
Intro.1

Introduction to R

Much of the content here is from Appendix A of my Analy-
sis of Categorical Data with R book (www.chrisbilder.com/
categorical). All R code is available in AppendixInitialExam-
ples.R from my course website.

Background
R is a statistical software package that shares many similari-
ties with the statistical programming language named S. A pre-
liminary version of S was created by Bell Labs in the 1970s
that was meant to be a programming language like C but for
statistics. John Chambers was one of the primary inventors
for the language, and he won the Association for Computing
Machinery Award in 1999 for it. A nice video interview with
John Chambers about the early days of S is available at https:
//www.youtube.com/watch?v=jk9S3RTAl38.
By the 1980s, the popularity of S was growing outside of Bell

Labs. This led to Statistical Sciences Inc. creating the S-Plus soft-
ware package based on S in 1988 and then selling it to users. In
1993, Statistical Sciences merges with a company named Math-
soft and buys the exclusive license to market S. This prevents
anyone from obtaining a free version from Bell Labs. After fur-
ther company merges, S-Plus now resides with Tibco Software
Inc.
New Zealand-based researchers, Ross Ihaka and Robert Gentle-

man, started to develop a new free software package named R that
was “not unlike S” in the mid-1990s. They published a paper on R
in the Journal of Computational and Graphical Statistics in 1996.
Version 1.0.0 of R was released on February 29, 2000. Since this
time, the use of R has skyrocketed. Interesting historical notes
about it include:

Intro.2

• 2001: I first hear about R early this year!
• 2004: The first UseR! conference is held, and the non-profit
R Foundation is formed. The conference is now held annually
with its location alternating between the US and Europe each
year.

• 2004: During a Joint Statistical Meetings (JSM) session that
I attended, a SPSS executive says his company and other sta-
tistical software companies have felt R’s impact and they are
changing their business model.

• 2004: Version 2.0.0 was released.
• 2007: Revolution Analytics was founded to sell a version of R
that focuses on big data and parallel processing applications;
the company was purchased by Microsoft in 2015.

• 2008: The editor for the Journal of the American Statistical
Association says during a JSM presentation that R has be-
come the de facto statistical software package for researchers.

• 2009: A New York Times article “Data Analysts Captivated
by R’s Power” is published on January 6.1 The article contains
the now famous quote by Anne Milley of SAS:

I think it addresses a niche market for high-end data
analysts that want free, readily available code. We have
customers who build engines for aircraft. I am happy
they are not using freeware when I get on a jet.

Milley later says that she should not have made the airplane
comment. SAS starts promoting its ability to call R programs
from proc iml later this same year.

• 2009: The first issue of the R Journal (http://journal.
r-project.org) is published in May, and it replaces “R
News”.

1http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?_r=3&emc=eta1

Intro.3

• 2013: Version 3.0.0 was released.
• 2015: The R Consortium is founded to support the R Foun-
dation (https://www.r-consortium.org).2

Note that Chambers (2010) and Venables and Ripley (2000) pro-
vided much of the pre-2000 history above.

Installation
The R installation file for Windows can be downloaded from the
Comprehensive R Archive Network (CRAN) at http://cran.
r-project.org/bin/windows/base. Select the “Download R
3.*.* for Windows” link. You can simply execute the file on your
computer to install (all the installation defaults are o.k. to use).
Both a 32-bit and 64-bit version of R will be installed.

Basics
The R Console window is where commands are typed.

2http://blog.revolutionanalytics.com/2015/06/r-consortium.html

Intro.4

The Console can be used like a calculator. Below are some exam-
ples:
> 2 + 2
[1] 4
> qchisq(0.95, 1)
[1] 3.841
> pnorm(1.96)
[1] 0.975
> (2 - 3)/6
[1] -0.1667
> 2^2
[1] 4
> sin(pi/2)
[1] 1
> log(1)

Intro.5

[1] 0
> 1 > 2
[1] FALSE
> 2 > 1
[1] TRUE

Results from these calculations can be stored in an object. The
combination of a less than sign and a dash as <- is used to make
the assignment and is read as “gets”.
> save <- 2 + 2
> save
[1] 4

The objects are stored in R’s database. When you close R you
will be asked if you would like to save or delete them. This is
kind of like the SAS WORK library, but R gives you the choice
to save them. To see a listing of the objects, you can do either of
the following:
> ls()
[1] "save"
> objects()
[1] "save"

To delete an object, use rm() and insert the object name in the
parentheses.

