the console and the
console will display text like this:
> runApp('C:/Users/bhitt/Desktop/STAT 850/ Shiny/empty_app ')

Listening on http ://127.0.0.1:7799

Shiny.4

The web address in the console will match that of the web browser
that opens. 127.0.0.1 is a standard address that means �this com-
puter� and 7799 is a randomly assigned port number. Another
copy of this app can be opened by entering this URL into any com-
patible web browser on the same computer. We will no longer be
able to run commands in the console because R is busy running
the app and waiting for user interaction (once we add some Shiny
functions to the UI and server). To stop the app, click the stop
sign button or press ESC. Notice that when we click Run App,
RStudio runs the function shiny::runApp() in the console. We
can run that command instead of clicking the button, but must
not place the runApp() function inside the app code.
Another simple app is shown below and is available in the

dataset_app folder.
library(shiny)

ui <- fluidPage(

selectInput (" dataset", label = "Dataset",

choices = ls(" package:datasets ")),

verbatimTextOutput (" summary "),

tableOutput ("table ")

)

server <- function(input , output , session) {

output$summary <- renderPrint ({

dataset <- get(input$dataset , "package:datasets ")

summary(dataset)

})

output$table <- renderTable ({

dataset <- get(input$dataset , "package:datasets ")

dataset

})

}

shinyApp(ui = ui , server = server)

This app allows the user to choose a data set from those built in
to R and displays a summary of the data set chosen. We'll learn
more about the UI and server functions used to create this app
later.

Shiny.5

Notice that running an app in Shiny is a little di�erent than
running other code in R. When writing code in R, one can usually
run small portions of the code to debug and make adjustments.
This cannot be done with Shiny. The entire app must be run to
see if there are errors or changes that need to be made. If there is
an error, the app will most likely not run and the errors are not
always helpful. This may take some getting used to. The basic
process of developing a Shiny app involves writing some code,
starting the app, experimenting with the app, writing more code,
and so on. I �nd it is best to add one element at a time and then
run the app to check that everything works and appears as you
expect it to, at least until you get the hang of Shiny.

Using RStudio to create an app

We can create a Shiny app by creating a project in RStudio.

1. Open RStudio.

2. In the upper right corner of RStudio, you will see Project:
(None). Click this drop down arrow and choose New Project.

3. Under Create Project, choose New Directory.

4. Under Project Type, choose Shiny Web Application.

5. Under Create Shiny Web Application, provide a Directory
name (we'll use �newapp�) and tell R where you would like
the app to be saved on your computer. The folder can have
any name. It is best to choose a folder that does not include
other R scripts or �les that will not be used in the app. We
will typically not use packrat with these type of projects.

6. Click Create Project to �nish the process.

7. The app.R �le, located in the newapp directory on your com-
puter, will be created and opened in RStudio. This �le con-
tains the template for a Shiny app that displays a histogram

Shiny.6

of the Old Faithful Geyser Data and allows the user to change
the number of bins for the histogram.

The method above only allows us to create an app with a single
�le (app.R). Another method in RStudio (below) allows us choose
between a single �le or multiple �le app.

1. In the upper left corner of RStudio, click File > New File >
Shiny Web App...

2. Specify an application name, choose whether the app will con-
sist of a single �le or multiple �les, and specify the directory
you want the app created within (if desired).

3. Click Create to �nish the process.

4. The ui.R and server.R �les, located in the speci�ed directory
on your computer, will be created and opened in RStudio.
This template app is the same as that created in the �rst
process above.

There is also a shortcut in RStudio that can be used to create
an app template. Open a new script and save it as app.R. Then
type �shinyapp� and hit Shift + Tab on the keyboard to convert
the �le to an empty app template.
I personally don't use RStudio to create a template app, be-

cause it seems easier to simply type the few lines of code.

Using separate UI and server �les

Including code for the UI and server in a single �le is easy and
makes sense when we have a simple app. But Shiny apps can
easily get complex, and a single �le can sometimes be di�cult
to navigate. Another way to outline a Shiny app is by creating
separate UI and server �les, ui.R and server.R, that each contain
their own code. All the code that is assigned to the ui variable is

Shiny.7

placed in ui.R and the function assigned to the server variable is
placed in server.R, as shown below.
ui.R
fluidPage(

)

server.R
function(input , output , session){

}

Notes:

• The code in these �les is no longer assigned to a variable.

• The �ui.R� and �server.R� �les must be saved in the same
directory. This should be a new, isolated folder where there
are no other Shiny apps, R scripts, or �les other than those
that will be included in the app.

• If using this method, we do not include a call to shinyApp().
• We only need to open one of these �les for RStudio to recognize
the app and change the Run button to the Run App button.

