

 2011 Christopher R. Bilder

 1

An Introduction to R

Christopher R. Bilder
University of Nebraska-Lincoln

Department of Statistics

September 16, 2011

www.chrisbilder.com/workshop

 2011 Christopher R. Bilder

 2

Table of Contents
I. Basics .. 4

R Console window .. 4

Functions .. 7

Help ... 9

Vectorized calculations ... 14

Packages .. 16

Characters .. 19

II. Program editors ... 20

R’s program editor .. 20

Tinn-R ... 23

WinEdt .. 29

RStudio ... 32

Other editors ... 34

III. Regression Example .. 35

Data management .. 35

Scatter plot .. 42

Fitting the model ... 47

Object oriented language .. 54

Estimating the response ... 58

Viewing function code ... 62

Writing your own functions .. 63

IV. Graphics ... 67

Curves... 67

Histograms .. 73

Box and dot plots .. 76

 2011 Christopher R. Bilder

 3

lattice package .. 78

ggplot2 package ... 81

Resources ... 83

V. Logistic regression ... 84

Reading in data ... 85

Fitting the model ... 86

Estimating the response ... 90

Object oriented language .. 97

Writing your own functions .. 100

VI. Additional topics ... 103

R Commander .. 103

Contingency tables ... 112

More data management .. 117

Miscellaneous ... 125

VII. Index of R terms .. 128

VIII.Index of R functions .. 129

I. B

T
h
“
e
o

R C

A

Basics

The R
http://c
“Downl
execute
o.k. to

Conso

After st

s

R insta
ran.r-p
load R
e the f
use).

ole win

tarting

allation
project.o
R 2.*.*
file to i

ndow

R, you

 2011 Ch

n file
org/bin

for W
nstall i

u will ob

hristopher R.

for W
n/windo
Window
t (all th

btain th

Bilder

Window
ows/bas
ws” link
he insta

he follow

ws is
se/.
k. You
allation

wing w

availa
Select

u can
n defau

window

 4

able at
t the
simply

ults are

:

4

t
e
y
e

 2011 Christopher R. Bilder

 5

The R Console window is where commands are typed,
and it can be used much like a calculator:

> 2+2
[1] 4
> (2-3)/6
[1] -0.1666667
> 2^2
[1] 4
> sin(pi/2)
[1] 1
> cos(pi/2)
[1] 6.123032e-17
> log(1)
[1] 0
> qchisq(0.95,1)
[1] 3.841459
> pnorm(1.96)
[1] 0.9750021

Results from these calculations can be stored in an
object. A <- (less than and minus symbols) is used to
make the assignment, and it is read as the word “gets”.
For example,

> save<-2+2
> save
[1] 4

The = symbol can be used to make the assignment too,
but <- is much more frequently used.

Objects are stored in R’s database, which is kind of like
the SAS WORK library. When you close R, you will be

 2011 Christopher R. Bilder

 6

asked to save or delete the objects. I usually delete them
because they can be easily reproduced through my
code. To see a listing of all objects, use one of the
following:

> ls()
[1] "save"
> objects()
[1] "save"

To delete an object, use rm(<object name>), where
the appropriate object name is substituted for <object
name>.

 2011 Christopher R. Bilder

 7

Functions

R performs calculations using functions. For example,
the qchisq() and the pnorm() commands used
earlier are functions. Writing your own function is fairly
simple. For example, suppose you would like a function
to calculate the standard deviation. Below is an example
where 5 observations are saved to an object using the
concatenate or combine function. A function called
sd2() is written that finds the standard deviation by
using the square root of the variance. The sd2 object is
now stored in the R database.

> x<-c(1,2,3,4,5)

> sd2<-function(numbers) {
 sqrt(var(numbers))
 }

> sd2(x)
[1] 1.581139

> save<-sd2(x)
> save
[1] 1.581139

Note that there already is a function called sd() in R to
calculate the standard deviation.

When a function has multiple lines of code in it, the last
line corresponds to the returned value. For example,

> x<-c(1,2,3,4,5)

 2011 Christopher R. Bilder

 8

> sd2<-function(numbers) {
 cat(“Print the data: \n”, numbers, “\n”)
 sqrt(var(numbers))
 }

> save<-sd2(x)
Print the data
1 2 3 4 5

> save
[1] 1.581139

The cat() function within sd2() prints text and the \n
is a special escape character that moves printed text to
the next line.