Functions
R performs calculations using functions. For example, the
qchisq() and the pnorm() commands used earlier are functions.
Writing your own function is fairly simple. For example, suppose
you want to write a function to calculate the standard deviation.
Below is an example where 5 observations are saved to an object
using the concatenate or combine function c(). A function called

Intro.6

sd2() is written to find the standard deviation simply by using
the square root of the variance. The sd2 object is now stored in
the R database.
> x <- c(1, 2, 3, 4, 5)
> sd2 <- function(numbers) {

sqrt(var(numbers))
}

> sd2(x)
[1] 1.581

Note that there already is a function in R to calculate the stan-
dard deviation, and this function is sd().
When a function has multiple lines of code in it, the last line

corresponds to the returned value. For example,
> x <- c(1, 2, 3, 4, 5)
> sd2 <- function(numbers) {

cat("Print the data \n", numbers, "\n")
sqrt(var(numbers))

}
> save <- sd2(x)
Print the data
1 2 3 4 5

> save
[1] 1.581

Note that the cat() function is used to print text and the \n
character tells R to go to a new line.

Help
To see a listing of all R functions which are “built in”, open the
Help by selecting Help > HTML Help from the main R menu
bar.

Intro.7

Under Reference, select the link called Packages. All built
in R functions are stored in a package.

Intro.8

We have been using functions from the base and stats pack-
age. By selecting stats, you can scroll down to find help on the
pnorm() function. Note the full syntax for pnorm() is

pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p =
FALSE)

The q value corresponds to the 1.96 that was entered earlier.
Then
> pnorm(1.96)
[1] 0.975
> pnorm(q = 1.96)
[1] 0.975
> pnorm(q = 1.96, mean = 0, sd = 1)
[1] 0.975

Intro.9

all produce the same results. The other entries in the function
have default values set. For example, R assumes you want to
work with the standard normal distribution by assigning mean =
0 and sd = 1 (standard deviation).
If you know the exact name of the function, simply type

help(<function name>) at the R Console command prompt to
open its help. For example, help(pnorm) results in

Using R functions on vectors
Many R functions are set up to work directly on vectors. For
example,
> pnorm(q = c(-1.96, 1.96))
[1] 0.025 0.975

Intro.10

> qt(p = c(0.025, 0.975), df = 9)
[1] -2.262 2.262

The qt() function finds the 0.025 and 0.975 quantiles from a t-
distribution with 9 degrees of freedom. The leading [1] in the
output indicates the first number of a resulting vector. If the
vector was long enough to extend over to a new line, a new leading
[] would indicate the position of the first number in the second
line displaying the vector.
As another example, suppose I want to find a 95% confidence

interval for a population mean:
> x <- c(3.68, -3.63, 0.8, 3.03, -9.86, -8.66, -2.38, 8.94, 0.52,

1.25)
> x
[1] 3.68 -3.63 0.80 3.03 -9.86 -8.66 -2.38 8.94 0.52 1.25

> mean(x) + qt(p = c(0.025, 0.975), df = length(x) - 1) * sd(x)/sqrt(length(x))
[1] -4.707 3.445
> t.test(x = x, mu = 2, conf.level = 0.95)

One Sample t-test

data: x
t = -1.46, df = 9, p-value = 0.1782
alternative hypothesis: true mean is not equal to 2
95 percent confidence interval:
-4.707 3.445

sample estimates:
mean of x

-0.631

Notice how the calculations are done automatically even though
the qt() function produces a vector with two elements in it. I
checked my confidence interval calculation with the results from
t.test(), which automatically calculates the confidence interval
and does a hypothesis test for a specified mean (mu). Please be
careful when intermixing vectors and scalar values when doing

Intro.11

calculations like this so that unintended results do not occur.