I personally use the multiple �le format for apps, because it
seems much easier to keep the app appearance (ui.R) and logic
(server.R) separate.

Building the Cooler app

Go ahead and create a single �le app inside a folder called
�Cooler�. We'll be using the Cooler data set for our app. We
will need to download the CoolerReduced.csv �le and place this
�le in the same folder as the Shiny app.
Just after the line loading the shiny package, add a line in the

app to load the data into a variable called �cooler�. Make sure the
�le path and name are correct, or the app won't run. To make

Shiny.8

Figure 1: Title Only

sure that the app successfully reads the data, we can add a print
statement after reading the data. Our app should look like this:
library(shiny)

cooler <- read.csv(" CoolerReduced.csv", stringsAsFactors=FALSE)

print(head(cooler))

ui <- fluidPage ()

server <- function(input , output){}

shinyApp(ui = ui , server = server)

This will print the �rst six observations of the data set in the
console, but will not do anything in the Shiny app itself. Once
we con�rm that the data is loaded correctly, we can remove this
line.

Building the UI

Formatting text

The �rst step in writing a Shiny app is usually adding the visual
elements. We'll do this by adding elements to the UI. We can
render text by adding strings inside fluidPage(). We'll replace
the line in the app that assigns an empty fluidPage() in the UI
with the line below, and run the app (see Figure 1).
fluidPage (" Analyzing the Performance of Different Types of

Coolers", "and Coolants ")

Shiny.9

Our app will be built by passing comma-separated arguments
into the fluidPage() function. By passing regular text, the web
page will just render the strings as unformatted text. Adding
additional strings to fluidPage() will render the text in a con-
tiguous block.
Shiny uses functions that are wrappers around HTML tags to

create the UI. Many of these can be used to format text. We
can use h1() for a top-level header (<h1> in HTML), h2() for
a secondary header, and so on through h6(), where the higher
numbers are associated with smaller headers. We can also use
strong() for bold text and em() for italicized text. There are
other HTML wrappers such as p() for a paragraph, br() for a
line break, img() for an image, a() for a hyperlink, and more.
Additional HTML tags can be utilized by using the tags object
(e.g., tags$h1() or tags$br()), which you can learn more about
by reading the help �le on tags6. The most used tags are available
without the tags$ notation.
We'll run the app with the following code in our UI (see Figure

2).
fluidPage(h2(" Cooler Data"),

br(),

h4(" Analyzing the Performance of Different Types of",

"Coolers and Coolants to Improve Cold Chain

Transportation "),

br(),

p("The purpose of this", strong (" Shiny"),

"app is to perform and display the analysis of the

cooler",

"data obtained from Lowe et al."))

Note that the strong() function needs to be placed inside the
p() function in order for �Shiny� to appear in the same line as
the rest of the surrounding sentence. If we instead used strong()

6http://shiny.rstudio.com/articles/tag-glossary.html

Shiny.10

Figure 2: Formatted Text

outside of p(), �Shiny� would appear on a separate line. On your
own, experiment with di�erent text formatting.

Using a layout

Notice that by default the elements in the UI appear one right
after the other, on separate lines. There are many other lay-
outs available for Shiny apps7. An �o�cial� title can be spec-
i�ed at the top of the page in large text using titlePanel().
We can specify a single string that will act as both the app ti-
tle and the window title (the name of the browser tab), or we
can provide two arguments, one for each. A sidebar layout uses
sidebarPanel() and mainPanel() to create a sidebar for inputs
and a larger main space for outputs. A grid layout creates rows
through fluidRow() and columns through column(). The col-
umn widths can be speci�ed and should add up to 12 within each
row container. Content can be organized into separate tabs us-
ing tabsetPanel(). Tabs can be located above (default), below,
left, or right of the tab content. Another way to organize an app
is to use navlistPanel() to list navigation controls in a side-
bar rather than using tabs. To create distinct pages in the app,
one can use navbarPage(). The navigation bar appears at the

7http://shiny.rstudio.com/articles/layout-guide.html

Shiny.11

Figure 3: Examples of Layouts

top of the page and each page can have its own sidebar, tabset,
or other layout. A second level of navigation can be added to a
navbarPage() using navbarMenu(). These layouts can also be
layered to create a unique layout. For example, we could create
a sidebar layout, with a navigation list in the side panel and a
tabset panel in the main panel. Figure 3 shows examples of a side-
bar layout (upper left), a grid layout (upper right), a page with
a navigation bar (lower left), and a custom layout with sidebar,
navigation list, and tabsets (lower right).
For our Cooler Data app, we'll add an app title and a di�erent

window title. We'll keep the h4() header we used before and add
a sidebar layout below it with some simple text in each part. Our
fluidPage() function should now look like this (see Figure 4):
fluidPage(titlePanel ("My STAT850 Shiny app", "Cooler Data"),

h4(" Analyzing the Performance of Different Types of",

"Coolers and Coolants to Improve Cold Chain

Shiny.12

Transportation "),

br(),

p("The purpose of this", strong (" Shiny"),

"app is to perform and display the analysis of the

cooler",

"data obtained from Lowe et al."),

sidebarLayout(

sidebarPanel(

"Our inputs will go here"

