

18

ARCH Models – Simulated Example

There are a number of R packages available to work with these models. Packages include:

1) tseries and the garch() function
2) fGarch and the garchFit() function
3) rugarch and the ugarchfit() function

The finance task view at CRAN (http://cran.r-project.org/web/views/Finance.html) gives a summary of these and other packages available for finance data modeling.

The tseries package has limitations for what can be done with the model so we will focus on fGarch. The rugarch package works fine as well, so some examples will be provided with it. Code for the tseries package is available my corresponding programs when it will work for an example.

Example: Generate data from an ARCH(1) model with 0 = 0.1 and 1 = 0.4 (arch1.R)

Code to simulate data from the model:

set.seed(1532)
n <- 1100
a <- c(0.1, 0.4) #ARCH(1) coefficients - alpha0 and alpha1
e <- rnorm(n = n, mean = 0, sd = 1)
y <- numeric(n) #intializes a vector of y's to be n long
y[1] <- rnorm(n = 1, mean = 0, sd = sqrt(a[1]/(1.0-a[2])))
 #start value

for(i in 2:n) #Simulate ARCH(1) process
 {
 y[i] <- e[i]*sqrt(a[1] + a[2]*y[i-1]^2)
 }
y <- y[101:1100] #Drop the first 100 and just call it y
 again

save.y <- y

The start value for y1 needs to be set outside the loop. The variance used is Var(yt) = 0/(1-1) as found previously in the notes.

Below is a plot of the data. The plot of yt shows moments of high volatility in comparison to other time points.

> plot(x = y, ylab = expression(y[t]), xlab = "t", type =
 "l", col = "red", main = "ARCH(1) simulaed data",
 panel.first=grid(col = "gray", lty = "dotted"))
> points(x = y, pch = 20, col = "blue")
[image: Chart

Description automatically generated]

While I used “y” here, we would actually find a model for the mean adjusted version of it.

This data could have been generated more easily by using the garchSim() function in the fGarch package.

> library(fGarch)
> #Note that beta (sigma^2_t-1 part) needs to be set to
 something due to a default value of 0.8
> set.seed(9129)
> spec <- garchSpec(model = list(omega = 0.1, alpha = 0.4,
 beta = 0))
> x <- garchSim(spec = spec, n = 1000)
> head(x)
GMT
 garch
2019-04-16 -0.33502258
2019-04-17 -0.01923007
2019-04-18 -0.27130332
2019-04-19 -0.06068358
2019-04-20 0.11332049
2019-04-21 0.51447406

> tail(x)
GMT
 garch
2022-01-04 0.15444146
2022-01-05 0.50981301
2022-01-06 0.06590522
2022-01-07 0.28678420
2022-01-08 0.07107253
2022-01-09 -0.69714833

> plot(x = x, ylab = expression(x[t]), xlab = "t", type =
 "l", col = "red", main = "ARCH(1) simulated data",
 panel.first = grid(col = "gray", lty = "dotted"))
> points(x = y, pch = 20, col = "blue")
[image:]
Notes:
· I am unable to remove the date information produced by garchSim().
· The garchSpec() model specification can be generalized for other versions of a GARCH model. For example, an ARCH(2) model uses the alpha argument to specify 1 and 2 (use c()).

In a typical model building situation when you do not know if an ARIMA and/or ARCH model is appropriate, one should find the ACF and PACF for xt and .

> par(mfrow = c(1,2))
> acf(x = x, type = "correlation", main = "Est. ACF for
 x", ylim = c(-1,1), panel.first = grid(col = "gray",
 lty = "dotted"))
> pacf(x = x, main = "Est. PACF for x", ylim = c(-1,1),
 panel.first = grid(col = "gray", lty = "dotted"))

[image:]

There is not any strong indication of dependence among xt for t = 1, …, n. This indicates that an ARIMA model is likely not needed.

> acf(x = x^2, type = "correlation", main =
 expression(paste("Est. ACF for ", x^2)), ylim =
 c(-1,1), panel.first = grid(col = "gray", lty =
 "dotted"))
> pacf(x = x^2, main = expression(paste("Est. PACF for ",
 x^2)), ylim = c(-1,1), panel.first = grid(col =
 "gray", lty = "dotted"))
> par(mfrow = c(1,1))

[image:]

There are significant ACF and PACF values for . The patterns in these plots are similar to those for an AR(1). Therefore, an ARCH(1) model should be investigated.

