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Equations 
STAT 475/875 
 
 
Section 1.1 

• Binomial distribution: P(W = w) = 
w n wn!
(1 )

w!(n w)!

− − 
−

 for w = 0,1,…,n with E(W) = n and  

Var(W) = n(1-)  

• ̂  = w/n 

• Wald confidence interval for  is 1 /2

ˆ(1 ˆ )
ˆ Z

n
−

 − 
   

• Wilson interval for  is 
1/2 2

1 /2 1 /2

2
1 /2

Z n Z
ˆ(1 ˆ )

n Z 4n

− −

−

   −  +
+



 

with 
2
1 /2

2
1 /2

w Z 2

n Z

−

−

+
 =

+
  

• Agresti-Coull interval for  is 1 /2 2
1 /2

(1 )
Z

n Z
−

−

 − 
 

+


  

• True confidence level is 
n

w n w

w 0

n
I(w) (1 )

w

−

=

 
 −   

 
 where I(w) = 1 if the interval for a w contains  and 

0 otherwise 

• Expected length is 
n

w n w

w 0

n
L(w) (1 )

w

−

=

 
 −   

 
 where L(w) is the length of an interval at a particular 

value of w 

• Clopper-Pearson confidence interval for  is Beta(/2; w, n-w+1) <  < Beta(1-/2; w+1, n-w) 

• Score test statistic for testing  = 0 is 
 − 

=
 − 

0
S

0 0

ˆ
Z

(1 )

n

 where a standard normal distribution 

approximation is used 

• General form of LR statistic: 
0

0 a

Max. lik. when parameters satisfy H

Max. lik. when parameters satisfy H  or H
 =  and -2log() is 

approximately a 2 random variable for large samples under H0 with degrees of freedom equal to 
the difference in dimension between the alternative and null hypothesis parameter spaces   

 
 
Section 1.2 

• j j jˆ w / n =  

• Wald confidence interval for 1 – 2 is −

 −   − 
 −   +

1 1 2 2
1 2 1 /2

1 2

ˆ (1 ˆ ) ˆ (1 ˆ )
ˆ ˆ Z

n n
 

• Agresti-Caffo confidence interval is 
1 1 2 2

1 2 1 /2

1 2

(1 ) (1 )
Z

n 2 n 2
−

 −   − 
 −   +

+ +


  where  

1
1

1

w 1

n 2

+
 =

+
  and 

2
2

2

w 1

n 2

+
 =

+
   

• Score interval inverts 

 −

 −  −


 −  +  − 

1 2

1 /2
(0) (0) (0) (0)

1 21 1 2 2

ˆ ˆ d
Z

ˆ (1 ˆ ) / n ˆ (1 ˆ ) / n
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• Score test statistic for testing 1 – 2 = 0 is 
 − 

=
 

 −  + 
 

1 2
S

1 2

ˆ ˆ
Z

1 1
(1 )

n n

 where a standard normal 

distribution approximation is used and w / n+ + =  

• Pearson chi-square test statistic for testing 1 – 2 = 0 is 
22

j j2

j 1 j

(w n )
X

n (1 )=

− 
= 

 − 
 where a 2

1  distribution 

approximation is used  

• LRT statistic for testing 1 – 2 = 0 is 

1 1 1 2 2 2

1 1 2 2

1 1
2log( ) 2 w log (n w )log w log (n w )log

ˆ 1 ˆ ˆ 1 ˆ

  −   −        
−  = − + − + + −        

 −   −         
  

• 
1

2

RR


=


 and 
1 1 2

2 2 1

ˆ w n
RR

ˆ w n


= =


 

• Wald confidence interval for RR is 
1 2 1 /2 1 2exp log(ˆ / ˆ ) Z Var(log(ˆ / ˆ ))−

     
  

 where 

   = − + −1 2

1 1 2 2

1 1 1 1
Var(log(ˆ / ˆ ))

w n w n
 

• 
1 1 1 1 2

2 2 2 2 1

odds / (1 ) (1 )
OR

odds / (1 ) (1 )

 −   − 
= = =

 −   − 
 and 




1 1 2 1 2 2

2 1 2 1 12

odds ˆ (1 ˆ ) w (n w )
OR

ˆ (1 ˆ ) w (n w )odds

 −  −
= = =

 −  −
 

• Wald confidence interval for OR is 
1 /2

1 1 1 2 2 2

1 1 1 1
exp log(OR) Z

w n w w n w
−

 
 + + + 

− − 

 

•  1 2 2

2 1 1

(w 0.5)(n w 0.5)
OR

(w 0.5)(n w 0.5)