),

mainPanel(

"The results will go here"

)

)

)

Figure 4: Cooler app with side bar

Remember that all components in the UI need to be separated
by commas, and all components within the sidebarPanel() or
within the mainPanel() need to be separated by commas. We
can use plain text strings or we can use formatted text (using
di�erent levels of headers or paragraphs) in each part of the app.
To once again illustrate that the Shiny functions are simply

HTML wrappers, we can use print(ui) in our app (outside the

Shiny.13

UI and server) to display the background HTML created by our
Shiny functions.
> runApp('C:/Users/bhitt/Desktop/STAT 850/ Shiny/Cooler ')

<div class ="container -fluid">

<h2 >My STAT850 Shiny app </h2 >

<h4 >

Analyzing the Performance of Different Types of

Coolers and Coolants to Improve Cold Chain Transportation

</h4>

<p>

The purpose of this

Shiny

app is to perform and display the analysis of the cooler

data obtained from Lowe et al.

</p>

<div class ="row">

<div class ="col -sm -4">

<form class="well">Our inputs will go here </form >

</div >

<div class ="col -sm -8">The results will go here </div >

</div >

</div >

Adding inputs

To interact with the user, an app needs inputs and out-
puts. Shiny provides input functions that support various kinds
of interactions between the user and the app. Inputs are
added using *Input() functions. We can use textInput()
or textAreaInput() to allow the user to enter text, or
numericInput() to allow the user to select a number. Users
can select a date with dateInput() or dateRangeInput().
Users can select an option from a dropdown menu using
selectInput() or from a list using radioButtons(). An app
can provide check box inputs using either checkboxInput() or
checkboxGroupInput(). Another option is a sliderInput()

Shiny.14

which allows users to use either a one-sided or two-sided nu-
meric slider. Other input options include actionButton(),
colourpicker::colourInput(), fileInput(), and passwordInput().
All input functions use an inputId, the name of the input that

Shiny uses to retrieve its value, and label, the text displayed as
the label for the input widget. Each input must have a unique
inputId. Input functions also have other arguments speci�c to
the input type. For example, you'll need to specify a minimum
value, maximum value, and default value for a numeric slider. We
can optionally specify a pre�x for the slider input too. To learn
more about the required arguments for an input, we can simply
use ?sliderInput() or similar.
We'll add a dropdown menu that will allow the user to choose

the type of cooler to analyze. We'll need to allow for three types
of coolers: injection molded, rotomolded, and PS foam. We'll
add the following code inside our sidebarPanel() function (see
Figure 5):
selectInput(inputId =" coolertype", label =" Cooler Type",

choices=c(" Injection_molded", "Rotomolded",

"PS_foam "),

selected=NULL)

Note that the inputId must be a string. The selected op-
tion allows us to make a default choice for the input. This code
does not provide a default choice for the drop down menu. Use
?selectInput to �nd out about other options.

Add placeholders for output

Now that we've created an input, we want to add components
to the UI that will display the outputs. Outputs can be any
object created by R that we want to display, such as text, a
table, or a plot. Since we're still building the UI, we're only
adding placeholders for the outputs. These will determine what
the output ID is and where it will be located, but no output will

Shiny.15

Figure 5: Cooler app with selectInput()

be displayed yet. The outputs will be constructed in the server
code later.
Shiny provides many output functions, one for each type of

output. Most of these mirror the input functions and are added
using *Output() functions. The *Output() functions are used
in the UI to hold a place for the output and the matching
render*() function is used in the server to actually create the
output. Similar to the input functions, all the output func-
tions have an outputId that identi�es the output. This ID
must be unique for each output or the app will not behave
properly. We can render data tables with dataTableOutput()
+ DT::renderDataTable(). Tables can also be added with
renderTable() + tableOutput(). Images can be rendered
with renderImage() + imageOutput() and plots can be ren-
dered with renderPlot() + plotOutput(). Code output (like
what we would see in the R console) can be displayed us-
ing renderPrint() + verbatimTextOutput() and text out-
put can be added using renderText() + textOutput(). UI
output (which we'll mention later) can be contributed using
renderUI()+ uiOutput() or htmlOutput(). For more infor-

