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AR Models

Suppose we have a time series xt for t = 1, …, n. Could we use the regression model of 

xt = 0 + 1t + t, 

where t ~ independent N(0,2) for it? Yes, but stated confidence levels and type I error rates will likely be incorrect. Thus, inferences can be incorrect. The reason is the likely dependence in the time series. 

While one may be able to find a set of explanatory variables that help to de-trend a response variable series so it appears that white noise is leftover (i.e., it looks like the error terms are independent), this is often not possible.

Instead, autoregressive integrated moving average models (ARIMA) are used for time series data. These models were first developed by Box and Jenkins (1970). We have already touched on all parts of this type of model:
· AR: Autoregressive
· MA: Moving average
· I: Integrated (closely related to differencing)

Often, people will refer to ARIMA models as an ARIMA process as well. This refers to how xt comes about through a linear process. Both “model” and “process” will be used interchangeably.  


Autoregressive models – AR(p)

An autoregressive model uses past observations of xt to predict future observations. Specifically, the present value of xt is explained by a linear function of p past values of xt-1, …, xt-p.

Example: AR(1) from earlier

xt = 0.7xt-1 + wt where wt ~ independent N(0,1) for t = 1, …, n.

Therefore, 

x2 = 0.7x1 + w2
x3 = 0.7x2 + w3


Future values may be “forecasted” by past values using 

xn+1 = 0.7xn

More on this in later in the section. 


An autoregressive model of order p, denoted as AR(p), is 

xt = 1xt-1 + 2xt-2 + … + pxt-p + wt 

where

1, 2, …, p are parameters and 

wt ~ ind. (0,) for t = 1,…, n (i.e., white noise)

Notes:
· Some textbooks use “” as an autoregressive parameter. Both  and  are the “phi” Greek letter.
· 
To find parameter estimates later in this section, we will assume wt ~ independent N(0,).
· Without loss of generality (WLOG), the mean of xt, , will be assumed to be 0 when we write out a general model. HOWEVER,   0 in most applications! The WLOG part is here because one can simply replace xt with xt – . The end result is an autoregressive model of 

xt -  = 1(xt-1-) + 2(xt-2-) + … + p(xt-p-) + wt 
 xt = (1-1-2-…-p) + 1xt-1 + 2xt-2+ … + pxt-p + wt
 xt =  + 1xt-1 + 2xt-2+ … + pxt-p + wt

where  = (1-1-2-…-p). The  does not affect the dependence structure among the xt. This is why the common convention is to exclude the parameter when introducing these models.  

When we estimate the model, we will almost always include an estimate of . 

· The AR(p) model written in vector form is 

xt = xt-1 + wt 

where

 = (1, 2, …, p)
xt-1 = (xt-1, xt-2, …, xt-p)

· The AR(p) model written in backshift notation is 

(1-1B-2B2-…-pBp)xt = wt

and

(B)xt = wt

where (B) = (1-1B-2B2-…-pBp) is called the autoregressive operator. We will be using this notation throughout the course.  
  
· The model can be re-expressed as a linear combination of wt’s by “iterating backwards”. For example, an AR(1) model can be represented as:

xt = xt-1 + wt       (NOTE: the 1 on 1 was dropped)
= (xt-2 + wt-1) + wt = 2xt-2 + wt-1 + wt
= 2(xt-3 + wt-2) + wt-1 + wt = 3xt-3+2wt-2+wt-1+wt


= 

provided that ||<1 and variance of xt is bounded.  

To see this, note that the model can be rewritten as 

(1-B)xt = wt 

[bookmark: inf_order_MA] 

 xt = (1+B+2B2+…)wt = 


using the sum of an infinite series. Remember that . Writing the model as a linear combination of the wt’s is going to be VERY useful for future work!

· The mean and autocovariance function for an AR(1) stationary model can be found easily by using the above representation.  


E(xt) = 

(h) = Cov(xt, xt+h) 
= E(xtxt+h) - E(xt)E(xt+h) 
= E(xtxt+h) - 0 = E(xtxt+h) assuming  =0 .  

Then 

(h) = 
= E[(wt+wt-1+2wt-2+3wt-3+…)
      (wt+h+wt+h-1+2wt+h-2+3wt+h-3+…)]

If h = 0, 

(0) = E[(wt+wt-1+2wt-2+3wt-3+…)2] 

= 


=  =

I used these general results that are taught in a mathematical statistics course: 
· 
E() = Var(Y1) + E(Y1)2 
· 

Var(a1Y1 + a2Y2) =  + 
for independent random variables Y1 and Y2 and constants a1 and a2

If h=1, 

(1) = E[(wt+wt-1+2wt-2+3wt-3+…)
                 		(wt+1+wt+2wt-1+3wt-2+…)] 
= E[wt+1(wt+wt-1+2wt-2+3wt-3+…) + 
(wt+wt-1+2wt-2+3wt-3+…)2] 

= E[wt+1]  E[wt+wt-1+2wt-2+3wt-3+…] + 


= 0  [0 + 0 + 20 + …] +  = 

I used wt+1 being independent of all of the w’s in E[wt+wt-1+2wt-2+3wt-3+…] in the above result.