> mod.fit <- garchFit(formula = ~ garch(1, 0), data = x,
 include.mean = TRUE)

Series Initialization:
 ARMA Model: arma
 Formula Mean: ~ arma(0, 0)

<OUTPUT EDITED>

> summary(mod.fit)

Title:
 GARCH Modelling

Call:
 garchFit(formula = ~garch(1, 0), data = x)

Mean and Variance Equation:
 data ~ garch(1, 0)
<environment: 0x000000000e6a7528>
 [data = x]

Conditional Distribution:
 norm

Coefficient(s):
 mu omega alpha1
0.00041282 0.09665398 0.42442295

Std. Errors:
 based on Hessian

Error Analysis:
 Estimate Std. Error t value Pr(>|t|)
[bookmark: muhat]mu 0.0004128 0.0108266 0.038 0.97
omega 0.0966540 0.0066149 14.612 < 2e-16 ***
alpha1 0.4244229 0.0608758 6.972 3.13e-12 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log Likelihood:
 -452.1397 normalized: -0.4521397

Standardised Residuals Tests:
 Statistic p-Value
 Jarque-Bera Test R Chi^2 0.4202807 0.8104705
 Shapiro-Wilk Test R W 0.9981939 0.3735418
 Ljung-Box Test R Q(10) 15.1952 0.1251057
 Ljung-Box Test R Q(15) 18.0511 0.2599886
 Ljung-Box Test R Q(20) 20.52373 0.4256256
 Ljung-Box Test R^2 Q(10) 3.841834 0.9542001
 Ljung-Box Test R^2 Q(15) 14.25011 0.5066509
 Ljung-Box Test R^2 Q(20) 15.26702 0.7609304
 LM Arch Test R TR^2 5.875025 0.9222503

Information Criterion Statistics:
 AIC BIC SIC HQIC
0.9102794 0.9250027 0.9102615 0.9158753

Notes:
· The garchFit() function fits the model. The order of the model is given as (m,r) where m is the order of the ARCH part and r is order of the GARCH part. BE CAREFUL because textbooks and software are not consistent in their orderings.
· Use trace = FALSE to reduce the amount of information given when running garchFit().
· A warning message is given when running garchFit(): After recording the video: The warning no longer occurs. The authors have updated their code.

Warning message:
Using formula(x) is deprecated when x is a character vector of length > 1.
 Consider formula(paste(x, collapse = " ")) instead.

Code within the function itself needs to be updated by its authors.
· The model for the data is

xt = 0.0004128 + wt

with wt ~ N(0, , , and yt = xt - 0.0004128. Equivalently, we could state the model as

 = t

where , yt = xt – 0.0004128, and t ~ N(0,1).
· Notice how close the parameter estimates are to the true parameters (use the standard error to help measure closeness).
· The standard tests for whether or not the 0 = 0 or 1 = 0 are given in the coefficients table of the output. Both are significantly different from 0 as would be expected. Even though the output says “t value” and “Pr(>|t|)”, a normal distribution approximation is made to the sampling distribution of the test statistic.
· The Ljung-Box-Pierce test is the same test as discussed before. This test is performed upon the residuals (R) and squared residuals (R^2) for lags 10, 15, and 20. All of the p-values are larger indicating there is no dependence remaining in the residuals or squared residuals.
· The Jarque-Bera and Shapiro-Wilk tests are tests for normality of the residuals (null hypothesis is a normal distribution). The large p-values suggest there is not sufficient evidence against the normality assumption.
· A model can be fit to the original simulated data as well. The estimated model is

with . The code for this estimation is within the program.

To view what is inside of mod.fit, we need to use the slotNames() function rather than the usual names() function.

Most of R and its corresponding packages are written in a form very similar to the S programming language. This language was first developed in the 1970s at Bell Laboratories with its main designer being John Chambers. Version 3 of S (S3) is emulated most by R, and this is what was used primarily before this example. Version 4 (S4) is used by the fGarch and rugarch packages. The components of an object in S4 are called “slots”. To access a slot, use the syntax <object name>@<slot name>.