Shiny.16

mation on each type of output, use ?uiOutput or similar.
In the main panel, we'll display the results. We'll have some

text that states the estimated linear regression model, R2 value,
and adjusted R2 value. Since we want text, the function we use
is textOutput(). We'll use one text output for the estimated
model and one for the r-squared values. Add the following code
into the mainPanel() (replacing the existing text):
textOutput (" estmodel "),

br(),

textOutput (" rsquared ")

Below the text output, we will have a plot of the estimated
regression model with prediction interval bands. To pro-
duce a plot, we'll use the plotOutput() function. We'll add
plotOutput(�fitplot�) into the mainPanel(), just below the
text output. We'll also use br() to add a line break between
the two outputs, so that they don't appear too close to each
other. Below the plot, we will have a table of the predicted
values and intervals for the number of water bottles. A sim-
ple way to create a UI element that will hold a table out-
put is tableOutput(�predictions�). Add this output to the
mainPanel() below the plot output. The mainPanel() should
look like this:
mainPanel(

textOutput (" estmodel "),

br(),

textOutput (" rsquared "),

br(),

plotOutput (" fitplot "),

br(),

tableOutput (" predictions ")

)

Nothing will change when we run the app, but we now have place-
holders for all of the outputs. To illustrate the fact that we are still
just constructing HTML and not creating the actual results, run

Shiny.17

the textOutput(), plotOutput(), and tableOutput() func-
tions in the console to see that it simply creates HTML.

Implementing server logic

So far we have only added code to the ui variable. Now we need
to write code for the server function, which will be responsible
for taking into account the inputs and creating outputs to dis-
play in the app. That is, the server function will tell the server
how to render the outputs with R. The server function has two
primary arguments: input and output. These arguments must
be de�ned! The input argument is a list that we will read values
from and contains the values of all the di�erent inputs we cre-
ated in the UI. The output argument is a list that we will write
values to and is where we will save our output objects (such as
tables and plots) to display in the app. We will refer to the nec-
essary inputs with input$<inputId> and refer to outputs with
output$<outputId>.
The third (and optional) argument for the server function is

session. The session argument needs to be de�ned when we
want to use functions that need to access the session. For ex-
ample, update*Input() functions can update input values pro-
grammatically and would need to access the session to update the
inputs. We would also need to access the session to add popover
text, text bubbles that pop up to provide more information for
the user, either for inputs or for displayed results. You can learn
more about this with ?shiny::session.

Building an output

We created four output placeholders: estmodel (text output),
rsquared (text output), �tplot (a plot), and predictions (a ta-
ble). We need to write code in R that will tell Shiny what kind
of text, plot, or table to display. To build an output in Shiny, we

Shiny.18

will follow three rules:

1. Save the output object to the output list (this is the output
argument in the server function).

2. Build the output object using a render*() function, where
* is the type of output. Text output will be created using
renderText(), a plot will be created using renderPlot(),
and a table will be created using renderTable().

3. Access input values using the input list (this is the input
argument in the server function). This is only required if we
want the output to depend on some input.

Let's �rst see how to build a very basic text output using only
the �rst two rules. We'll create some text and send it to the
estmodel output.
output$estmodel <- renderText ({

HTML(paste0 ("The estimated linear regression model for ",

"coolers is estimated time = intercept +

beta*water_bottles ."))

})

This code shows the �rst two rules: we're creating text inside
the renderText() function and assigning it to estmodel in the
output list. Now we see why every output created in the UI must
have a unique ID. In order to attach an R object to an output
with ID x, we assign the R object to output$x.
Since estmodel was de�ned as a textOutput, we must use the

renderText function, and we must create a text string inside the
renderText function. If we add the code above inside the server
function, we will see the text output in the main panel of the app
(see Figure 6).

Making an output react to an input

Now we'll make the text output a little more sophisticated. In-
stead of always displaying the same text output, let's use the

Shiny.19

Figure 6: Simple text output

cooler type selected by the user. It still doesn't provide a whole
lot of useful information, but this is an example that will help us
learn how to make an output depend on an input.
output$estmodel <- renderText ({

HTML(paste0 ("The estimated linear regression model for ",

input$coolertype ,

" coolers is estimated time = intercept +

beta*water_bottles ."))

})

Replace the previous code in the server function with the code
above and run the app. Whenever we choose a new cooler type in
the drop down menu, the text will update with the appropriate
cooler type. Notice that the only thing di�erent in the code is the
addition of input$coolertype in the text output (see Figure 7).
All of the inputs de�ned in the UI are saved in the variable

input and input$coolertype returns a string containing the
name of the cooler type speci�ed by the user. Whenever the user
selects a di�erent cooler type from the drop down menu, the value

Shiny.20

Figure 7: Reactive text output

of input$coolertype is updated and whatever code relies on it
gets re-evaluated. This is a concept known as reactivity, which
we will discuss next.

