

17

Forecasting – Point Estimates

Predict (forecast) future values of a time series, xn+1, xn+2, … based on x1, …, xn.  


For m time points into the future, the “minimum mean square error predictor” of xn+m is = E(xn+m|xn,xn-1,…, x1). What does this mean?

E(xn+m|xn,xn-1,…, x1) is a conditional expectation. It denotes the expected value of x at m time points into the future, conditional on the time series observed.

E(xn+m|xn,xn-1,…, x1) is the value of g(x1,..,xn) that minimizes E[xn+m – g(x1,..,xn)]2


Instead of using this as a predictor, we will use an approximation  = E(xn+m|xn,xn-1,…,x1,…). What is the difference?



 is based on an infinite past and  is based on a finite past (which is what we actually have). 

For notational convenience, I will denote xn, xn-1, …, x1,… as In. This symbolizes all INFORMATION up to time point n from an INFINITE past.  


Example: AR(1) 



The model is xt = 1xt-1 + wt where wt ~ independent (0,). Taking into account the observed data of x1, …, xn, this also essentially means w1, …, wn are observed.

Suppose we have observations up to time n. We want to forecast future values for time n + m (m > 0). Thus, we want xn+m = 1xn+m-1 + wn+m.

[bookmark: ar]Let m = 1. Then the “forecasted value at time n + 1 given information up to time n” is


	= E(xn+1|In)
= E(1xn + wn+1 |In)
= E(1xn |In) + E(wn+1 |In)

= 1E(xn |In) + 0 because wn+1 is unobserved and 
                          the wn+1 ~ ind. (0, )
= 1xn  because the expectation is found CONDITIONAL on knowing xn, xn-1,…, x1,…; i.e., we know what xn is!

Let m = 2. Then 


	= E(xn+2|In)
= E(1xn+1 + wn+2 |In)
= E(1xn+1 |In) + E(wn+2 |In)
= 1E(xn+1 |In) + 0 because wn+2 is unobserved and 

                            the wn+2 ~ (0, )


= 1 because this was found for m = 1.  




 can be further written as 1 =  

In summary, 
	m
	


	1
	1xn  

	2
	
1

	3
	
1

	4
	
1

	
	








Because the parameters are generally not known, they are replaced with their estimates. Thus,  = ,  = , … . 






It would be more notationally correct to refer to this as  = ,  = , …, but I chose to follow the notational convention of most textbooks on time series. 

Question: What happens to the forecast as m  ?

The forecast goes to 0 because E(xt) = 0.   

What if   0. Then xt = (1-1) + 1xt-1 + wt where (1-1) =  is a constant term. Then
 
	m
	


	1
	(1-1) + 1xn  

	2
	
(1-1) + 1

	3
	
(1-1) + 1

	
	




Example: MA(1) 

Suppose we have observations up to time n and we want to forecast future values for time n + m (m > 0).  


xt = 1wt-1 + wt where wt ~ independent (0,)

Note that at time n + m, xn+m = 1wn+m-1 + wn+m.

Let m = 1. Then 


	= E(xn+1|In)
= E(1wn+wn+1|In)
= 1E(wn|In) + E(wn+1|In)
= 1wn + 0 because wn+1 is unobserved with 

wn+1 ~ (0, ); also xn = 1xn-1 + wn has been observed
= 1wn

Let m = 2. Then 


	= E(xn+2|In)
= E(1wn+1+wn+2|In)
= 1E(wn+1|In) + E(wn+2|In)
= 10 + 0 because wn+1 and wn+2 are unobserved 

N(0, ) random variables  
= 0

In summary, 

	m
	


	1
	1wn

	2
	0

	3
	0

	4
	0

	
	



Notice how quickly the forecasted value becomes the mean of the series, 0. Of course, you can also have other MA(q) models with a non-zero mean too.    



Because the parameters are generally not known, they are replaced with their estimates. Thus,  = .  


What is ? The answer comes from the residuals!  