> names(mod.fit)
NULL
> slotNames(mod.fit)
 [1] "call" "formula" "method" "data"
 [5] "fit" "residuals" "fitted" "h.t"
 [9] "sigma.t" "title" "description"

> tail(mod.fit@fitted)
 2021-11-24 2021-11-25 2021-11-26 2021-11-27
0.0004128227 0.0004128227 0.0004128227 0.0004128227
 2021-11-28 2021-11-29
0.0004128227 0.0004128227

> tail(mod.fit@residuals)
[1] 0.15402864 0.50940019 0.06549239 0.28637137
[5] 0.07065971 -0.69756116

> tail(x - mod.fit@fitted)
GMT
 garch
2011-10-17 0.15402864
2011-10-18 0.50940019
2011-10-19 0.06549239
2011-10-20 0.28637137
2011-10-21 0.07065971
2011-10-22 -0.69756116

> tail(residuals(object = mod.fit))
[1] 0.15402864 0.50940019 0.06549239 0.28637137
[5] 0.07065971 -0.69756116

> tail(mod.fit@sigma.t)
[1] 0.4175212 0.3266854 0.4547382 0.3138064 0.3625745
[6] 0.3142818
> sqrt(0.0966540+0.4244229*(x[999]-0.0004128)^2)
[1] 0.3142818

> tail(mod.fit@h.t) #sigma.t^2 for us
[1] 0.17432393 0.10672334 0.20678688 0.09847444 0.13146029
[6] 0.09877303

> tail(mod.fit@sigma.t^2)
[1] 0.17432393 0.10672334 0.20678688 0.09847444 0.13146029
[6] 0.09877303

> mod.fit@fit$matcoef[,1]
 mu omega alpha1
0.0004128227 0.0966539778 0.4244229495

> e <- (x - mod.fit@fit$matcoef[1,1])/mod.fit@sigma.t
> tail(e)
GMT
 garch
2011-10-17 0.3689122
2011-10-18 1.5592990
2011-10-19 0.1440222
2011-10-20 0.9125735
2011-10-21 0.1948833
2011-10-22 -2.2195406

> tail(residuals(object = mod.fit, standardize = TRUE))
[1] 0.3689122 1.5592990 0.1440222 0.9125735 0.1948833
[6] -2.2195406

> # Can use residuals(object = mod.fit, standardize = TRUE) > # for e
> par(mfrow = c(1,2))
> acf(x = e, type = "correlation", lag.max = 20, ylim =
 c(-1,1), xlab = "h", main = "ARCH residual ACF")
> pacf(x = e, lag.max = 20, ylim = c(-1,1), xlab = "h",
 main = "ARCH residual PACF")
> par(mfrow = c(1,1))

[image:]

Notes:
·
Notice the “@fitted” values are all equal to Why?
·
The “@residuals” values are the observed time series minus .
·

I found estimates of the residuals for the ARCH part of the model as et = /. You can also obtain these as well by using the residuals() function with the standardize = TRUE argument value.
· The ACF and PACF plots (not shown above) for et do not show any significant autocorrelations or partial autocorrelations as expected.

The plot() function with the model fitting object leads to a number of plots that can be produced:

> plot(mod.fit)

Make a plot selection (or 0 to exit):

 1: Time Series
 2: Conditional SD
 3: Series with 2 Conditional SD Superimposed
 4: ACF of Observations
 5: ACF of Squared Observations
 6: Cross Correlation
 7: Residuals
 8: Conditional SDs
 9: Standardized Residuals
10: ACF of Standardized Residuals
11: ACF of Squared Standardized Residuals
12: Cross Correlation between r^2 and r
13: QQ-Plot of Standardized Residuals

Selection:
Enter an item from the menu, or 0 to exit
Selection: 1

[image:]

Make a plot selection (or 0 to exit):