Creating and accessing reactive variables

We don't just want our outputs to refer to an input. Instead,
we want to estimate the linear regression model and then refer
to those results in our outputs. To accomplish this, we need to
take advantage of Shiny's reactivity. The reactive programming
in Shiny is what allows the outputs to �react� to changes in the
inputs. At a very basic level, this means that when the value
of an input changes, anything that relies on that input gets re-
evaluated. This is very di�erent from what we are used to in
R.
Only reactive variables work this way and all Shiny inputs are

automatically reactive variables. This is why we can use input$x
in render functions and be assured that any output that depends
on x will use the updated value of x whenever x is altered. By

Shiny.21

accessing the value of a reactive variable (such as an input), the
current code block becomes �dependent� on that variable. The
text output we created above accesses input$coolertype. This
means that this code block depends on this input variable, so
whenever it is updated, the code gets re-executed with the new
input value and output$estmodel is updated.
It is important to note that reactive variables can only be ac-

cessed inside reactive contexts. Any render* function is a re-
active context, so we can always access inputs or other reactive
variables inside render functions. But if we try to use the cooler
type input value in the server function, outside a reactive context,
the app won't work properly. Add print(input$coolertype)
inside the server function outside of a render function. You should
get the following error:
Error in .getReactiveEnvironment () $currentContext () :

Operation not allowed without an active reactive context. (You

tried to do something that can only be done from inside a

reactive expression or observer .)

Shiny tells us that we are trying to use a reactive vari-
able outside a reactive context. To �x this, we can
use the observe({}) or reactive({}) functions. The
observe({}) function allows us to access the input vari-
able. If we replace print(input$coolertype) with observe({
print(input$coolertype) }), the app should run prop-
erly. Notice that the observe({}) statement �depends� on
input$coolertype, so this code will be re-evaluated and the
new value will be printed whenever we change the cooler type in
the drop down menu. Because we can't run the code in our app
line by line, this can be a useful debugging technique to �gure
out what value is held by a reactive variable.
We can also create our own reactive variables using the

reactive({}) function. It is similar to observe({}) in that
it is a reactive context, but reactive({}) returns a value. This

Shiny.22

will allow us to create new variables in the server function. This
can be particularly helpful when you �nd yourself using the same
code in a couple di�erent places (e.g., we would need to create a
subset of the cooler data set based on the cooler type and use this
for estimating the linear regression model and plotting the data).
Let's create a variable called subset that will be the subset of the
cooler data set, based on the cooler type speci�ed by the user. If
we simply de�ne subset <- cooler[cooler$cooler_type ==
input$coolertype,] in the server function, we'll see the same
error about being outside a reactive context. Since we want to
assign a value, we can use the reactive({}) function to de�ne
subset. Add the following line to the server:
subset <- reactive ({

cooler[cooler$cooler_type == input$coolertype ,]

})

Now the app will run and we can access the subset of the cooler
data set. To access a reactive variable de�ned with the
reactive({}) function, we must add parentheses after
the variable name, as if it is a function. Unfortunately,
Shiny does not provide speci�c or helpful errors if we try to ac-
cess a custom reactive variable without the parentheses, so it is
very important to remember this. Shiny's reactivity is a complex
concept to comprehend. Once you understand the basics of re-
activity, it is a good idea to read more advanced documentation
describing reactivity, such as RStudio's tutorial8. First, we'll save
the subset of the data so that we can easily access it. Next, we'll
estimate the linear regression model as shown below.
modfit <- reactive ({

lm(formula = time ~ water_bottles ,

data = subset ())

})

Finally, we'll save the summary of the �tted model so that we can
8http://shiny.rstudio.com/articles/execution-scheduling.html

Shiny.23

access the r-squared values.
sumfit <- reactive ({

summary(modfit ())

})

Add the code for all three of these reactive variables to the server
before any outputs are created.

Creating the text, plot, and table outputs

Now that we have all the necessary reactive variables, we can
update the text output in the server function using the code
below:
output$estmodel <- renderText ({

HTML(paste0 ("The estimated linear regression model for ",

input$coolertype ,

" coolers is estimated time = ",

format(round(sumfit () $coefficients [1,1], 2),

nsmall =2), " + ",

format(round(sumfit () $coefficients [2,1], 2),

nsmall =2), "water_bottles ."))