+ − +
=

+ − +
 

 
 
Chapter 2 

• Logistic regression model is 0 1 1 p plog x x
1

 
=  +  + + 

−  
  

• Estimated covariance matrix form when there is only one explanatory variable: 

   

   

0 0 1 1

1
2 2

0 1 1 n 0 1 1 n

2
0 0 1

2 2
0 1 1 n 0 1 1 n

2
0 1 1

ˆ ˆ,

log L( , | y ,...,y ) log L( , | y ,...,y )

E
log L( , | y ,...,y ) log L( , | y ,...,y )

−

 =  =

       
  

    −
       
       

 

• Wald test statistic for testing r = 0 is 



=



r
W

r

ˆ
Z

ˆVar( )
 where a standard normal approximation is 

used 

• LRT statistic for testing a set of ’s are equal to 0 is 
(0) (0) (0)

n
1 n i i

i i(a) (a) (a)
i 11 n i i

L( | y , ,y ) ˆ 1 ˆ
2log( ) 2log 2 y log (1 y )log

L( | y , ,y ) ˆ 1 ˆ=

        − 
−  = − = − + −      

  −       




 where a 2

q  distribution 

approximation is used (q is number of ’s set to 0 in the null hypothesis) 
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• = 1OR exp(c )  for an one explanatory variable logistic regression model and a c-unit increase in 

x1; Wald confidence interval for OR is ( )−  1 1 /2 1
ˆ ˆexp c cZ Var( )  

• Profile likelihood interval for 1 uses 
0 1 1 n

0 1 1 n

L( , | y , ,y )
2log

ˆ ˆL( , | y , ,y )

   
−  

   


  

• In general for two random variables W1 and W2 and constants a1 and a2, we have 
2 2

1 1 2 2 1 1 2 2 1 2 1 2Var(a W a W ) a Var(W ) a Var(W ) 2a a Cov(W ,W )+ = + +  

• Wald confidence interval for  is  
 

( )
( )

−

−

 +  + +    +  + + 

+  +  + +    +  + + 





0 1 1 p p 1 /2 0 1 1 p p

0 1 1 p p 1 /2 0 1 1 p p

ˆ ˆ ˆ ˆ ˆ ˆexp x x Z Var( x x )

ˆ ˆ ˆ ˆ ˆ ˆ1 exp x x Z Var( x x )

  

 

where   p p 1 p

0 1 1 p p i i j i j
i 0 i 0 j i 1

ˆ ˆ ˆ ˆ ˆ ˆVar( x x ) Var( ) 2 x x Cov( , )
−

= = = +

 + + + =  +      

• Convergence of the parameter estimates occurs when 

−−


+

(k ) (k 1)

(k )

G G

0.1 G
  where G(k) denotes the 

residual deviance at iteration i 

• Probit regression model is probit() = 0 + 1x1 +  pxp 

• Complementary log-log regression model is log[-log(1 – )] = 0 + 1x1 +  pxp 

 
 
Chapter 3 

• Multinomial PMF for n1, …, nJ: 
j

J
n
jJ

j 1
j

j 1

n!

n ! =

=





 

• P(X = i, Y = j) = ij  

• Independence: ij = i++j 

• P(Y = j | X = i) = j|i 

• 
2I J

ij i j2

i 1 j 1 i j

(n n n / n)
X

n n / n

+ +

= = + +

−
=  ; under independence, X2 has a 2

(I 1)(J 1)− −  distribution for a large sample 

• 
I J

ij
ij

i 1 j 1 i j

n
2log( ) 2 n log

n n / n= = + +

 
−  =   

 
; under independence, -2log() has a 2

(I 1)(J 1)− −  distribution for a 

large sample 

• P-value for Monte Carlo test involving X2:  2 2(Number of X X ) B  

• Multinomial regression model: log(j/1) = j0 + j1x1 + … + jpxp for j = 2, …, J 

• For one explanatory variable:

 

( )
=

 =
+  + 

1 J

j0 j1
j 2

1

1 exp x
 and 

( )

( )
=

 + 
 =

+  + 

j0 j1

j J

j0 j1
j 2

exp x

1 exp x
  

• Proportional odds model: j0 1 1 p plogit[P(Y j)] x x =  + + +   
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• For one explanatory variable:

 

( )
( )

( )
( )
−

−

 +  +
 = −

+  + +  +

j0 1 j 1,0 1

j

j0 1 j 1,0 1

exp x exp x

1 exp x 1 exp x
 for j = 2, …, J – 1, 1 = 

( ) ( )  +  +  +  10 1 10 1exp x 1 exp x , and J = ( ) ( )− − −  +  +  +  J 1,0 1 J 1,0 11 exp x 1 exp x  

• Nonproportional odds model: j0 j1 1 jp plogit(P(Y j)) x x =  + + +  

• Adjacent-categories model: j j 1 j0 j1 1 jp plog( / ) x x+  =  + + +  

 
 
Chapter 4 

• Poisson PMF: 
− 

= =
yexp(

P y)
)

(Y
y!

 where E(Y) =  and Var(Y) =  

• 
=

− 
  = 

kyn

1 n
k 1 k

exp( )
L( ;y ,y )

y !
 