Heelp

To v
selec
bar. T

view a
cting H
The He

a list o
HELP >
elp will

 2011 Ch

of R’s
> HTM

open i

hristopher R.

 funct
L HEL
n your

Bilder

tions, o
P from
defaul

open
m the m
lt web b

the H
main R
browse

 9

elp by
R menu
er:

9

y
u

Unde
the w

All b
pack

er REF
window

uilt in
ages

ERENC
w below

R func
are a

 2011 Ch

CE, se
w:

ctions
automa

hristopher R.

elect the

are sto
atically

Bilder

e link P

ored in
includ

PACKA

n a pac
ded w

AGES t

ckage.
with y

 10

to open

Some
our R

0

n

e
R

insta
webs

We h
pack
the li
this f

llation,
site (mo

have b
ages. T
ink for
function

 and s
ore on

een us
Throug
pnorm

n:

 2011 Ch

some n
this lat

sing fu
gh sele
m(), w

hristopher R.

need to
ter).

nctions
ecting s
we obta

Bilder

o be do

s from
stats an
ain the

ownloa

the ba
nd scro
 help w

aded fro

ase an
olling d
web pa

 11

om R’s

d stats
down to
age for

1

s

s
o
r

 2011 Christopher R. Bilder

 12

The full syntax for pnorm() is

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p=FALSE)

and it evaluates the cumulative distribution function for
the normal distribution (i.e., F(x) for a random variable
X). The q argument corresponds to the 1.96 that was
entered earlier. Thus,

> pnorm(1.96)
[1] 0.9750021
> pnorm(q = 1.96)
[1] 0.9750021
> pnorm(q = 1.96, mean = 0, sd = 1)
[1] 0.9750021
> pnorm(1.96, 0, 1)
[1] 0.9750021

produce the same results. The other arguments within
the function have default values. For example, the
standard normal distribution is the default, because
mean = 0 and sd = 1 (standard deviation). If you use
argument values without argument names (last
example), you MUST have the correct order for the
argument values. For this reason, I strongly recommend
always using the argument names in all but the most
basic functions.

You can see help for other functions involving the normal
distribution. They are

 2011 Christopher R. Bilder

 13

 dnorm() – Finds the normal probability density
function value (i.e., f(x) for a random variable X)

 qnorm() – Computes a quantile from a normal
distribution (i.e., find q in F(q) = for a known value of
)

 rnorm() – Simulates data from a normal distribution

There are many functions available for other probability
distributions. All functions have the same leading letter:
d, p, q, and r, that correspond to what they do. Help files
for many other distributions are available on your
computer at http://127.0.0.1:14149/library/stats/html/
Distributions.html.

All help web pages have the same general format. The
end of each web page gives code examples that you can
copy and paste into your R Console window.

If you know the exact name of the function, simply type
help(<function name>) at the R Console command
prompt to open its help web page. For example,

> help(pnorm)

opens the same help as before for pnorm().

 2011 Christopher R. Bilder

 14

Vectorized calculations

Many R functions work directly on vectors. We saw an
example of a vector earlier when we created the object x
with

> x<-c(1,2,3,4,5)

As an example of how R takes advantage of working
with vectors, below is how to find more than one
probability or quantile at a time from a probability
distribution:

> pnorm(q = c(-1.96, 1.96))
[1] 0.02499790 0.97500210

> qt(p = c(0.025, 0.975), df = 9)
[1] -2.262157 2.262157

The qt() function computes the 0.025 and 0.975
quantiles from a t-distribution with 9 degrees of freedom.

For a little more complex example, suppose we want a
95% confidence interval for a population mean:

> x<-c(3.68, -3.63, 0.80, 3.03, -9.86, -8.66, -2.38, 8.94,
 0.52, 1.25)
> x
 [1] 3.68 -3.63 0.80 3.03 -9.86 -8.66 -2.38
 8.94 0.52 1.25

> var.xbar<-var(x)/length(x)
> mean(x) + qt(p = c(0.025, 0.975), df = length(x) - 1) *
 sqrt(var.xbar)

 2011 Christopher R. Bilder

 15
[1] -4.707033 3.445033

> t.test(x = x, mu = 2, conf.level = 0.95)

 One Sample t-test

data: x
t = -1.4602, df = 9, p-value = 0.1782
alternative hypothesis: true mean is not equal to 2
95 percent confidence interval:
 -4.707033 3.445033
sample estimates:
mean of x
 -0.631

In this example, a random sample of size 10 is taken
from a population and put into an object called x. The
“mean(x) + … ” line of code shows how the
calculations are performed automatically even though
the qt() function produces a vector with two elements
in it. I checked my confidence interval calculation with
the results from t.test(), which calculates the
confidence interval and does a hypothesis test for a
specified mean (mu). Be careful when intermixing
vectors and scalar values when doing calculations like
this so that unintended results do not occur.

