
Matrix.1

Matrix algebra

Matrix algebra is very prevalently used in Statistics because it
provides representations of models and computations in a much
simpler manner than without its use. The purpose of this sec-
tion is to provide the basics of commonly used matrix alge-
bra operations in SAS. The program used in this section is ba-
sic_matrix_algebra.sas.

Basics
A matrix is simply a rectangular arrangement of elements in rows
and columns. For example, consider the matrix A as

A =
 a11 a12 a13
a21 a22 a23


Letters that represent matrices are always bolded or written with
a line underneath as A when bolding is not possible, like on a
chalkboard. The symbolic elements of a matrix are written with
a subscript for the row and column numbers (row, column). The
dimension of the matrix is its number of rows and columns. For
the above matrix, the dimension is 2× 3.
The SAS procedure proc iml enables the use of matrix algebra

(IML stands for “interactive matrix language”). To illustrate its
use, consider the following two matrices:

A =
 1 2 3
4 5 6

 and B =
 −1 10 −1

5 5 8


Below is how we can enter these matrices into SAS and print
them.
title1 "Chris Bilder , STAT 850";
proc iml;

Matrix.2

A = {1 2 3,
4 5 6};

print A;

B = {-1 10 -1,
5 5 8};

print B;

print A, B;

Elements of the matrix can be extracted by specifying a row and
column number:
temp = A[1 ,1];
print temp;
temp = A[1,];
print temp;
temp = A[,1:2];
print temp;

Matrix.3

temp = A[,1];
print temp;

The extra step of saving a result is needed prior to printing, so a
statement like print A[1,1] does not work.
Below are examples of adding and subtracting with matrices:

C = A + B;
print C;
D = A - B;
print D;

Matrix.4

Matrix multiplication
Consider the following two matrices:

A =
 1 2 3
4 5 6

 and B =


3 0
1 2
0 1


Below is how matrix multiplication can be performed with these
matrices.
A = {1 2 3,

4 5 6};
B = {3 0,

1 2,
0 1};

print A, B;

E = A*B;
print E;
F = B*A;
print F;
A3 = A*3;
print A3;

*Elementwise multiplication;
C = A#A;
print C;

Matrix.5

Inverse of a matrix
The inv() function calculates an inverse:
A = {1 2,

3 4};

Matrix.6

print A;

Ainv = inv(A);
print Ainv;
check = A*Ainv;
print check;

More matrix operations
Commonly used operations with matrices include finding the di-
agonal elements, finding determinants, taking a transpose of a
matrix, and forming a diagonal matrix:
A = {1 2,

3 4};
print A;
Adiag = diag(A);
print Adiag;

*Determinant;
Adet = det(A);

*Tranpose;
Atran = t(A); *A‘ also works;

Matrix.7

print Adet , Atran;

*Create diagonal matrix;
* Create 1x5 vector and use elementwise multiplication with a

5x5 identity matrix;
DiagMat = {1 2 3 4 5}#I(5);
print DiagMat;

Matrix.8

Eigenvalues
Eigenvalues and eigenvectors are found by using the eigval()
and eigvec() functions, respectively.
A = {1 0.5,

0.5 1.25};
print A;

lambda = eigval(A);
lambdavec = eigvec(A);
print lambda , lambdavec;

check1left = A*lambdavec [,1];
check1right = lambda [1]* lambdavec [,1];
print check1left , check1right;

check2left = A*lambdavec [,2];
check2right = lambda [2]* lambdavec [,2];
print check2left , check2right;

Matrix.9

To verify the eigenvectors, I used the relationship that eigenvec-
tors of a matrix A satisfy Ab = λb where b is an eigenvector.

Matrix.10

Please remember that eigenvectors are not unique! Eigenvectors
in SAS are scaled to have a length of 1. Still, there is more than
one vector that can have a length of 1.

