

 5

Estimation – Maximum Likelihood

Estimate the parameters (’s, ’s, , and) of an ARIMA model. A ^ is placed above parameters to denote estimated quantities.

Parameter estimation for ARIMA models:
1. Method of moments
2. Unconditional least squares (ULS)
3. Conditional least squares (CLS)
4. Maximum likelihood estimation (MLE)

Notes:
· Method of moments can provide initial estimates for iterative procedures
· ULS, CLS, and MLE are iterative methods
· ULS and CLS are approximations to MLE
· Which estimation method to use? From Box, Jenkins, and Reinsel’s textbook:

Generally, the conditional and unconditional least squares estimators serve as satisfactory approximations to the maximum likelihood estimator for large sample sizes. However, simulation evidence suggests a preference for the maximum likelihood estimator for small or moderate sample sizes, especially if the moving average operator has a root close to the boundary of the invertibility region.

Likelihood function

If you need a review of maximum likelihood estimation, please see my separate videos and notes from a mathematical statistics course. These notes show mathematical derivations for a few examples and show how to use Sage (a symbolic mathematical software package) to perform these derivations as well.

Consider the following ARMA(p,q) model.

xt - 1xt-1 - … - pxt-p = wt + 1wt-1 + … + qwt-q

where wt ~ ind. N(0,) for t = 1, …, n. Comments:

· If we had an ARIMA model instead, let xt = (1-B)dvt for a nonstationary in the mean process vt.
· The normal distribution assumption is needed for these maximum likelihood estimation methods.
· If we do not assume E(xt) = = 0, then

(xt-) - 1(xt-1-) - … - p(xt-p-)
 = wt + 1wt-1 + … + qwt-q

 xt - 1xt-1 - … - pxt-p = + wt + 1wt-1 + … + qwt-q
with = (1 - 1 - … - p)

This can be rewritten as

wt = xt - 1xt-1 - … - pxt-p
- 1wt-1 - … - qwt-q - 					(1)

Conditional on past xt values, the likelihood can then be written in the form

where w=(w1,…,wn), =(1,…,p), and =(1,…,q) are vectors of parameters. Additional details are provided in Shumway and Stoffer’s section on estimation.

The log likelihood function can be found by (,,,|w) = log[]. Values of the parameters that maximize this equation are the maximum likelihood estimates (MLEs).

To find parameter estimates, iterative numerical methods must be used to find these estimates. A common method often used is the Newton-Raphson method.

Newton-Raphson method

Let (1, …, p, 1, …, q, ,) be rewritten as a vector of ’s: = (1,…,k) where k = p + q + 2.

Let denote the first partial derivative taken with respect to i. Let = be a k1 vector of these first partial derivatives.

Let be the second partial derivative taken with respect to i and j. Let be a kk matrix of these second partial derivatives and assume it is nonsingular. This matrix is often referred to as a “Hessian” matrix.

Iterative estimates of can be found using the following equation: After recording the video: The “-“ sign in the equation below was shown mistakenly in the video as a “+” sign.

 for g = 1, 2, …
[bookmark: _GoBack]

Remember that is a k1 vector. The iteration process stops when these ’s converge to . This is said to happen when for some small number > 0 (there are other definitions of convergence).

Covariance matrix for the estimators

The covariance matrix is (inverse of the observed Fisher information matrix). The estimated covariance matrix will have the form

[bookmark: COV]Let be a vector of the maximum likelihood estimators. Then is approximately distributed as for large n. See Ferguson’s textbook “A Course in Large Sample Theory” for more information on “standard” maximum likelihood techniques.

Note that hypothesis tests for Ho:i = i0 can be done using a Wald statistic:

where can be found from the ith diagonal element of - and Z has an approximate N(0,1) distribution for a large sample under the null hypothesis.

Some textbooks may examine the asymptotic probability distributions (this is the distribution when n) in more detail than we need for this class. A PhD-level statistics course on asymptotics is required prior to going through these details. For those without this background, you can read through it by simply interpreting

· AN(, 2) to mean the statistic has an approximate normal distribution if the sample size is large
·
 to mean ~ (i.e., “distributed as”) if the sample size is large

For example,

means that is approximately distributed as for large n.

