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Integrated Models for Nonstationary Data

We have assumed that xt is stationary so far. What if xt is not stationary in the mean? Use differencing to make a transformation stationary in the mean.  

Autoregressive Integrated Moving Average model

· ARIMA(p,d,q) – p is AR order, d is differencing order, and q is MA order
· 
(B)(1-B)dxt = (B)wt where wt ~ ind. N(0,)
· Let (1-B)dxt = yt. Then (B)yt = (B)wt is an ARMA(p,q) model.  
· The “integrated” name results from transforming back from the yt to xt by “integrating” (put together) or “summing” the yt’s. With first differences, we have




Because higher order differencing is the result of continuing to apply first differencing, the same process would be done in those cases.    


Example: ARIMA(1,1,1) with 1 = 0.7, 1 = 0.4,  = 9, n = 200 (arima111_sim.R, arima111.csv)

(B)(1-B)dxt = (B)wt where wt ~ independent N(0,9).  

This can be rewritten as 

(1-1B)(1-B)xt = (1+1B)wt
 (1-1B)(xt-xt-1) = (1+1B)wt
 xt - xt-1 - 1xt-1 + 1xt-2 = wt +1wt-1
 xt = (1+1)xt-1 - 1xt-2 + wt +1wt-1

[bookmark: _GoBack]Using the above representation with only xt on the left side, one could use the for() loop to simulate observations from this model. Instead, one can use arima.sim() to do it as follows, 

 x <- arima.sim(model = list(order = c(1,1,1), ar = 0.7, ma 
       = 0.4), n = 200, rand.gen = rnorm, sd = 3)

Notice the addition of the order option to specify p, d, and q.  

I had already simulated observations from the model in the past and put them in the comma delimited file. I am going to use this data for the rest of the example.  

> arima111 <- read.csv(file = "arima111.csv")
> head(arima111)
  time         x
1    1 -143.2118
2    2 -142.8908
3    3 -138.0634
4    4 -133.5038
5    5 -132.7496
6    6 -132.2910

> tail(arima111)
    time         x
195  195 -469.1263
196  196 -476.6298
197  197 -483.2368
198  198 -483.9744
199  199 -488.2191
200  200 -488.4823

> x <- arima111$x

> #Plot of the data
> dev.new(width = 8, height = 6, pointsize = 10)  
> par(mfrow = c(1,1))
> plot(x = x, ylab = expression(x[t]), xlab = "t", type = 
   "l", col = "red", main = expression(paste("ARIMA 
   model: ", (1 - 0.7*B)*(1-B)*x[t] == (1 + 0.4*B)*w[t])), 
   panel.first = grid(col = "gray", lty = "dotted"))
> points(x = x, pch = 20, col = "blue")
[image: ]
> #ACF and PACF of x_t
> dev.new(width = 8, height = 6, pointsize = 10)
> par(mfcol = c(2,3))
> acf(x = x, type = "correlation", lag.max = 20, ylim = 
     c(-1,1), main = expression(paste("Estimated ACF plot 
     for ", x[t])))
> pacf(x = x, lag.max = 20, ylim = c(-1,1), xlab = "h", 
     main = expression(paste("Estimated PACF plot for ", 
      x[t])))
 
> #ACF and PACF of first differences
> acf(x = diff(x = x, lag = 1, differences = 1), type = 
      "correlation", lag.max = 20, ylim = c(-1,1), main = 
      expression(paste("Estimated ACF plot for ", x[t] – 
      x[t-1])))
> pacf(x = diff(x = x, lag = 1, differences = 1), lag.max 
      = 20, ylim = c(-1,1), xlab = "h", main = 
      expression(paste("Estimated PACF plot for ", x[t] – 
      x[t-1])))
 
> #True ACF and PACF for ARIMA(1,0,1) (without differences)
> plot(y = ARMAacf(ar = 0.7, ma = 0.4, lag.max = 20), x = 
      0:20, type = "h", ylim = c(-1,1), xlab = "h", ylab = 
      expression(rho(h)), main = "True ACF for 
      ARIMA(1,0,1)")
> abline(h = 0)
> plot(x = ARMAacf(ar = 0.7, ma = 0.4, lag.max = 20, pacf 
      = TRUE), type = "h", ylim = c(-1,1), xlab = "h", ylab 
      = expression(phi1[hh]), main = "True ACF for 
      ARIMA(1,0,1)")
> abline(h = 0)
[image: ]

> #Plot of the first differences
> dev.new(width = 8, height = 6, pointsize = 10)  
> par(mfrow = c(1,1))
> plot(x = diff(x = x, lag = 1, differences = 1), ylab = 
     expression(x[t] - x[t-1]), xlab = "t", type = "l", col 
      = "red", main =  "Plot of data after first 
      differences", panel.first = grid(col = "gray", lty = 
     "dotted"))
> points(x = diff(x = x, lag = 1, differences = 1), pch = 
     20, col = "blue")
[image: ]
Notes:
· The xt vs. t plot shows characteristics of a nonstationary in the mean time series.  
· The ACF plot shows very large autocorrelations.  Remember that this is a characteristic of a nonstationary in the mean time series.  
· After first differences, the ACF and PACF look like the ACF and PACF from an ARMA(1, 1) with 1 = 0.7 and 1 = 0.4. The plot of the first differences themselves now look like a sample from a stationary process.  
· While we have not talked about how to estimate model parameters, we can still take a quick look at what if the parameters are estimated. The arima() function in R can do it.  

> arima(x = x, order = c(1, 1, 1))

Call:
arima(x = x, order = c(1, 1, 1)

Coefficients:
         ar1     ma1
      0.6720  0.4681
s.e.  0.0637  0.0904

sigma^2 estimated as 9.558:  log likelihood = -507.68,  aic = 1021.36

These estimates are relatively close to the values used in arima.sim()!  
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