 1: Time Series
 2: Conditional SD
 3: Series with 2 Conditional SD Superimposed
 4: ACF of Observations
 5: ACF of Squared Observations
 6: Cross Correlation
 7: Residuals
 8: Conditional SDs
 9: Standardized Residuals
10: ACF of Standardized Residuals
11: ACF of Squared Standardized Residuals
12: Cross Correlation between r^2 and r
13: QQ-Plot of Standardized Residuals

Selection: 5

[image:]

Make a plot selection (or 0 to exit):

 1: Time Series
 2: Conditional SD
 3: Series with 2 Conditional SD Superimposed
 4: ACF of Observations
 5: ACF of Squared Observations
 6: Cross Correlation
 7: Residuals
 8: Conditional SDs
 9: Standardized Residuals
10: ACF of Standardized Residuals
11: ACF of Squared Standardized Residuals
12: Cross Correlation between r^2 and r
13: QQ-Plot of Standardized Residuals

Selection: 10
[image:]
Make a plot selection (or 0 to exit):

 1: Time Series
 2: Conditional SD
 3: Series with 2 Conditional SD Superimposed
 4: ACF of Observations
 5: ACF of Squared Observations
 6: Cross Correlation
 7: Residuals
 8: Conditional SDs
 9: Standardized Residuals
10: ACF of Standardized Residuals
11: ACF of Squared Standardized Residuals
12: Cross Correlation between r^2 and r
13: QQ-Plot of Standardized Residuals

Selection: 11
[image:]
Make a plot selection (or 0 to exit):

 1: Time Series
 2: Conditional SD
 3: Series with 2 Conditional SD Superimposed
 4: ACF of Observations
 5: ACF of Squared Observations
 6: Cross Correlation
 7: Residuals
 8: Conditional SDs
 9: Standardized Residuals
10: ACF of Standardized Residuals
11: ACF of Squared Standardized Residuals
12: Cross Correlation between r^2 and r
13: QQ-Plot of Standardized Residuals

Selection:
Enter an item from the menu, or 0 to exit
Selection: 13
[image:]

To produce just one plot, you can use

plot(mod.fit, which = 1)

where the which argument corresponds to the plot number seen in the list.

Forecasting can be done using the predict() function:

> # Forecasts
> predict(object = mod.fit, n.ahead = 3, plot = TRUE, nx =
 3, conf = 0.95)
 meanForecast meanError standardDeviation lowerInterval
1 0.0004128227 0.5506129 0.5506129 -1.0787687
2 0.0004128227 0.4746875 0.4746875 -0.9299576
3 0.0004128227 0.4385071 0.4385071 -0.8590452
 upperInterval
1 1.0795943
2 0.9307833
3 0.8598709
[image:]After recording the video: m here represents the number of time points into the future for the forecast, not the order of the GARCH model

How are these forecasts found?

We started with xt. There are no i or j parameters in the model so forecasted values are . We also set yt = xt – . Note that = E(yn+m | In) = 0. Thus, the forecasted value for xn+m is and for yn+m is 0. The variance needed for a CI given by

because of the simplicity of the model. Then

because

Our model for is = 0 + 1. Thus,

Substituting the parameter estimates and n = 1000, we obtain

> 0.0966540 + 0.4244229*(x[1000]-0.0004128)^2
[1] 0.3031746

for or equivalently , which matches the “standardDeviation” column in the output.

The (1 -)100% C.I. for xn+m is

Substituting the parameter estimates and n = 1000,

> sigma.1001 <- sqrt(0.0966540 + 0.4244229*(x[1000]
 - 0.0004128)^2)
> 0.0004128 - qnorm(p=0.975)*sigma.1001
[1] -1.078769
> 0.0004128 + qnorm(p=0.975)*sigma.1001
[1] 1.079594

which matches the output.

For m = 2, we have . We saw earlier in the course notes that = 0 + 1. Using this result, we can write as

We find and the 95% confidence interval for x1002 to be

> sigma.1002 <- sqrt(0.0966540 + 0.4244229 *
 sigma.1001^2)
> sigma.1002
[1] 0.4746875
> 0.0004128-qnorm(p=0.975)*sigma.1002
[1] -0.9299576
> 0.0004128 + qnorm(p=0.975)*sigma.1002
[1] 0.9307832

which matches the output.

