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ARCH Models – ARIMA

We previously defined an ARCH(m) model as





yt = tt where  = 0 + 1 + 2 +…+ m and t ~ independent N(0,1)

Conditions on the parameters are i  0 for all i = 1, …, m and 1 +  + m < 1.  

We could also incorporate ARIMA models with this too. For example, we could have 

(B)(1-B)dxt = (B)wt



where wt ~ ind. (0, ), , and yt represents the residuals from the ARIMA model.

Thus, non-stationarity in the variance can be taken care of by using ARCH models with an ARIMA model. 


Model Building

1) Build an ARIMA model for the observed time series to remove any autocorrelation in the data. Refer to the residuals as yt. 
2) 
Examine the squared series, , to check for heteroscedasticity. This can be done by doing an ACF and PACF plot of the [image: ] values. Remember, we are constructing an AR-like model for [image: ]. What would you expect the PACF to show if an ARCH model is needed? The Ljung-Box-Pierce test can also be performed on the [image: ] values as well.  
3) 
Decide on the order of the ARCH model for  and perform maximum likelihood estimation of all parameters.  


Example: U.S. GNP (GNP.R)

Shumway and Stoffer used ARIMA and ARCH models to examine a U.S. GNP data set with quarterly given values. An AR(1) model to the first differenced, log-transformed data was recommended originally by the authors prior to ARCH models being introduced. 

We will estimate the AR(1) and ARCH model all at once using the garchFit() and ugarchfit() functions. 

Let xt = GNP at time t for this problem.  

> library(package = astsa)
> head(gnp)
       Qtr1   Qtr2   Qtr3   Qtr4
1947 1488.9 1496.9 1500.5 1524.3
1948 1546.6 1571.1              

> tail(gnp)
       Qtr1   Qtr2   Qtr3   Qtr4
2001        9224.3 9199.8 9283.5
2002 9367.5 9376.7 9477.9   

> x <- gnp
> plot(x = x, ylab = expression(x[t]), xlab = "t", type = 
       "l", col = "red",  main = "GNP data")
> grid(col = "gray", lty = "dotted") 
[image: ]
There is non-stationarity with respect to the mean. Below are the first differences. 

> plot(x = diff(x = x, lag = 1, differences = 1), ylab = 
    expression(x[t] - x[t-1]), xlab = "t", type = "l", col 
    = "red", main = "First differences of GNP data")
> grid(col = "gray", lty = "dotted")
[image: ]

Shumway and Stoffer also work with the log transformation and make this transformation prior to the first differences. This corresponds to our earlier discussion of 

yt 	= log(xt) – log (xt-1) 
= log(xt/xt-1) 
= log(current value / past value) 

being close to a “return” in an investment (although GNP is not an investment). Because I would like to replicate their example, I chose to do the same here for the remainder of this example. 

Below is the estimate of the an AR(1) model along with the usual examinations of model fit. 

> gnpgr <- diff(x = log(gnp$x), lag = 1, differences = 1) 
> mod.fit.ar <- arima(x = gnpgr, order = c(1, 0, 0), 
    include.mean = TRUE)  
> mod.fit.ar

Call:
arima(x = gnpgr, order = c(1, 0, 0), include.mean = TRUE)

Coefficients:
         ar1  intercept
      0.3467     0.0083
s.e.  0.0627     0.0010

sigma^2 estimated as 9.03e-05:  log likelihood = 718.61,  aic = -1431.22

> source(file = "examine.mod.R")
> examine.mod(mod.fit.obj = mod.fit.ar, mod.name = 
   "ARIMA(1,1,0)")
$z
      ar1 intercept 
 5.525479  8.539823 

$p.value
         ar1    intercept 
3.285877e-08 0.000000e+00
[image: ]
[image: ]
The estimated ARIMA model for the series is 

(1 – 0.3467B)(1 – B)log(xt) = 0.0083 + wt

After recording the video: The constant term in the model was changed from 0.0083(1 – 0.3467) to 0.0083 because this represents the drift term. 




Notice the ACF and PACF plots of the residuals look like the corresponding plots for white noise. Also, notice the normal Q-Q shows the “fat tails” of the residual distribution. 

The same model could be estimated using 

   mod.fit.ar <- arima(x = log(x), order = c(1, 1, 0), xreg 
      = 1:length(x))

However, we will not be able to include a value for d in garchFit() or ugarchfit() when we include the ARCH model component. So, the code used here allows us to see the model fitting process without d. 