How are residuals found? These are symbolically denoted as  for t = 1, …, n.  

Now, wt = xt - 1wt-1. Let w0 = 0 (remember mean is 0 for white noise). Then


w1 = x1 - 1w0 = x1 	  = x1

w2 = x2 - 1w1      	  


wn = xn - 1wn-1      	  

More complicated models follow the same process. See Shumway and Stoffer’s textbook for a ARMA(1,1) example. Alternate methods also include backcasting so that one does not necessarily start xt and wt at fixed constant values (like 0) when t < 1. 


Example: ARIMA(1,1,1)

Suppose we have observations up to time n and we want to forecast future values for time n + m (m > 0).  


(1-1B)(1-B)xt = (1+1B)wt where wt ~ independent (0,).  This can be rewritten as xt = (1+1)xt-1 - 1xt-2 + 1wt-1 + wt.  At time n + m, we have

xn+m = (1+1)xn+m-1 - 1xn+m-2 + 1wn+m-1 + wn+m

Let m = 1. Then 


 = E(xn+1|In)
= E[(1+1)xn - 1xn-1 + 1wn + wn+1|In]
= (1+1)E(xn|In) - 1E(xn-1|In) + 1E(wn|In) 
+ E(wn+1|In)
= (1+1)xn - 1xn-1 + 1wn + 0 
= (1+1)xn - 1xn-1 + 1wn

Let m = 2. Then 


 = E(xn+2|In)
= E[(1+1)xn+1 - 1xn + 1wn+1 + wn+2|In]
= (1+1)E(xn+1|In) - 1E(xn|In) + 1E(wn+1|In) 
+ E(wn+2|In) 

= (1+1) - 1xn + 10 + 0 

= (1+1) - 1xn

In summary, 

	m
	


	1
	(1+1)xn - 1xn-1 + 1wn

	2
	
(1+1) - 1xn

	3
	

(1+1) - 1

	4
	

(1+1) - 1

	
	




Because the parameters are generally not known, they are replaced with their estimates. Also,  replaces wn.



[bookmark: ar1]Example: AR(1) with 1 = 0.7,  = 0, and  = 1 (fit_AR1.R,  AR1.0.7.txt)

> ar1 <- read.table(file = "AR1.0.7.txt", header = TRUE, sep 
    = "")
> x <- ar1$x

> mod.fit <- arima(x = x, order = c(1, 0, 0))
> mod.fit  

Call:
arima(x = x, order = c(1, 0, 0), include.mean = TRUE, method = "CSS-ML")

Coefficients:
         ar1  intercept
      0.6854    -0.4322
s.e.  0.0730     0.3602

sigma^2 estimated as 1.336:  log likelihood = -156.68,  aic = 319.36

> #Covariance matrix
> mod.fit$var.coef
                  ar1   intercept
ar1       0.005324151 0.001518125
intercept 0.001518125 0.129723806
     

> #######################################################
> # Forecasting
   
> #Notice class of mod.fit is "Arima". Therefore, 
  #  generic functions, like predict, will actually
> #  call predict.Arima().  
> class(mod.fit)
[1] "Arima"
 
> #Forecasts 5 time periods into the future
> fore.mod <- predict(object = mod.fit, n.ahead = 5, se.fit 
    = TRUE) 
> fore.mod
$pred
Time Series:
Start = 101 
End = 105 
Frequency = 1 
[1]  1.26014875  0.72767770  0.36273810  0.11261952    
[5] -0.05880421

$se
Time Series:
Start = 101 
End = 105 
Frequency = 1 
[1] 1.155698 1.401082 1.502576 1.547956 1.568820

> #x_100
> x[100]
[1] 2.037059

Estimated model:


(1 – 0.6854B)xt = -0.1360 + wt where  =1.336.  