The rugarch package’s data simulation function ugarchsim() needs to use a model fitting object from ugarchfit() to simulate data. Below is an example of how to fit a model to the original simulated data (save.y) and then to use the resulting model fit object to simulate data.

> spec <- ugarchspec(variance.model = list(model =
 "sGARCH", garchOrder = c(1,0)), mean.model =
 list(armaOrder = c(0, 0), include.mean = TRUE, arfima =
 FALSE))
> mod.fit <- ugarchfit(spec = spec, data = save.y)
> summary(mod.fit)
 Length Class Mode
 1 uGARCHfit S4

> show(mod.fit)

* GARCH Model Fit *

Conditional Variance Dynamics

GARCH Model : sGARCH(1,0)
Mean Model : ARFIMA(0,0,0)
Distribution : norm

Optimal Parameters

 Estimate Std. Error t value Pr(>|t|)
mu -0.013252 0.010990 -1.2059 0.22785
omega 0.099077 0.006358 15.5821 0.00000
alpha1 0.355799 0.052955 6.7189 0.00000

Robust Standard Errors:
 Estimate Std. Error t value Pr(>|t|)
mu -0.013252 0.011018 -1.2028 0.22904
omega 0.099077 0.006581 15.0556 0.00000
alpha1 0.355799 0.067837 5.2449 0.00000

LogLikelihood : -433.8668

Information Criteria

Akaike 0.87373
Bayes 0.88846
Shibata 0.87372
Hannan-Quinn 0.87933

Weighted Ljung-Box Test on Standardized Residuals

 statistic p-value
Lag[1] 2.677 0.1018
Lag[2*(p+q)+(p+q)-1][2] 2.745 0.1645
Lag[4*(p+q)+(p+q)-1][5] 3.807 0.2791
d.o.f=0
H0 : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals

 statistic p-value
Lag[1] 2.354 0.1250
Lag[2*(p+q)+(p+q)-1][2] 2.557 0.1851
Lag[4*(p+q)+(p+q)-1][5] 3.015 0.4044
d.o.f=1

Weighted ARCH LM Tests

 Statistic Shape Scale P-Value
ARCH Lag[2] 0.4045 0.500 2.000 0.5248
ARCH Lag[4] 0.7954 1.397 1.611 0.7722
ARCH Lag[6] 0.9093 2.222 1.500 0.9118

Nyblom stability test

Joint Statistic: 0.6268
Individual Statistics:
mu 0.26102
omega 0.09566
alpha1 0.18167

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 0.846 1.01 1.35
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test

 t-value prob sig
Sign Bias 2.7735 0.005649 ***
Negative Sign Bias 1.4811 0.138889
Positive Sign Bias 0.6937 0.488002
Joint Effect 8.6820 0.033831 **

Adjusted Pearson Goodness-of-Fit Test:

 group statistic p-value(g-1)
1 20 21.44 0.3130
2 30 36.32 0.1644
3 40 36.72 0.5743
4 50 42.70 0.7250

Elapsed time : 0.107878

Notes:
· The model specification is different from what we have seen so far. Notice the arfima = FALSE argument value. If one wanted to include an ARFIMA model for the original series, this where you can say TRUE. Notice the output says “ARFIMA(0,0,0)” model, but a regular ARIMA model is used unless the arfima argument is TRUE.
· Notice the use of show() rather than summary() to obtain a summary of the model fit.
·

The ARCH(1) model is = t where and . These estimates are VERY similar to those produced by garchFit().

Below is an example of simulating new data from this model:

> set.seed(1828)
> x.sim <- ugarchsim(fit = mod.fit, n.sim = 1000)
> slotNames(x.sim)
[1] "simulation" "model" "seed"
> head(x.sim@simulation$seriesSim)
 [,1]
[1,] 0.293186348
[2,] 0.165803842
[3,] -0.721580395
[4,] -0.223599151
[5,] -0.005500317
[6,] 0.643013179

When I try to fit the corresponding model to the data, the model does not converge! I was successful with other simulated data.