Example: AR(1) with 1 = 0.7, = 0, and = 1 (fit_AR1.R, AR1.0.7.txt)

This example fits a model using maximum likelihood estimation to the AR(1) simulated data examined earlier.

> ar1 <- read.table(file = "AR1.0.7.txt", header = TRUE, sep
 = "")
> head(ar1)
 t x
1 1 0.04172680
2 2 0.37190682
3 3 -0.18545185
4 4 -1.38297422
5 5 -2.87593652
6 6 -2.60017605

> x <- ar1$x

> mod.fit <- arima(x = x, order = c(1, 0, 0), method =
 "CSS-ML", include.mean = TRUE)
> #summary(mod.fit) #Not helpful
> mod.fit

Call:
arima(x = x, order = c(1, 0, 0), include.mean = TRUE, method = "CSS-ML")

Coefficients:
 ar1 intercept
 0.6854 -0.4322
s.e. 0.0730 0.3602

sigma^2 estimated as 1.336: log likelihood = -156.68, aic = 319.36

> names(mod.fit)
 [1] "coef" "sigma2" "var.coef" "mask"
 [5] "loglik" "aic" "arma" "residuals"
 [9] "call" "series" "code" "n.cond"
[13] "nobs" "model"

> # Estimated phi1 and mu
> mod.fit$coef
 ar1 intercept
 0.6853698 -0.4322225

> # Estimated sigma^2
> mod.fit$sigma
[1] 1.335638

> # Covariance matrix
> mod.fit$var.coef
 ar1 intercept
ar1 0.005324151 0.001518125
intercept 0.001518125 0.129723806

> #Test statistic for Ho: phi1 = 0 vs. Ha: phi1 <> 0
> z <- mod.fit$coef[1]/sqrt(mod.fit$var.coef[1,1])
> z
 ar1
9.392902

> # p-value
> 2*(1-pnorm(q = abs(z), mean = 0, sd = 1))
ar1
 0

> #Confidence intervals - uses confint.default()
> confint(mod.fit, level = 0.95)
 2.5 % 97.5 %
ar1 0.5423576 0.8283821
intercept -1.1381464 0.2737015

Notes:
· arima() finds the estimated ARIMA model. Examine the syntax used!
· The estimated model is

(1 – 0.6854B)xt = -0.4322(1 – 0.6854) + wt

 (1 – 0.6854B)xt = -0.1360 + wt

where = -0.4322 and = 1.336. Equivalently, this can be written as

xt = -0.1360 + 0.6854xt-1 + wt

Compare these estimates to what was obtained earlier with the methods of moments.
·
Note the include.mean = TRUE argument in arima() that allows one to estimate . This is the default for ARIMA models with d = 0. R’s estimate for the mean is listed in the output as “intercept”. This may lead you to think that is being estimated instead. Be careful!
· There is another way to estimate through the xreg option. This option will be more important later, but it is instructive now to see how it can be used here,

> arima(x = x, order = c(1, 0, 0), method = "CSS-ML",
 include.mean = FALSE, xreg = rep(x = 1, times =
 length(x)))

Call:
arima(x = x, order = c(1, 0, 0), xreg = rep(x = 1, times = length(x)), include.mean = FALSE, method = "CSS-ML")

Coefficients:
 ar1 rep(x = 1, times = length(x))
 0.6854 -0.4322
s.e. 0.0730 0.3602

sigma^2 estimated as 1.336: log likelihood = -156.68, aic = 319.36

The rep(x = 1, times = length(x)) code creates a vector of 1’s with a length of 100. This tells R that there is a time series variable of all 1’s being used to predict xt.
·
Notice that
· Examine the components that can be extracted from the mod.fit list.
· To test if Ho:1 = 0 vs. Ha:1 0, use the test statistic

which results in a p-value of 0. Thus, 1 0 as would be expected!
· Confidence intervals are found using confint().
· The iterative parameter estimation method used is maximum likelihood estimation. To find initial values of the parameter estimates for this iterative method, conditional sums of squares estimation is used. The method = "CSS-ML" argument is specified in arima() to implement the parameter estimation method. Note that this is actually the default so excluding the method option will result in the same estimation method.
· The maximum likelihood estimation part is carried out by the optim() function in R (arima() calls this function). This is a very general function that can be used to find values which maximize a function. Finer control of the optimization can then be done through specifying the optim.control = list() option in arima(). For example, information about the iterative history can be specified by using trace = 1 and controlling the number of iterations can be done through maxit option.