Pa

ackage

A set
those
them
(CRA
ROD
our d
INST

A nu
show
usua
Next
ROD

es

t of fun
e pack

m from
AN) an
DBC pa
data. W
TALL P

umber
wn in a
ally cho
, the

DBC pa

nctions
kages n
 the
d insta

ackage
While in
ACKAG

of loc
windo

oose U
list of
ckage

 2011 Ch

s can b
not alre
Comp

all them
 later t
n the R
GE(S)

ations
ow. Cho
USA(IA

packa
and se

hristopher R.

be com
eady in
rehens

m. For
to read
R cons
from th

from
oose o

A), whi
ages w
elect O

Bilder

bined
nstalled
sive R
examp

d in Ex
sole, se
he main

around
ne loca
ch is

will ap
K.

into a
d, R c

R Arch
ple, we
xcel file
elect P
n menu

d the w
ation c
at Iow
pear.

packag
can dow
hive N
e will u
es con

PACKA
u.

world
close to
wa Sta
Highlig

 16

ge. For
wnload

Network
use the
ntaining
GES >

will be
o you (
te U.)

ght the

6

r
d
k
e
g
>

e
I
.
e

The
This
partic
curre
at th

packag
only n

cular v
ent R s
e R C

ge now
needs
version
ession

Console

 2011 Ch

w will b
to be
of R.

, type
e prom

hristopher R.

be insta
done
To loa
libra
pt. Thi

Bilder

alled o
once f
ad the
ary(pa
is need

onto yo
for a c
 packa
ackage
ds to b

our com
comput
age int
e = R
be don

 17

mputer
ter and
to your
RODBC)
ne only

7

.
d
r

y

 2011 Christopher R. Bilder

 18

once per R session. If you close R and reopen, you need
to use the library() function again.

The availability of these packages is one of the strengths
of R. Users submit their own packages to CRAN, so that
other users can then download them. There are more
than 3,000 packages available! Packages also provide a
convenient way to disseminate research. For example, a
user will write a paper for a statistics journal and include
the corresponding R code in a package. One example of
this includes the binGroup package, which I am an
author.

A list of all R packages is at http://cran.rproject.org/web/
packages. One way to find a package containing
functions of interest to you is by searching for a keyword.
For example, searching for “group testing” leads to my
package.

 2011 Christopher R. Bilder

 19

Characters

Object names can include periods and underscores. For
example, “mod.fit” could be a name of an object and it is
often read as “mod dot fit”.

R is case sensitive!

 2011 Christopher R. Bilder

 20

II. Program editors

When there is a set of R code that you would like to execute
all at once, you can save the code into a program and then
run it. A text editor like Notepad or even Word will work as a
place to type and then save the R code. Code from the
editor can be copied and pasted into R. There are other
editors available that make code reading and transferring
much easier.

R’s program editor

Starting with R 2.0, a VERY limited program editor was
incorporated into it. Select FILE > NEW SCRIPT to
create a new program. Below is what the editor looks
like with some of the past examples:

To r
(whe
a se
EDIT
SELE

To r
EDIT
as a
FILE
use
name

run the
ere the
t of hi

T >
ECTIO

run all
T > RU

progra
 > SA
a .R

e. To o

e curre
cursor
ighlight

RUN
N.

of a
UN ALL
am out

AVE an
extens

open a

 2011 Ch

ent line
r is pos
ted co
N LI

progra
L. To s
tside of
nd mak
sion o

a progr

hristopher R.

e of c
sitioned
ode, se
INE

am, se
save c
f R, se
ke sure

on the
am, se

Bilder

code
d) or
elect

OR

elect
code
elect
e to

file
elect

 21

1

 2011 Christopher R. Bilder

 22

FILE > OPEN SCRIPT. Note that you can have more
than one program open at the same time.