})

Next we'll create the text output for the r-squared values. Add
the code below to the server function after output$estmodel.
output$rsquared <- renderText ({

HTML(paste0 ("The r-squared value is ",

format(round(sumfit ()$r.squared , 2), nsmall =2),

" and the adjusted r-squared value is",

format(round(sumfit ()$adj.r.squared , 2),

nsmall =2), "."))

})

Now we want to build a scatter plot for time vs. the number
of water bottles, with the estimated regression model and 95%
prediction interval bands included. We'll use renderPlot() and
code from the answer key for assignment #5 to create the scat-
ter plot. Add the following code to the server function after
output$rsquared.

Shiny.24

output$fitplot <- renderPlot ({

plot(x = subset () $water_bottles ,

y = subset ()$time ,

xlab = "Water bottles", ylab = "Time",

main = "Time vs. Water bottles",

xlim = c(min(subset () $water_bottles),

max(subset () $water_bottles)),

ylim = c(0, max(ceiling(subset ()$time /10) *10) *1.1),

col = "red", pch = 1, cex = 1, lwd = 2,

panel.first = grid())

curve(expr = predict(object = modfit (), newdata =

data.frame(water_bottles = x)),

col = "blue", add = TRUE , lwd = 2,

xlim = c(min(subset () $water_bottles),

max(subset () $water_bottles)))

curve(expr = predict(object = modfit (), newdata =

data.frame(water_bottles = x),

interval = "prediction", level = 0.95)[,2],

col = "blue", add = TRUE , lwd = 2, lty = "dashed",

xlim = c(min(subset () $water_bottles),

max(subset () $water_bottles)))

curve(expr = predict(object = modfit (), newdata =

data.frame(water_bottles = x),

interval = "prediction", level = 0.95)[,3],

col = "blue", add = TRUE , lwd = 2, lty = "dashed",

xlim = c(min(subset () $water_bottles),

max(subset () $water_bottles)))

})

Finally, we want to display a table of predicted values and
their intervals. We'll use the code from assignment #5 and the
renderTable() function. Add the following code to the server
after output$fitplot and run the app.
output$predictions <- renderTable ({

data.frame(water_bottles =

min(subset () $water_bottles):max(subset () $water_bottles),

round(predict(object = modfit (),

newdata = data.frame(water_bottles =

min(subset () $water_bottles):max(subset () $water_bottles)),

interval = "prediction", levels =

Shiny.25

0.95) , 2))

})

If we change the cooler type in the drop down menu, we should
see that the values in the text output, the plot, and the table all
update.
We've now successfully created an interactive app! The results

are changing according to user selections. The �nal app should
look like this if you were following along (see Figure 8):
library(shiny)

cooler <- read.csv(" CoolerReduced.csv", stringsAsFactors=FALSE)

ui <- fluidPage(titlePanel ("My STAT850 Shiny app", "Cooler

Data"),

h4(" Analyzing the Performance of Different Types

of",

"Coolers and Coolants to Improve Cold Chain

Transportation "),

br(),

p("The purpose of this", strong (" Shiny"),

"app is to perform and display the analysis of

the cooler",

"data obtained from Lowe et al."),

sidebarLayout(

sidebarPanel(

selectInput(inputId =" coolertype",

label =" Cooler Type",

choices=c(" Injection_molded",

"Rotomolded", "PS_foam "),

selected=NULL)

),

mainPanel(

textOutput (" estmodel "),

br(),

textOutput (" rsquared "),

br(),

plotOutput (" fitplot "),

br(),

tableOutput (" predictions ")

)

Shiny.26

)

)

server <- function(input , output){

subset <- reactive ({

cooler[cooler$cooler_type == input$coolertype ,]

})

modfit <- reactive ({

lm(formula = time ~ water_bottles ,

data = subset ())

})

sumfit <- reactive ({

summary(modfit ())

})

output$estmodel <- renderText ({

HTML(paste0 ("The estimated linear regression model for ",

input$coolertype ,

" coolers is estimated time = ",

format(round(sumfit () $coefficients [1,1], 2),

nsmall =2), " + ",

format(round(sumfit () $coefficients [2,1], 2),

nsmall =2), "water_bottles ."))

})

output$rsquared <- renderText ({

HTML(paste0 ("The r-squared value is ",

format(round(sumfit ()$r.squared , 2), nsmall =2),

" and the adjusted r-squared value is ",

format(round(sumfit ()$adj.r.squared , 2),

nsmall =2), "."))