The methods() function is used to see the method functions available for objects of class Arima. For example, there is a vcov.Arima() method function.

> class(mod.fit)
[1] "Arima"
> methods(class = "Arima")
[1] coef logLik predict print tsdiag vcov

> methods(generic.function = vcov)
[1] vcov.aov* vcov.Arima* vcov.glm*
[4] vcov.lm* vcov.mlm* vcov.nls*
[7] vcov.summary.glm* vcov.summary.lm*
see '?methods' for accessing help and source code

> # Covariance matrix (2nd way)
> vcov(mod.fit)
 ar1 intercept
ar1 0.005324151 0.001518125
intercept 0.001518125 0.129723806

> getAnywhere(vcov.Arima)
A single object matching ‘vcov.Arima’ was found
It was found in the following places
 registered S3 method for vcov from namespace stats
 namespace:stats
with value

function (object, ...)
object$var.coef
<bytecode: 0x000000001b7ede68>
<environment: namespace:stats>

Example: ARIMA(1,1,1) with 1 = 0.7, 1 = 0.4, = 9, n = 200 (arima111_sim.R, arima111.csv)
[image:]

Below is the R code used to estimate an ARIMA(1,1,1) model for the data.

> arima111 <- read.csv(file = "arima111.csv")

> x <- arima111$x	
> mod.fit <- arima(x = x, order = c(1, 1, 1))
> mod.fit

Call:
arima(x = x, order = c(1, 1, 1))

Coefficients:
 ar1 ma1
 0.6720 0.4681
s.e. 0.0637 0.0904

sigma^2 estimated as 9.558: log likelihood = -507.68, aic = 1021.36

> # Covariance matrix
> mod.fit$var.coef
 ar1 ma1
ar1 0.004060990 -0.003341906
ma1 -0.003341906 0.008175261

> confint(object = mod.fit, level = 0.95)
 2.5 % 97.5 %
ar1 0.5470940 0.7968949
ma1 0.2909019 0.6453306

> # Test statistic for Ho: phi1 = 0 vs. Ha: phi1 <> 0
> z <- mod.fit$coef[1]/sqrt(mod.fit$var.coef[1,1])
> z
 ar1
10.54508
> 2*(1-pnorm(q = abs(z), mean = 0, sd = 1))
ar1
 0

> # Test statistic for Ho: theta1 = 0 vs. Ha: theta1 <> 0
> z <- mod.fit$coef[2]/sqrt(mod.fit$var.coef[2,2])
> z
 ma1
5.177294
> 2*(1-pnorm(q = abs(z), mean = 0, sd = 1))
 ma1
2.251268e-07

Notes:
· Notice the syntax used to fit the model using arima().
· No estimate of was found. The reason is that the time series data is differenced. Remember that
E(xt - xt-1) = - = 0. There are times when estimating a “constant” with the rest of the model is still of interest for an ARIMA model. We will discuss these later. The arima() function will default to include.mean = FALSE when d > 0 so you will need to use the xreg option in arima() to include the constant term.
· The estimated model is

(1 B)(1 B)1xt= (1 + B)wt

 (1 0.6720B)(1 B)xt = (1 + 0.4681B)wt

 xt = (1 + 0.6720)xt-1 – 0.6720xt-2 + 0.4681wt-1 + wt

with wt ~ ind. N(0,9.56)

·

The estimated covariance matrix for = (,) is:

· To test if Ho:1 = 0 vs. Ha:1 0, use the test statistic

which results in a p-value of 0. Thus, 1 0 as would be expected!
· To test if Ho:1 = 0 vs. Ha:1 0, use the test statistic

which results in a p-value of 0. Thus, 1 0 as would be expected!