Equivalently,

xt = -0.1360 + 0.6854xt-1 + wt  

Forecasts:

	m
	


	1
	

+x100 = -0.1360+0.68542.0371 = 1.2602

	2
	


+ = -0.1360+0.68541.2602 = 0.7277

	3
	


+ = -0.1360+0.68540.7277 = 0.3628



[bookmark: _GoBack]Notice the syntax used in the predict() function!  Calculation of the standard errors and confidence intervals for xn+m will be discussed later.  

Below are plots of the observed and the forecasts.  After recording the video: Replace the above sentence with “Below are the residuals.” 


> #Residuals
> names(mod.fit)
 [1] "coef"      "sigma2"    "var.coef"  "mask"     
 [5] "loglik"    "aic"       "arma"      "residuals"
 [9] "call"      "series"    "code"      "n.cond"   
[13] "nobs"      "model"    

> mod.fit$residuals
Time Series:
Start = 1 
End = 100 
Frequency = 1 
  [1]  0.34512757  0.47929876 -0.30435533 -1.11988088
  [5] -1.79209750 -0.49310572  0.81405525  0.42879914

EDITED

[97] -0.10984115  0.69886850 -0.26732184  2.62425181
 
> # Last residual - as.numeric() removes a leftover label
> as.numeric(x[100] - mod.fit$coef[2]*(1-mod.fit$coef[1]) –
    mod.fit$coef[1]*x[99])
[1] 2.624252

We can add to the plot of the time series the forecasts t = n, …, m. For visual display, sometimes it is interesting to add the corresponding predicted values for t = 1, …, n. What are these predicted values? A simple computational way to find these in R is use a result from a regression course: 

residual = observed – predicted 

which leads to 

predicted = observed – residual

Similar to there being multiple ways to find residuals, there are multiple ways to find predicted values. Below is how I used predicted = observed – residual and created the corresponding plot. 

> #Predicted values for t = 1, ..., 100 
> x - mod.fit$residuals 
Time Series:
Start = 1 
End = 100 
Frequency = 1 
  [1] -0.30340077 -0.10739194  0.11890348 -0.26309333
  [5] -1.08383902 -2.10707034 -1.91807243 -0.89265030
 
EDITED

 [97] -1.25434524 -1.07096242 -0.39101218 -0.58719250
 
> #Add the forecasts into the first plot with C.I.s
> plot(x = x, ylab = expression(x[t]), xlab = "t", type = 
    "o", col = "red", lwd = 1, pch = 20, main = 
    expression(paste("Data simulated from AR(1): ", x[t] 
    == 0.7*x[t-1] + w[t], " where ", w[t], "~N(0,1)")) , 
    panel.first = grid(col = "gray", lty = "dotted"), xlim 
    = c(1, 105))
> lines(x = c(x - mod.fit$residuals, fore.mod$pred), lwd 
    = 1, col = "black", type = "o", pch = 17) 
> legend(locator(1), legend = c("Observed", "Forecast"), 
    lty = c("solid", "solid"), col = c("red", "black"), pch 
    = c(20, 17), bty = "n")

[image: ]
The x-axis limits were changed in the plot() function to allow for the forecasts for t = 101, …, 105 to be shown. Notice how I put these predicted values together into one vector for the first lines() function call.  

Below is a zoomed in version of the plot. 

> #Zoom in
> plot(x = x, ylab = expression(x[t]), xlab = "t", type = 
    "o", col = "red", lwd = 1, pch = 20, main = 
    expression(paste("Data simulated from AR(1): ", x[t] 
    == 0.7*x[t-1] + w[t], " where ", w[t], "~N(0,1)")) , 
    panel.first = grid(col = "gray", lty = "dotted"), xlim = 
    c(96, 105))
> lines(x = c(x - mod.fit$residuals, fore.mod$pred), lwd 
    = 1, col = "black", type = "o", pch = 17) 
> legend(locator(1), legend = c("Observed", "Forecast", 
   lty = c("solid", "solid"), col = c("red", "black"), pch = 
   c(20, 17), bty = "n")
[image: ]
	


Example: ARIMA(1,1,1) with 1 = 0.7, 1 = 0.4,  = 9, n = 200 (arima111_sim.R, arima111.csv)