SAS data sets and proc iml
A typical work flow in SAS is to use SAS data steps and proce-
dures as much as possible and then use proc iml for tasks that
are not available in procedures. As one might expect, this is what
occurs a lot for statistical research.
Below is an example of how to import a data set already in SAS

into proc iml and then to perform basic calculations to estimate
the regression parameters of a simple linear regression model.
data set1;

infile "C:\data\gpa.csv" firstobs =2 delimiter =",";
input HS College;

run;

proc iml;

use set1;
read all var{HS} into Xpart;
read all var{College} into Y;

*Number of observations;
n = nrow(Xpart);
*nx1 vector of 1’s;
vec1 = J(n, 1, 1);
*Horizontal concatenate;
X = vec1 || Xpart;
*print X, Y;
betahat = inv(t(X)*X) * t(X) * Y;
print betahat;

*Shows how to read in all variables at same time;
read all into XY;
*print XY;

Matrix.11

quit;

Notice the use of the functions nrow() and J(). There are many
other functions available! Please take a look at the SAS help
available at

Using R in SAS
Most statistical software packages now include ways to use R
within them. For SAS, this can be done within proc iml. To
enable the use of R, one needs to start SAS with the additional
option of -RLANG. For example, I have a link on my desktop which
uses the following target:
"C:\ Program Files\SASHome\SASFoundation \9.4\ sas.exe" -CONFIG

"C:\ Program Files\SASHome\SASFoundation \9.4\ nls\en\sasv9.cfg"

Matrix.12

-RLANG

All parts of this target are the default except the new -RLANG
portion.
R code is run directly from within proc iml by enclosing it

within
submit / R;

and
endsubmit;

statements. Mostly all types of R code work from within SAS.
Below are a few examples:
proc iml;

*Simple example;
submit / R;

x <- 1
x

endsubmit;

*Use a SAS data set in R;
run ExportDataSetToR ("set1", "Rset1");

submit / R;
head(Rset1)
mod.fit <- lm(formula = College ~ HS, data = Rset1)
names(mod.fit)
mod.fit$coefficients
#summary(mod.fit) #Does not work!

plot(x = Rset1$HS , y = Rset1$College , xlab = "HS GPA", ylab
= "College GPA", main = "College GPA vs. HS GPA", xlim =
c(0 ,4.5), ylim = c(0 ,4.5), col = "red", pch = 1, cex =
1.0, lwd = 2.0, panel.first = grid())

curve(expr = predict(object = mod.fit , newdata =
data.frame(HS = x)), col= "blue", add = TRUE , lwd = 2,
xlim = c(min(Rset1$HS), max(Rset1$HS)))

Matrix.13

curve(expr = predict(object = mod.fit , newdata =
data.frame(HS = x), interval = "confidence", level =
0.95)[,2], col= "blue", add = TRUE , lwd = 2, xlim =
c(min(Rset1$HS), max(Rset1$HS)), lty = "dashed ")

curve(expr = predict(object = mod.fit , newdata =
data.frame(HS = x), interval = "confidence", level =
0.95)[,3], col= "blue", add = TRUE , lwd = 2, xlim =
c(min(Rset1$HS), max(Rset1$HS)), lty = "dashed ")

endsubmit;

*Use R vector in SAS;
run ImportMatrixFromR(betahats , "mod.fit$coefficients ");
print betahats;

*Use R data frame outside of proc iml;
run ImportDataSetFromR ("set2", "Rset1");

quit;

proc print data = set2(obs=5);
run;

Matrix.14

Comments:
• Multiple submit / R and endsubmit pairs can be made
within one proc iml and quit set of code. R objects cre-
ated by an initial submit / R and endsubmit sequence are
available for other sequences.

Matrix.15

• SAS data sets and matrices can be used in R, and R objects
can be used in SAS. Please see the examples above and the
additional examples given in the program. With these import
and export functions, it is important to use the quote symbols
correctly–some data sets or objects have quotes while others
do not.

• R plots are opened in an R graphics window. This window will
be closed after the quit statement for proc iml is executed.

The SAS blog entry at http://blogs.sas.com/content/iml/
2013/11/25/twelve-advantages-to-calling-r-from-the-sasiml-language.
html gives some good advice about using SAS and R together.

Ending proc iml
After executing statements in proc iml, you will notice that SAS
indicates that proc iml is still running. In order to fully exit out
of the procedure, a quit statement needs to be given.