Packages
If you want to use functions that are in other packages, you may
need to install and then load the package into R. For example, we
will be using the car package later in the course. While in the
R console, select Packages > Install package(s) from the
main menu.

A number of locations around the world will come up. Choose
one close to you. Next, the list of packages will appear. Select
the car package and select OK. The package will now be in-
stalled onto your computer. This only needs to be done once per
computer. To load the package into your current R session, type
library(package = car) at the R Console prompt. This needs
to be done only once in an R session. If you close R and reopen,
you will need to use the library() function again.
A list of all packages is available at http://cran.r-project.

org/web/packages. Because there are thousands of packages, it
may be difficult to find a specific one that fits your needs. One
way to find a package is to search the list of packages for key-
words.3 For example, search for “group testing” to see a package
that I co-authored! Another way to find a package is to use
R’s task views at https://cran.r-project.org/web/views.

3https://cran.r-project.org/web/packages/available_packages_by_name.htmlf

Intro.12

These task views provide lists of packages by application type.
For example, if you want a package that has functions available
to optimize a general mathematical function, check out the opti-
mization task view.

Characters
Object names can include periods and underscores. For example,
mod.fit could be a name of an object and it is often said as “mod
dot fit”. Note that R IS CASE SENSITIVE!

R’s program editor
Often, you will have a long list of commands that you would like
to execute all at once–i.e., a program. Instead of typing all of the
code line by line at the R Console prompt, you could type it in
Notepad or some other text editor and copy and paste the code
into R.
Starting with R 2.0, a VERY limited program editor was in-

corporated into R. Select File > New script to create a new
program. Below is what the editor looks like with some of the
past examples.

Intro.13

To run the current line of code (where the cursor is positioned)
or some highlighted code, select Edit > Run Line or selec-
tion.

To run all of the program, select Edit > Run all. To save your

Intro.14

code as a program outside of R, select File > Save and make
sure to use a .R extension on the file name. To open a program,
select File > Open script. Note that you can have more than
one program open at the same time.
There are MUCH BETTER program editors! Each of the edi-

tors described next have syntax highlighting (different colors for
different types of code) of the program code which makes reading
programs MUCH easier! I recommend using one of these editors.

Tinn-R
Tinn-R (http://nbcgib.uesc.br/lec/software/editores/tinn-r/
en) is a free, Windows-based program editor that is a separate
software package outside of R. This editor is much more advanced
than the R editor. Note that a program needs to be saved with
the .R extension for syntax highlighting to appear by default.
Below is a screen capture of what version 4.0.3.5 looks like.

Intro.15

In order to run code from the editor, R’s GUI needs to be open.
This can be opened by selecting the “R control: gui (start/close)”
icon from the R toolbar (see #1 for the icon appearance after R
is open; before R is open, the icon is).
Tinn-R subsequently opens R in its single-document interface

(SDI), which is a little different from R’s multiple-document in-
terface (MDI) that we have been using so far. The difference
between the two interfaces is simply that the MDI uses the R
GUI to contain all windows that R opens (like a graphics window
as shown later in the notes) and the SDI does not.
Once R is open in its SDI, program code in Tinn-R can be

transferred to R by selecting specific icons on Tinn-R’s R toolbar.
For example, a highlighted portion of code can be transferred to
and then run in R by selecting the “R send: selection (echo =
TRUE)” icon (see #2). Note that the transfer of code from Tinn-

Intro.16

R to R does not work in the MDI.
Below are some additional important comments and tips for

using Tinn-R:
• Upon Tinn-R’s first use with R’s SDI, the TinnRcom package
is automatically installed within R to allow for the communica-
tion between the two softwares. This package is subsequently
always loaded for later uses.

• When R code is sent from Tinn-R to R, the default behavior is
for Tinn-R to return as the window of focus (i.e., the window
location of the cursor) after R completes running the code.
If Tinn-R and R are sharing the same location on a monitor,
this prevents the user from immediately seeing the results in
R due to it being hidden behind the Tinn-R window. In order
to change this behavior, select Options > Application >
R > Rgui and uncheck the Return to Tinn-R box. Alter-
natively, select the “Options: return focus after send/control
Rgui” icon on the Misc toolbar (see #3).

