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More on CIs for 


Where does the result of  having a t distribution come from? Remember that Y1, …, Yn need to be independent random variables each with a normal probability distribution that has E(Yi) =  and Var(Yi) = 2 for i = 1, …, n. 

Suppose Z has a standard normal distribution and W has a chi-square distribution with  degrees of freedom. Also, suppose Z and W are independent random variables. One can show that  




has a t distribution with  degrees of freedom. 

The numerator corresponds to 


,

where Z has an exact normal distribution with mean 0 and standard deviation 1 due to assumptions for Y1, …, Yn (we did not discuss this exact result in the past, but focused on the central limit theorem approximation). 

The denominator corresponds to 


,

where W has a chi-square distribution with  degrees of freedom. 

Going through the algebra, one can see that 




when  = n – 1. 


Note that  and S2 can be shown to be independent random variables (Casella and Berger, 2002, p. 218). This allows Z and W to be independent. 


Why do we make these mathematical assumptions? 

Whenever doing research, it’s often best to start with a particular case, like a normal distribution here. One can look to generalize beyond this particular case to see if the assumptions were needed. Fortunately, statistical research has shown that T has an approximate t distribution in many, many other cases! This allows the CI to work as expected! 


What does work as expected mean? 

When a 100(1 – )% confidence level is stated, the interval actually has a confidence level close to it. We can examine this more closely via Monte Carlo simulation! 


Example: GPA and coverage (coverage_GPA.R)

Suppose a sample of students was taken 1,000 times from the population of all students on campus. For each sample, student GPAs were recorded using a sample size of 20. Also, suppose the population can be characterized by the probability distribution shown below.
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The PDF is




Without going into all of the details, this PDF is based on a multiplying by 4 a random variable W with a beta probability distribution with parameters  = 5 and  = 2. For more on this probability distribution, please see textbooks like Walpole et al. and Wackerly et al.

The mean and variance are  = E(Y) = 2.8571 and 2 = Var(Y) = 0.4082.  

The data used here is the same as the example used when discussing the central limit theorem. Below are the first 6 samples of size 20 and the first 6 sample means: 

> head(round(set1,2))
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 3.41 2.79 2.65 1.87 3.21 2.99 2.96 3.83 3.28  2.15
[2,] 3.01 3.15 3.83 2.25 3.75 3.76 2.22 1.99 2.50  3.29
[3,] 2.90 2.23 2.95 3.17 3.25 3.85 3.59 3.37 3.57  3.11
[4,] 3.06 2.59 2.50 2.60 2.33 2.19 2.01 2.29 2.94  2.89
[5,] 2.38 2.74 3.48 3.25 3.24 3.34 3.17 2.79 2.25  3.39
[6,] 2.46 3.51 2.21 2.88 3.75 2.40 3.50 3.04 2.63  2.98

     [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19]
[1,]  1.11  2.73  3.68  3.34  3.56  2.12  3.27  3.76  2.91
[2,]  3.64  3.55  3.45  2.45  3.57  3.26  3.04  2.77  3.33
[3,]  3.69  1.55  3.38  3.47  3.37  3.80  3.68  3.33  2.42
[4,]  3.34  2.33  3.81  3.72  2.83  3.27  3.74  2.10  2.95
[5,]  2.04  2.39  3.08  3.06  2.85  2.29  3.38  3.60  2.89
[6,]  2.00  1.90  3.98  2.51  2.41  1.74  3.20  2.60  2.17

     [,20]
[1,]  3.59
[2,]  3.34
[3,]  3.58
[4,]  2.79
[5,]  2.61
[6,]  2.81

Please see the program for how the data was simulated. 

Next, we want to find 95% CIs for  (n is set in the program).

> alpha <- 0.05  # Find 95% Cis
> means <- apply(X = set1, MARGIN = 1, FUN = mean)
> SDs <- apply(X = set1, MARGIN = 1, FUN = sd)
> lower <- means - qt(p = 1- alpha/2, df = n - 1) * 
    SDs/sqrt(n)
> upper <- means + qt(p = 1- alpha/2, df = n - 1) * 
    SDs/sqrt(n)
> head(data.frame(lower, upper))
     lower    upper
1 2.631034 3.290285
2 2.843263 3.370958
3 2.943799 3.483025
4 2.557018 3.070460
5 2.695145 3.127585
6 2.442785 3.025248

> coverage <- mean(lower < mu & upper > mu)
> coverage
[1] 0.955

Coverage is the percentage of time that the intervals contain . It is estimating the stated confidence level of 95%. The coverage here is close to what we expected! 

Notes: 
· Coverage is also known as the estimated confidence level.  
· A different set of 1,000 samples will most likely result in a coverage level different from 95.5%. However, all coverage levels will be relatively close to 95%. 
· Plot of the first 50 intervals (see program for code)
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The third interval is the first one that does not contain . 
· Remember that the sample size is only 20 and the population does not resemble what would be expected for a normal probability distribution! 

What about other sample sizes? The program provides the code. Below is a summary from running it.

	n
	Coverage

	30
	95.4%

	20
	95.5%

	10
	94.1%

	5
	95.0%



The CIs get wider though as n decreases. Why? 

First 50 intervals for n = 5 and n = 20 using the same y-axis scale: 
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