In general for h  0, .

Also, the ACF is (h) = (h)/(0) = h.  

One can also go back to in the notes and use the results of a linear process there. Below is part of this page restated,

In general, a linear process can be defined as 



 with  and 

    wt ~ ind. N(0,).


It can be shown that  for h  0.  


In our case, we have 0 = 1, 1 = , 2 = 2, 3 = 3, … .  Therefore, . This results in 








Question: What if   0? How would this change E(xt) and (h)? 


Example: AR(1) with  = 0.7 and  =- 0.7 (ar1_sim.R)


The purpose of this example is to show what observed values from an AR(1) process look like for t = 1, …, 100 using  = 100. Pay close attention to the differences between  = 0.7 and  = -0.7. Questions to think about are:

· Why are some plots more or less “choppy” (“jagged”)?  
· What would happen to the plots if || was closer to 0 or 1?  

Note that (h) = (h)/(0) = h, which leads to autocorrelations of

	h
	 = 0.7
	 = -0.7

	1
	0.7
	-0.7

	2
	0.49
	0.49

	3
	0.34
	-0.43

	
	
	



For the plot below, the model is xt = 0.7xt-1 + wt and 
(1 – 0.7B)xt = wt.
[image: ]


For the plot below, the model is xt = -0.7xt-1 + wt and 
(1 + 0.7B)xt = wt.
[image: ]

R Code (use ar = c(-0.7) for the second plot):

set.seed(7181)
x <- arima.sim(model = list(ar = c(0.7)), n = 100, rand.gen 
  = rnorm, sd = 10)
plot(x = x, ylab = expression(x[t]), xlab = "t", type = 
  "l", col = c("red"), main = 
  expression(paste(x[t] == 0.7*x[t-1] + w[t], " where ", 
  w[t], "~ ind. N(0,100)")), panel.first=grid(col = 
  "gray", lty = "dotted"))
points(x = x, pch = 20, col = "blue")

I could just use ar = 0.7, but included c() because it will be needed when we have p > 1.

Be very careful in specifying these models in R! 
· The model can be written as xt = xt-1 +  wt and (1 – B)xt = wt. Notice that the first plot uses  = +0.7 and the second plot uses  = -0.7. The autoregressive operator can confuse matters in deciding whether the numerical value of  is positive or negative. 
· Software packages and textbooks are not consistent in their definitions of the positive and negative values. For example, some books may denote the AR operator to be (1 + B) instead of (1 – B).  

To simulate data from a higher order AR(p), use the following type of syntax in the model option:

list(ar = c(0.7, -0.4))

This specifies 1 = 0.7 and 2 = -0.4.  


R has a nice function that allows you to see the ACF for an AR (or ARMA) process better. The ARMAacf() allows one to plot the actual ACF for an AR (and ARMA) model.  

Example: AR(1) with 1 = 0.7 and 1 = -0.7 (ar1_sim.R)

When 1 = 0.7, here are the results of the ARMAacf() function. Notice the use of phi1 instead of just phi in the main argument of the plot() function. Using phi produces  instead of .  
 
> round(ARMAacf(ar = c(0.7), lag.max = 20), 4)
     0      1      2      3      4      5      6      7      8      9     10 
1.0000 0.7000 0.4900 0.3430 0.2401 0.1681 0.1176 0.0824 0.0576 0.0404 0.0282 
    11     12     13     14     15     16     17     18     19     20 
0.0198 0.0138 0.0097 0.0068 0.0047 0.0033 0.0023 0.0016 0.0011 0.0008 

> plot(y = ARMAacf(ar = c(0.7), lag.max = 20), x = 0:20, 
    type = "h", ylim = c(-1,1), xlab = "h", ylab = 
    expression(rho(h)), main = expression(paste("ACF for 
    AR(1) with ", phi1[1] == 0.7)))
> abline(h = 0)

[image: ]
Using 1 = -0.7 (code omitted),

[image: ]
The type = "h" argument in the plot()tells R to plot vertical lines from a y-axis value of 0 value up to the autocorrelations.  