• By default, the line containing the cursor is highlighted
in yellow. To turn this option off, select Options >
Highlighters (settings) and uncheck the Active line
(choice) box. The highlighters settings window also allow
you to customize the color syntax for highlighting of code. For
example, I always use a gray background for my comments so
that they stand out better.

Intro.17

• Long lines of code are wrapped to a new line by default. This
behavior can be changed by selecting Options > Applica-
tion > Editor and then selecting the No radio button
for Line wrapping.

• Syntax highlighting can be maintained with code that is copied
and pasted into Word. After highlighting the desired code to
copy, select Edit > Copy formated (to export) >
RTF. The subsequently pasted code will retain its color.

• When more than a few lines of code are transferred to R,
you will notice that much of the code is not displayed in R
to save space. This behavior can be changed by selecting Op-
tions > Application > R > Basic and then changing the
“option (max.deparse.length (echo=TRUE))” value to a very
large number. I use a value of 100000000. Note that ALL R
code and output always needs to be shown for anything turned
in for a grade!

• Tinn-R can run R within its interface by using a link to a
terminal version of R rather than R’s GUI. To direct code to

Intro.18

the Rterm window (located on the right side of Tinn-R), select
the “R control: term (start/close)” icon on the R toolbar (see
#4). One benefit from using R in this manner is that the
syntax highlighting in the program editor is maintained in the
R terminal window.

When using Tinn-R and R’s GUI, it can be more efficient to use
them in a multiple monitor environment. This allows for both
to be viewable in different monitors at the same time. Code and
output can be side-by-side in large windows without needing to
switch back-and-forth between overlaying windows.

The same type of environment is achievable with a large, wide-
screen monitor as well.

RStudio
While still fairly new in comparison to other editors, RStudio’s
“RStudio Desktop” (http://www.rstudio.com; hereafter just re-
ferred to as “RStudio”) is likely the most used among all editors.

Intro.19

This software is actually more than an editor because it integrates
a program editor with the R Console window, graphics window,
R-help window, and other items within one overall window envi-
ronment. Thus, RStudio is an integrated development environ-
ment (IDE) for constructing and running R programs. The soft-
ware is available for free, and it runs on Linux, Mac, and Windows
operating systems. Below is a screen capture of Rstudio version
0.92.23.

You can start writing a new program by selecting File > New

Intro.20

> R Script or open an existing program by selecting File >
Open File (without a program open, you will not see the pro-
gram editor). To run a segment of code, you can highlight it and
then select the “Run” icon in the program editor window.
Also, the editor can suggest function or package names from any

loaded package if <Tab> is pressed at the end of any text string.
For example, typing “pn” and pressing <Tab> yields a pop-up
window suggesting functions pnbinom(), png(), and pnorm().
Pressing <Tab> where an argument could be given within a func-
tion (e.g., after a function name and its opening parenthesis or
after a comma following another argument) gives a list of possible
arguments for that function.
The windows available on the right side of the screen provide

some additional useful information. In the upper right corner,
you can view the list of objects in R’s database (similar to using
ls() or objects() in the R Console). In the bottom right corner,
all graphs will be sent to the Plots tab and help is immediately
available through the Help tab. Also, in the bottom right corner
window, packages can be installed via the Packages tab.

Other editors
I have often used WinEdt with the RWinEdt add-on in the
past on my Windows-based computers. Also, the Emacs ed-
itor (http://www.gnu.org/software/emacs) with the Emacs
Speaks Statistics (http://ess.r-project.org) add-on are pop-
ular for Linux users.
With Microsoft’s purchase of Revolution Analytics, they have

been integrating R into some of their products. In particular,
Microsoft has developed R Tools for Visual Studio (RTVS) so
that one can use Visual Studio to develop R programs in simi-
lar ways that RStudio does already. The Community version of
Visual Studio and RTVS are available for free at https://www.

Intro.21

visualstudio.com/en-us/features/rtvs-vs.aspx. A video
on its use is available at https://www.youtube.com/watch?v=
KPS0ytrt9SA.