> arima111 <- read.csv(file = "arima111.csv")
> x <- arima111$x

> mod.fit <- arima(x = x, order = c(1, 1, 1))
> mod.fit

Call:
arima(x = x, order = c(1, 1, 1))

Coefficients:
         ar1     ma1
      0.6720  0.4681
s.e.  0.0637  0.0904

sigma^2 estimated as 9.558:  log likelihood = -507.68,  aic = 1021.36
 
The estimated model is 


(1  0.6720B)(1  B)xt = (1+0.4681B)wt with  = 9.56

Equivalently,

xt = (1 + 0.6720)xt-1 – 0.6720xt-2 + 0.4681wt-1 + wt

Forecasts for t = 201, …, 205: 

> #Forecasts 5 time periods into the future
> fore.mod <- predict(object = mod.fit, n.ahead = 5, se.fit  
     = TRUE) 
> fore.mod
$pred
Time Series:
Start = 201 
End = 205 
Frequency = 1 
[1] -486.3614 -484.9361 -483.9784 -483.3348 -482.9023

$se
Time Series:
Start = 201 
End = 205 
Frequency = 1 
[1]  3.091673  7.303206 11.578890 15.682551 19.534208
   
> x[199:200]
[1] -488.2191 -488.4823
> mod.fit$residuals[199:200]
[1] -4.954901  4.908614
      

We will discuss later how the standard errors and confidence intervals.  


With the help of the above output, by-hand calculations of the forecasts are shown below. Note that  was found from the R output.  
 
	m
	


	1
	


(1+)x200 - x199 +  
= (1+0.6720)(-488.4823) – (0.6720)
(-488.2191) + 0.46814.9086 = -486.36

	2
	


(1+) - x200
= (1+0.6720)(-486.36) – (0.6720)
(-488.4823) = -484.93

	3
	



(1+) - 
= (1+0.6720)(-484.9216) - 0.6720
(-486.3584) = -483.96



Below are plots of the forecasts

> #Forecasts with C.I.s
> plot(x = x, ylab = expression(x[t]), xlab = "t", type = 
    "o", col = "red", lwd = 1, pch = 20, main = 
    expression(paste("ARIMA model: ", (1 - 0.7*B)*(1-
    B)*x[t] == (1 + 0.4*B)*w[t])), panel.first = grid(col = 
   "gray", lty = "dotted"), xlim = c(1, 205))
> lines(x = c(x - mod.fit$residuals, fore.mod$pred), lwd 
    = 1, col = "black", type = "o", pch = 17) 
> legend(locator(1), legend = c("Observed", "Forecast"), 
    lty = c("solid", "solid"), col = c("red", "black"), pch 
    = c(20, 17), bty = "n")

[image: ]

It is hard to see the observed and forecasted values in the above plot so I zoomed in to create the plot below.  

> #Zoom in
> plot(x = x, ylab = expression(x[t]), xlab = "t", type = 
    "o", col = "red", lwd = 1, pch = 20, main = 
    expression(paste("ARIMA model: ", (1 - 0.7*B)*(1-         
    B)*x[t] == (1 + 0.4*B)*w[t])), panel.first = 
    grid(col = "gray", lty = "dotted"), xlim = c(196, 
    205), ylim = c(-540, -440))
> lines(x = c(x - mod.fit$residuals, fore.mod$pred), lwd 
   = 1, col = "black", type = "o", pch = 17) 
> legend(locator(1), legend = c("Observed", "Forecast") 
   lty = c("solid", "solid"), col = c("red", "black"), pch = 
    c(20, 17), bty = "n")

[image: ]
oleObject2.bin

oleObject62.bin

image33.wmf
100

101

x

%


oleObject63.bin

oleObject64.bin

oleObject65.bin

image34.wmf
100

102

x

%


oleObject66.bin

image35.png




image36.png
Data simulated from AR(1): x, = 0.7x,_, +W,; where w;~N(0,1)