image2.png
ARCH(1) simulated data

2020-01-01 2021-01-01 2022-01-01

image3.wmf
2

t

x

oleObject1.bin

image4.png
ACF

10

05

00

-05

-1.0

Est. ACF for x

Est. PACF for x

10

05

Partial ACF

00

-05

-1.0

image5.png
ACF

10

05

00

-05

-1.0

Est. ACF for X°

Est. PACF for x*

10

05

Partial ACF

00

-05

-1.0

30

oleObject2.bin

image6.wmf
2

t

ˆ)

s

oleObject3.bin

image7.wmf
22

tt1

ˆ0.0967+0.4244y

-

s=

oleObject4.bin

image8.wmf
t

y

oleObject5.bin

image9.wmf
t

ˆ

s

oleObject6.bin

image10.wmf
22

tt1

ˆ0.0967+0.4244y

-

s=

oleObject7.bin

image11.wmf
222

t01t1t1

ˆˆ

ˆy0.0990+0.3550y

--

s=a+a=

%%

oleObject8.bin

image12.wmf
ˆ0.01325

m=-

oleObject9.bin

image13.png
ACF

10

05

00

-05

-1.0

ARCH residual ACF ARCH residual PACF
e
0
&
””””””” | T —— B i I A MR —
T T T 5 o T T T
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, £ S L B
<
0
L
o
T T T T T ! T T T T
0 5 10 15 20 5 10 15 20
h h

image14.wmf
ˆ0.00041.

m=

oleObject10.bin

image15.wmf
ˆ0.00041

m=

oleObject11.bin

image16.wmf
t

y

oleObject12.bin

image17.wmf
t

ˆ

s

oleObject13.bin

image18.emf
0 200 400 600 800 1000

-1

0

1

2

Time Series

Index

x

image19.emf
0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Lags

ACF

ACF of Squared Observations

image20.emf
0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Lags

ACF

ACF of Standardized Residuals

image21.emf
0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Lags

ACF

ACF of Squared Standardized Residuals

image22.emf
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

4

qnorm - QQ Plot

Theoretical Quantiles

Sample Quantiles

image23.emf
1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

Index

x

Prediction with confidence intervals

X

^

th

X

^

th

1.96MSE

X

^

th

1.96MSE

image24.wmf
n

nm

y

+

%

oleObject14.bin

image25.wmf
ˆ0.0004128

m=

oleObject15.bin

image26.wmf
nn

nmnmnmnm

Var(xx)Var(yy)

++++

-=-

%%

oleObject16.bin

image27.wmf
n2

nmnmnmnmnm

Var(yy)Var()

+++++

-=se=s

%

oleObject17.bin

image28.wmf
n

nmnmnmnmnmnm

yy0

++++++

-=se-=se

%

oleObject18.bin

image29.wmf
2

t

s

oleObject19.bin

oleObject20.bin

image30.wmf
2

t1

y

-

oleObject21.bin

image31.wmf
+

s=a+a

22

n101

n

y

oleObject22.bin

image32.wmf
2

1001

ˆ

s

oleObject23.bin

image33.wmf
1001

ˆ0.30320.5506

s==

oleObject24.bin

image34.wmf
·

nn

nm1/2nmnm

xZVar(xx)

+-a++

±-

%%

oleObject25.bin

image35.wmf
22

n201n1

y

++

s=a+a

oleObject26.bin

image36.wmf
2

tt1

E(y|y)

-

oleObject27.bin

oleObject28.bin

image37.wmf
2

n2

+

s

oleObject29.bin

image38.wmf
22

n20101n

(y)

+

s=a+aa+a

oleObject30.bin

image39.wmf
1002

ˆ

s

oleObject31.bin

image40.wmf
t

y

oleObject32.bin

oleObject33.bin

image41.wmf
222

t01t1t1

ˆˆ

ˆy0.0991+0.3558y

--

s=a+a=

oleObject34.bin

image42.wmf
tt

yx0.013252

=+

oleObject35.bin

image1.png
ARCH(1) simulated data

b

\ ‘ ’
!‘ ‘n“"ln ““\W Oy H il ‘h % ’”u ml“”"
‘HHI} ‘\“ i “‘ J Ik B wu\ H‘ W' i

H) ‘
ik
i v -y

0 200 400 600 800 1000