Let yt denote the residuals from the ARIMA model’s fit.  

> #Examine ACF and PACF of the squared residuals
> y <- as.numeric(mod.fit.ar$residuals) #Without the 
    #as.numeric() the values are not spaced correctly 
    #on the plots
> par(mfrow = c(1,2))
> acf(x = y^2, type = "correlation", lag.max = 20, xlim = 
    c(1,20), ylim = c(-1,1), xlab = "h", main = 
    expression(paste("Estimated ACF for ", y[t]^2)))
> pacf(x = y^2, lag.max = 20, ylim = c(-1,1), xlim = 
    c(1,20), xlab = "h", main = expression(paste( 
    "Estimated PACF for ", y[t]^2)))
> par(mfrow = c(1,1))
[image: ]
There are only marginally significant values in the ACF and PACF for the squared residuals. Shumway and Stoffer say, “it appears there may be some dependence, albeit small, left in the residuals.” I say, “Maybe… “.  Following their example, we can fit an ARMA(1,0) AND ARCH(1) model simultaneously using the garchFit() function of the fGarch package. Below is the code and output from garchFit(): 

> library(fGarch)
> mod.fit <- garchFit(formula = ~ arma(1,0) + garch(1, 0),   
    data = gnpgr)

Series Initialization:
 ARMA Model:                arma
 Formula Mean:              ~ arma(1, 0)
 GARCH Model:               garch
 Formula Variance:          ~ garch(1, 0)

<EDITED> 


> summary(mod.fit)

Title:
 GARCH Modelling 

Call:
 garchFit(formula = ~arma(1, 0) + garch(1, 0), data = 
   gnpgr) 

Mean and Variance Equation:
 data ~ arma(1, 0) + garch(1, 0)
<environment: 0x000000003c53fea8>
 [data = gnpgr]

Conditional Distribution:
 norm 

Coefficient(s):
        mu         ar1       omega      alpha1  
0.00527795  0.36656255  0.00007331  0.19447134  

Std. Errors:
 based on Hessian 

Error Analysis:
        Estimate  Std. Error  t value Pr(>|t|)    
mu     5.278e-03   8.996e-04    5.867 4.44e-09 ***
ar1    3.666e-01   7.514e-02    4.878 1.07e-06 ***
omega  7.331e-05   9.011e-06    8.135 4.44e-16 ***
alpha1 1.945e-01   9.554e-02    2.035   0.0418 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Likelihood:
 722.2849    normalized:  3.253536 


Standardised Residuals Tests:
                                Statistic p-Value    
 Jarque-Bera Test   R    Chi^2  9.118036  0.01047234 
 Shapiro-Wilk Test  R    W      0.9842406 0.01433658 
 Ljung-Box Test     R    Q(10)  9.874326  0.4515875  
 Ljung-Box Test     R    Q(15)  17.55855  0.2865844  
 Ljung-Box Test     R    Q(20)  23.41363  0.2689437  
 Ljung-Box Test     R^2  Q(10)  19.2821   0.03682246 
 Ljung-Box Test     R^2  Q(15)  33.23648  0.004352736
 Ljung-Box Test     R^2  Q(20)  37.74259  0.00951899 
 LM Arch Test       R    TR^2   25.41625  0.01296901 

Information Criterion Statistics:
      AIC       BIC       SIC      HQIC 
-6.471035 -6.409726 -6.471669 -6.446282 

> par(mfrow = c(1,1))
> plot(mod.fit, which = 13)
[image: ]

Notes: 
· The estimated model is 

(1 – 0.3666B)(1 – B)log(xt) = 0.0053 + wt
After recording the video: The constant term in the model was changed from 0.0053(1 – 0.3666) to 0.0053 because this represents the drift term. 

with 




· The hypothesis test for 1 = 0 vs.  0 has a p-value of 0.0418 indicating that there is marginal evidence that 1  0.  
· What do the Jarque Bera Test and the Ljung-Box test suggest about the model? The QQ-plot for the ARCH model residuals suggests a similar conclusion. Shumway and Stoffer mention the problems, but do not explore any resolutions. 
· Why doesn’t garchFit() or ugarchfit() allow for a value of d? The reason may be due to an investment return being more important that the actual value of an investment on a per share/unit basis. Of course, GNP for this example does not correspond to an investment.  
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