})

output$fitplot <- renderPlot ({

plot(x = subset () $water_bottles ,

y = subset ()$time ,

xlab = "Water bottles", ylab = "Time",

main = "Time vs. Water bottles",

xlim = c(min(subset () $water_bottles),

max(subset () $water_bottles)),

ylim = c(0, max(ceiling(subset ()$time /10) *10) *1.1),

col = "red", pch = 1, cex = 1, lwd = 2,

panel.first = grid())

curve(expr = predict(object = modfit (), newdata =

Shiny.27

data.frame(water_bottles = x)),

col = "blue", add = TRUE , lwd = 2,

xlim = c(min(subset () $water_bottles),

max(subset () $water_bottles)))

curve(expr = predict(object = modfit (), newdata =

data.frame(water_bottles = x),

interval = "prediction", level =

0.95)[,2],

col = "blue", add = TRUE , lwd = 2, lty = "dashed",

xlim = c(min(subset () $water_bottles),

max(subset () $water_bottles)))

curve(expr = predict(object = modfit (), newdata =

data.frame(water_bottles = x),

interval = "prediction", level =

0.95)[,3],

col = "blue", add = TRUE , lwd = 2, lty = "dashed",

xlim = c(min(subset () $water_bottles),

max(subset () $water_bottles)))

})

output$predictions <- renderTable ({

data.frame(water_bottles =

min(subset () $water_bottles):max(subset () $water_bottles),

round(predict(object = modfit (),

newdata = data.frame(water_bottles

= min(subset () $water_bottles):

max(subset () $water_bottles)),

interval = "prediction",

levels = 0.95) , 2))

})

}

shinyApp(ui = ui , server = server)

Advanced topics

Using uiOutput() to create UI elements dynamically

One of the available output functions we didn't use is
uiOutput(). This output allows us to render more UI, which
can be extremely useful. It is usually utilized to create inputs

Shiny.28

Figure 8: Final cooler app

dynamically from the server, but can be used to create any UI
element. Any input de�ned in the UI is created when the app
starts and cannot be changed. But what if one of the inputs de-
pends on another input? We may want to be able to create an
input dynamically using uiOutput(). The output, which is a UI
element in this case, is de�ned using the renderUI() function in
the server.
As a basic example, consider the uiOutput_example app. Run

the app and you will see that whenever you change the value of
the numeric input, the slider input is re-generated with a new
maximum value (see Figure 9).
library(shiny)

ui <- fluidPage(

numericInput ("num", "Maximum slider value", 5),

uiOutput (" slider ")

)

server <- function(input , output){

output$slider <- renderUI ({

sliderInput (" slider", "Slider", min = 0,

max = input$num , value = 0)

})

}

Shiny.29

shinyApp(ui = ui , server = server)

Figure 9: uiOutput() example

Conditionally show UI elements

We can use conditionalPanel() to display a UI element based
on a simple condition. This condition can be as simple as the
value of another input. Let's add a check box input to our app,
allowing the user to specify which analyses to perform. We'll use
a conditionalPanel() to display the output depending upon
whether the box for that analysis is checked or not. Try adding
the check box input to the side bar with the following code:
checkboxGroupInput(inputId =" analysis", label=" Analyses to

Perform",

choiceNames=c(" Linear regression", "R-squared

values",

"Plot the estimated regression

model",

"Calculate predicted values "),

choiceValues=c(1, 2, 3, 4),

selected=1, inline=FALSE)

Notice that we can provide choiceNames to be displayed for each
check box and choiceValues to be used as the values for each
check box within the app code. We could have used the choices
argument instead, which would provide a single set of labels to
be used for both choiceNames and choiceValues.
Now we can condition on this input. The �rst argument for

Shiny.30

conditionalPanel() is the condition to be evaluated. This is
speci�ed inside double quotes and inputs are referred to using
input.inputId rather than input$inputId. The other argu-
ment is the set of elements to include in the panel if the con-
dition is true. You can learn more with ?conditionalPanel.
We'll use conditionalPanel() to display the analyses only if
the appropriate box is checked. Because we are conditioning on a
checkboxGroupInput, we have to use JavaScript (.includes to
check if the input.analysis string contains a certain element)
inside the condition. Replace the code in the mainPanel() with
the code below and run the app.
conditionalPanel(condition = "input.analysis.includes ('1')",

textOutput (" estmodel "),

br()),

conditionalPanel(condition = "input.analysis.includes ('2')",

textOutput (" rsquared "),

br()),

conditionalPanel(condition = "input.analysis.includes ('3')",

plotOutput (" fitplot "),

br()),

conditionalPanel(condition = "input.analysis.includes ('4')",

tableOutput (" predictions "))

The app now displays only the analyses for which the appro-
priate box is checked. I have commented out some code for
renderPrint() in the server and verbatimTextOutput() in
the UI that I used to �gure out how the input.analysis
variable was formatted before writing the conditions for the
conditionalPanel() code (see Figure 10).