—— Obsened
—4— Forecast

96

104





image37.wmf
2

w

s


oleObject3.bin

oleObject67.bin

image38.wmf
2

w

ˆ

s


oleObject68.bin

image39.wmf
200

200

w

%


oleObject69.bin

oleObject70.bin

image40.wmf
1

ˆ

j


oleObject71.bin

oleObject72.bin

image41.wmf
200

1200

ˆ

w

q

%


oleObject4.bin

oleObject73.bin

oleObject74.bin

image42.wmf
200

201

x

%


oleObject75.bin

oleObject76.bin

oleObject77.bin

image43.wmf
200

202

x

%


oleObject78.bin

oleObject79.bin

oleObject80.bin

image3.wmf
2

w

s


image44.png
-500 -400 -300 -200 -100

-600

ARIMA model: (1-0.7B)(1-B)x=(1+0.4B)w;

—— Observed
—4— Forecast

50 100 150

200





image45.png
-440

-460

-480

-500

-520

-540

ARIMA model: (1-0.7B)(1-B)x=(1+04B)w,

—— Observed
—*— Forecast

196

198 200 202





oleObject5.bin

image4.wmf
n

n1

x

+

%


oleObject6.bin

oleObject7.bin

image5.wmf
n

n2

x

+

%


oleObject8.bin

oleObject9.bin

oleObject10.bin

oleObject11.bin

oleObject12.bin

image6.wmf
2

1n

x

j


oleObject13.bin

oleObject14.bin

oleObject15.bin

image7.wmf
n

n2

x

+

%


oleObject16.bin

image8.wmf
n

n3

x

+

%


oleObject17.bin

oleObject18.bin

image9.wmf
1n

ˆ

x

j


oleObject19.bin

oleObject20.bin

image10.wmf
1

ˆ

j


oleObject21.bin

oleObject22.bin

image11.wmf
n

n1

ˆ

x

+

%


oleObject23.bin

oleObject24.bin

image12.wmf
n

n2

ˆ

x

+

%


oleObject25.bin

oleObject26.bin

image13.wmf
n

n1

ˆ

x

+

%


oleObject27.bin

oleObject28.bin

oleObject29.bin

oleObject30.bin

oleObject31.bin

oleObject32.bin

oleObject33.bin

image14.wmf
n

n2

x

+

%


oleObject34.bin

oleObject35.bin

oleObject36.bin

oleObject37.bin

image15.wmf
n

1n

ˆ

w

q

%


oleObject38.bin

image16.wmf
n

n

w

%


oleObject39.bin

image17.wmf
n

t

w

%


oleObject40.bin

image18.wmf
n

1

w

%


oleObject41.bin

image19.wmf
nn

2211

ˆ

wxw

=-q

%%


oleObject42.bin

image20.wmf
nn

nn1n1

ˆ

wxw

-

=-q

%%


oleObject43.bin

image1.wmf
n

nm

x

+


image21.wmf
2

w

s


oleObject44.bin

oleObject45.bin

image22.wmf
n

n2

x

+

%


oleObject46.bin

oleObject47.bin

oleObject48.bin

oleObject49.bin

oleObject50.bin

image23.wmf
n

n2

x

+

%


oleObject1.bin

oleObject51.bin

image24.wmf
n

n1

x

+

%


oleObject52.bin

image25.wmf
n

n3

x

+

%


oleObject53.bin

image26.wmf
n

n2

x

+

%


oleObject54.bin

oleObject55.bin

image27.wmf
2

w

s


oleObject56.bin

image2.wmf
n

nm

x

+

%


image28.wmf
2

w

ˆ

s


oleObject57.bin

image29.wmf
100

100m

x

+

%


oleObject58.bin

image30.wmf
1

ˆ

ˆ(1)

m-j


oleObject59.bin

image31.wmf
1

ˆ

j


oleObject60.bin

oleObject61.bin

image32.wmf
1

ˆ

j