• 1 n
kk 1ˆ n y−

= =   

•   = Var( ˆ ) ˆ / n  

• Score test statistic for testing  = 0 is 
 −

=


S
0

0

ˆ
Z

/ n

 

where a standard normal distribution 

approximation is used 

• Score confidence interval for : 
2 2
1 /2 1 /2

1 /2

Z ˆ Z / 4n
ˆ Z

2n n

− −
−

   +
 +  
 

 

• Wald interval for  using log() transformation: ( )−  1 /2exp log( ˆ ) Z 1/ ( ˆn)  

• Poisson regression model: log() = 0 + 1x1 +  pxp 

•  +  = 1(x c) / (x) exp(c )  for the model log() = 0 + 1x1 

• PC =   −1100 exp(c ) 1 %  

• Poisson rate regression model:  =  +0 1t exp( x)  

 
 
Chapter 5 

• IC(k) = -2log(Likelihood function evaluated at parameter estimates) + kr  

• AIC IC(2)=  

• c

2r(r 1)
AIC IC(2n / (n r 1)) AIC

n r 1

+
= − − = +

− −
 

• BIC IC(log(n))=  

• m = BICm – BIC0 

• 
A

m

A M

m 1

exp( 0.5 )

exp( 0.5 )
ˆ

=

− 


− 




 

• Model averaged estimate: 
M

m m
m 1

MA
ˆ ˆˆ

=

 =    

•  M
2

MA m m MA m
m 1

ˆ ˆ ˆ ˆVar( ) ˆ [( ) Var( )]
=

 =   −  +   
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• Pearson residual: 


m m
m

m

ˆy y
e

Var(Y )

−
=  

• Standardized Pearson residual: 
 

m m m m
m

m m m m

ˆ ˆy y y y
r

ˆVar(Y Y ) Var(Y )(1 h )

− −
= =

− −

 

• Deviance residual: D
m m m mˆe sign(y y ) d= −  

• Standardized deviance residual: D D
m m mr e / (1 )h= −  

• Pearson statistic: 


2M M
m m2 2

m
m 1 m 1

m

ˆ(y y )
X e

Var(y )= =

−
= =   

• D / (M p)−   

• Cook’s distance: 
2
m m

m 2
m

r h
CD

(p 1)(1 h )
=

+ −
 

• 2 2
m mX r =  

• D 2 2
m m m mD (e ) h r = +  

• Var(Y) =  

• 
M

m m mr
m 1

1
(Y )x

=

−


 

• 


m m
m

m m

ˆy y
r

Var(Y )(1 h )

−
=

− 

 

• ̂  = X2/(M-p) 

• Negative binomial PMF: 

k y
y k 1 k k

1
y k k

+ −    
−     +  +    

 where E(Y) =  and Var(Y) =  + 2/k  

 
 
Chapter 6 

• Hypergeometric distribution: 
a b n

P(M m)
m k m k

    
= =     

−    
 

• Multiple hypergeometric distribution: 
( )

I J

i j
i 1 j 1

I J

ij
i 1 j 1

n ! n !

n! n !

+ +
= =

= =

 
  

 

 
 
 

  

• P-value for permutation test involving X2: 2* 2(Number of X X ) / B  

• Poisson regression model with random effect: ik 0 0ii1log( ) x b =  + +  

• ( )


= =−

−
   = −  

 

  ikn t
2 2

0 1 b0 11 nt 0i b0
i 1 k 1 i

i

k

y
ik k

0i

b0

exp( ) 1
L( , , | y ,...,y ) exp b (2 ) db

y ! 2
 

• Predicted value of b0i: 0i i1 itE(B | y ,...,y )  or mode of 
i1 it 0i 0i

0i i1 it

i1 it

f(y ,...,y | b ) g(b )
f(b | y ,...,y )

f(y ,...,y )


= ; replace 

parameters with estimates 

• P-value for bootstrap test: 
B

b
b 1

1
I(W W)

B



=

  

  
 