Final notes:
· The iterative methods used to find the parameter estimates may NOT converge. If this happens, try a larger number of iterations. If this does not work, one should NOT use any estimates produced for the model.
· An alternative to using a normal distribution approximation for inference is the bootstrap. R has a few functions in the boot package that allow one to perform these methods.

oleObject2.bin

image3.wmf
22

tt

22

ww

ww

n

2

22

w

n/2n

t1

w

w

11

L(,,,|)ee

(2)

2

S

--

ss

=

ms==

Õ

ps

ps

w

j

q

oleObject3.bin

image4.wmf
l

oleObject4.bin

image5.wmf
2

w

s

oleObject5.bin

image6.wmf
2

w

L(,,,|)

ms

w

j

q

oleObject6.bin

oleObject7.bin

image7.wmf
i

()

¶

¶b

b

l

oleObject8.bin

image8.wmf
(1)

()

b

l

oleObject9.bin

image9.wmf
1k

()()

,...,

¢

æö

¶¶

ç÷

¶b¶b

èø

bb

ll

oleObject10.bin

image10.wmf
2

ij

()

¶

¶b¶b

b

l

oleObject11.bin

image11.wmf
(2)

()

b

l

oleObject12.bin

image12.wmf
-

-

éù

=

ëû

bbbb

ll

1

(2)(1)

(g)(g1)(g1)(g1)

ˆˆˆˆ

()()

oleObject13.bin

image13.wmf
(g)

ˆ

b

oleObject14.bin

oleObject15.bin

image14.wmf
ˆ

b

oleObject16.bin

image15.wmf
(g)(g1)

ˆˆ

-

-<e

bb

oleObject17.bin

image16.wmf
1

(2)

ˆ

()

-

éù

-

ëû

b

l

oleObject18.bin

image17.wmf
1

2k

222k

k2k

1

1

1

k

1

V

ˆ

ar()Cov(,)Cov(,)

Cov(,)Var()Cov(,)

Cov(,)Cov(,)Var

ˆˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆˆ

()

ÙÙÙ

ÙÙÙ

ÙÙÙ

éù

êú

êú

êú

êú

êú

êú

bbbbb

bbbbb

bbbb

û

b

ë

L

L

MMOM

L

oleObject19.bin

image18.wmf
ˆ

b

oleObject20.bin

oleObject21.bin

image19.wmf
(

)

1

(2)

ˆ

N,()

-

éù

-

ëû

bb

l

oleObject22.bin

image20.wmf
ii0

i

ˆ

Z

ˆ

Var()

Ù

b-b

=

b

oleObject23.bin

image21.wmf
i

ˆ

Var()

Ù

b

oleObject24.bin

image22.wmf
1

(2)

ˆ

()

-

éù

ëû

b

l

oleObject25.bin

image23.wmf
d

¾¾®

oleObject26.bin

image24.wmf
(

)

(

)

1

d

(2)

ˆˆ

N,()

-

éù

-¾¾®-

ëû

bb0b

l

oleObject27.bin

image25.wmf
ˆ

b

oleObject28.bin

image26.wmf
(

)

1

(2)

ˆ

N,()

-

éù

-

ëû

bb

l

oleObject29.bin

image27.wmf
2

w

s

oleObject30.bin

image28.wmf
ˆ

m

oleObject31.bin

image29.wmf
2

w

ˆ

s

oleObject32.bin

image30.wmf
ˆ

a

oleObject33.bin

image1.wmf
2

w

s

image31.wmf
n

i

i1

xx/n-0.4963

=

==

å

oleObject34.bin

image32.wmf
1

1

ˆ

00.6854

Z9.39

0.005324

ˆ

Var()

Ù

j-

===

j

oleObject35.bin

image33.wmf
2

w

s

oleObject36.bin

image34.emf
0 50 100 150 200

-500

-400

-300

-200

-100

ARIMA model:



1



0.7B



1



B



x

t





1



0.4B



w

t

t

x

t

image35.wmf
1

ˆ

j

oleObject37.bin

image36.wmf
1

ˆ

q

oleObject1.bin

oleObject38.bin

image37.wmf
ˆ

b

oleObject39.bin

oleObject40.bin

oleObject41.bin

image38.wmf
1

(2)

0.0040610.003342

ˆ

()

0.0033420.008175

-

-

éù

éù

-=

êú

ëû

-

ëû

b

l

oleObject42.bin

image39.wmf
1

1

ˆ

00.6720

Z10.55

0.004061

ˆ

Var()

Ù

j-

===

j

oleObject43.bin

image40.wmf
1

1

ˆ

00.4681

Z5.1773

0.008175

ˆ

Var()

Ù

q-

===

q

image2.wmf
2

w

s

oleObject44.bin