Multiple tabs in the UI

Because we have three di�erent types of outputs (text, plot, and
table), we could remove the conditional panels and organize the
outputs into separate tabs. The mainPanel() would look like
this:

Shiny.31

Figure 10: conditionalPanel() example

mainPanel(

tabsetPanel(

tabPanel ("Model",

textOutput (" estmodel "),

br(),

textOutput (" rsquared ")),

tabPanel ("Plot",

plotOutput (" fitplot ")),

tabPanel ("Table",

tableOutput (" predictions "))

)

)

Try running the app.R �le in the Cooler_tabs folder (see Figure
11). Learn more with ?tabsetPanel or ?navbarPage (another
similar layout).

Remove a dependency on a reactive variable

When we have multiple reactive variables inside a reactive con-
text, the whole code block will get re-executed whenever any of
the reactive variables change. If we want to suppress this be-
havior and make it so that a reactive variable is not a depen-
dency, we can wrap the code that uses that variable inside the
isolate() function. Any reactive variables inside the isolate()
function will not result in the code re-executing when their value

Shiny.32

Figure 11: Cooler app with tabsets

is changed. This can also be helpful if we want to add a submit
button. The isolate() function will allow us to remove depen-
dencies so that a block of code is not re-executed until the submit
button is clicked. Learn more about this behavior with ?isolate.

Validate input values

If we want to ensure that an input has a certain property, we can
use the validate() function. This function allows us to check
that a text input has a keyword included or that a numeric input
is between two values. We can also use the validate() function
to produce error messages in the app if the input does not meet
our criterion.

Optional app �les

Aside from app.R (or ui.R and server.R for a multiple-�le app),
there are a few optional �les that can be included in the app
directory. The global.R �le is an optional �le that de�nes objects
that we want to be available to both ui.R and server.R. This could
include data sets or functions that we want globally de�ned. In
our cooler app, we could save the UI code in ui.R, the server
code in server.R, and the code to read in the cooler data set in
global.R. We could also write a function to create the plot and
save it in global.R so that it is available to the app.

Shiny.33

Other �les included in the app directory might include data
(like the cooler data .csv �le) or scripts. A directory of �les to be
shared with web browsers can also be included. This folder must
be named �www� and might include images, CSS, .js, etc. An
image can be linked to using img(src = �<�le name>�) once it is
saved in the www directory. JavaScript and CSS �les can also be
included. If you know JavaScript or CSS, these can help improve
the appearance of the app. There are optional DESCRIPTION
and README �les that can be included in the app directory too.

Add-on packages

The use of the tableOutput() + renderTable() functions re-
sult in a static, plain-looking table. We can download the DT pack-
age and use DT::dataTableOutput + DT::renderDataTable()
to create nicer looking, interactive tables. Learn more on DT's
website9.
The shinyjs package easily improves the user interaction and

experience by allowing us to use common JavaScript operations
in our app. The shinyBS package allows us to add popovers and
tooltips, helpful text hints that provide more information to the
user when the mouse hovers over an input or displayed results.
The shinythemes package allows us to easily alter the ap-

pearance of our app by providing more than 15 prefabricated
visual themes to choose from. It also allows the use of a
themeSelector() function, where we can open our app and in-
teractively switch between the available themes to test the ap-
pearance in context. The shinydashboard package allows us
to easily create dashboards, a type of organization/visual layout
with a header, sidebar and body.
Other useful packages include leaflet for interactive maps and

ggvis for interactive, web-based plots that are an improvement
9https://rstudio.github.io/DT/

Shiny.34

over the ggplot2 package.

Share your app

So far, we've been running Shiny locally on our computers, which
means your computer was powering the app. This also means
that the app was not available to anyone on the internet. To
share your app, you can send all the necessary �les via a .zip
folder to any interested party, or you need to host it on a server.

1. Host your app on shinyapps.io, a cloud-based service from
RStudio.

(a) You can create a free or professional account at https:
//shinyapps.io. The main di�erences in the types of ac-
counts are the number of apps you are allowed to host and
the number of times you are allowed to have your app run
per month. Even the free account provides some basic stats
about the use of your app.

(b) Click the Publish Application icon in RStudio or run
rsconnect::deployApp(�<path to directory>�) and
follow the instructions. You might need to login and/or
install a couple of packages the �rst time you try to pub-
lish.

(c) Once the app is successfully published, you'll be redirected
to your app in the internet browser and care share the URL
with colleagues, family, friends, or whoever.

2. Build or purchase your own private Shiny server. This pro-
vides a lot more freedom and �exibility, but requires you to
have and administer your own server.

https://shinyapps.io
https://shinyapps.io