[bookmark: problem]Be careful with the plotting of the ACF, suppose the following code was used instead:

> plot(x = ARMAacf(ar = c(0.7), lag.max = 20), type = 
    "h", ylim = c(-1,1), xlab = "h", ylab = 
    expression(rho(h)), main = expression(paste("ACF 
    for AR(1) with ", phi1[1] == 0.7)))
> abline(h = 0)
[image: ]
In this case, there is no y = part and the plot above is drawn incorrectly with (1) = 1, (2) = 0.7 (everything is shifted one lag). The reason why this happens is that ARMAacf() gives output that starts at h = 0, but R does not have a way to adjust the x-axis scale to adjust for it. 
 

Example: AR(1) with 1 = 1 (no program)

For the AR(1) process to be stationary, the following condition must be satisfied: |1| < 1.  To see what happens when it is not satisfied, consider a sample generated from an AR(1) process with 1 = 1. Below is a plot.




The process no longer appears to be stationary in the mean.  

Below is another set of observations generated from an AR(1) process.  




This series also appears come from a non-stationary process.  

Other examples can be constructed for |1|1.  


Causal process

Note that the AR(1) process with |1|  1 can be rewritten as a stationary “future-dependent” series. See Shumway and Stoffer’s “Explosive AR Models and Causality” example. Because we will not know the “future” values in actual applications, this representation will not help us!  

When a process is stationary AND does not depend on the future, the process is “causal”. These are the type of processes that we will be interested in.

A more formal definition of a causal process will be given later.  


Writing higher-order casual models as 

Higher-order models will have constraints on 1, 2, … , p to insure a model is causal. We will examine these constraints later. For now, assume we have a causal model. 

In a previous example, the AR(1) process was rewritten as 

(1-B)xt = wt 

 

 xt = (1+B+2B2+…)wt = 

When the process is a higher order AR(p), we can do the same thing! In general, consider the AR(p) process below:

(1-1B-2B2-…-pBp)xt = wt 
 (B)xt = wt 
 xt = [1/(B)]wt = (B)wt 

where (B) = 1+B1+B22+…, and 1/(B) = (B). Be careful with this definition of (B) because there are +, not –, values separating the terms. Also, note that (B) is an infinite series.  

Then 1 	= (B)  (B) 
= (1-1B-2B2-…-pBp)(1+1B+2B2+…) 

To find the values of the j’s in terms of the i’s, we can equate the coefficients of the B’s on both sides of the equality (note the left side has 1B0 + 0B1 + 0B2 +…)  

1 = (1-1B-2B2-…-pBp)(1+1B+2B2+…) 
1 = 1 - 1B - 2B2 - 3B3 - … 
+ 1B - 11B2 - 12B3 - 13B4 - … 
+ 2B2 - 21B3 - 22B4 - 23B5 - …
+ 3B3 - 31B4 - 32B5 - 33B6 - …
 
1 = 1 + (1-1)B+ (2 - 11-2)B2 
            + (3 - 21 - 12 - 3)B3 + … 

Then equating coefficients:
B0: 1=1
B1: 1-1 = 0  1=1 

B2: 2 - 11-2 = 0  
B3: 3 - 21 - 12 - 3 = 0  





In general, .

Example: AR(2) process 

For an AR(2) process, this means that




Then writing the ’s in terms of the ’s:






Equating powers of B implies that 

B1: (1-1)=0  1 = 1

B2: (2-11-2)=0  2 = 11+2 = +2

B3: (3-12-21)=0  3 = 12+21 
                                                  = +21

In general, j = j-11 + j-22 for j  2 where 0 = 1.  


For the special case of 2 = 0 (i.e., AR(1)), j =  and

 for |1|<1


R has a nice function that allows you to make this conversion a little easier. The ARMAtoMA() converts an ARMA model to a “MA model”. For now, one can think of this like how we converted the AR(1) or AR(2) model to a model with an infinite number of wt random variables.  

Example: AR(1) with 1 = 0.7 (ar1_sim.R)

Using ARMAtoMA() produces,

> ARMAtoMA(ar = c(0.7), lag.max = 20)
[1] 0.7000 0.4900 0.3430 0.2401 0.1681 0.1176 0.0824 0.0576
[9] 0.0404 0.0282 0.0198 0.0138 0.0097 0.0068 0.0047 0.0033
[17] 0.0023 0.0016 0.0011 0.0008

These are the 1, 2, …, 20 values when 1 = 0.7.

One could also use this function for higher order AR models.  For example, 

> #Example for AR(2)
> round(ARMAtoMA(ar = c(0.7, -0.4), lag.max = 20), 4)
[1]  0.7000  0.0900 -0.2170 -0.1879 -0.0447  0.0438  0.0486
[8]  0.0165 -0.0079 -0.0121 -0.0053  0.0011  0.0029  0.0016
[15] -0.0001 -0.0007 -0.0005  0.0000  0.0001  0.0001

Remember that 

1 = 1 = 0.7

2 = 11+2 = +2 = 0.72 – 0.4 = 0.09.   
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