There are much better program editors available! Each
of the editors described next have color coding for the
program code. This makes reading code much easier!

Tin

nn-R

Tinn-
free,
softw
signif
code
are g
progr
synta
scree

-R (htt
Windo

ware p
ficant f

e is colo
green a
ram ne
ax high
en capt

tp://ww
ows-ba
packag
feature
orized t
and tex
eeds to
hlightin
ture of

 2011 Ch

ww.scivi
ased pr
e outs

es is sy
to its p

xt within
o be s
ng to
Tinn-R

hristopher R.

iews.or
rogram
side o
yntax h

purpose
n quote
saved
appear

R versio

Bilder

rg/Tinn
m editor
of R.
highligh
e. For e
es is bu
with th
r by d
on 1.17

n-R/inde
r that i
One

hting, w
examp
urgundy
he .R
default.
7.2.4:

ex.htm
is a se
of its

which
le, com
y. Note
extens
 Below

 23

ml) is a
eparate
s most
means

mments
e that a
sion for
w is a

3

a
e
t
s
s
a
r
a

This
than

Note
 Tin

R f
the
wo

 To
win
sel
To
dis
the

 Aft
win
ide
res
R).
RE

 Sy
cop
Aft
ED

 A g
Op
R
are

is not
newer

s:
nn-R ha
functio

e edito
orks wh

send
ndow,
ection”

send
splayed
e left on
er sen

ndow w
eal if bo
sults in
. To pr

ETURN
ntax hi
pied an
er hig

DIT > C
good w
pen Tin
on you

e viewa

the mo
versio

as a da
ons. Wh
r show

hen typ
part of
highlig

” icon
the e

d in R,
n the R
nding
will com
oth win

the R
revent t

N FOCU
ghlight
nd pas
hlightin

COPY F
way to u
nn-R op
ur seco
able at

 2011 Ch

ost up-t
ons (rea

atabas
hen yo

ws the
ing a fu
f a pro
ght the
(, 4th
entire
select

R toolba
code f

me bac
ndows a

windo
this fro

US AFT
ting ca
sted in
ng the
FORMA
use Tin
pen on
ondary
the sa

hristopher R.

to-date
ason to

e cont
ou star

syntax
unction
gram f
e code
from t
progra
the “S

ar).
from T

ck as th
are op
w wou

om occ
TER SE
n be m

nto a w
e desir
ATTED
nn-R a
 your p

y monit
ame tim

Bilder

e versio
o be dis

aining
rt typin
x – sim

n.
from T
e and
the left
am an

Send al

Tinn-R
he top
en in t
ld be h

curring,
ENDIN

maintain
word p
red cod

D (TO E
nd R is
primary
tor, so

me. This

on, but
scusse

the sy
g a fu
milar t

inn-R t
selec

t on th
nd see
ll” icon

to R
window
he sam
hidden
 select
G TO R

ned wit
rocess
de to

EXPOR
s with t
y monit

that b
s is ho

t I like
d short

yntax of
nction
to how

to an o
ct the
he R to
e the

(, 2

, the
w. This
me area

behind
t OPTI
R.
h code

sing pro
copy,

RT) > R
two mo
tor, and
both w
ow I use

 24

it more
tly).

f many
name

w Exce

open R
“Send

oolbar)
results
nd from

Tinn-R
s is not
a (your
d Tinn-
ONS >

e that is
ogram
select

RTF.
onitors
d open
indows
e Tinn-

4

e

y
,
l

R
d
.
s

m

R
t
r
-
>

s
.
t

.
n
s
-

 2011 Christopher R. Bilder

 25

R and R. Alternatively, if you have one large monitor,
open both windows side-by-side. Windows 7 makes
this easy by dragging the windows as far as possible
to either side of your monitor screen, and the windows
will be re-sized appropriately.

There are two ways that R can be run: 1) MDI mode and
2) SDI mode. The MDI mode is the default, and this is
what I am running now. “M”ultiple windows are contained
within the R GUI (graphical user interface) including the
R Console and plots (to be discussed later). The SDI
mode has the R Console in a “s”ingle window and plots
are in separate windows outside of the normal R GUI.
You can determine the current mode by selecting EDIT
> GUI PREFERENCES and examining the top line of the
“Rgui Configuration Editor”. If you want to use the SDI
mode, the easiest way is to add a “--sdi" (there are two
hyphens before sdi) to a R shortcut target path in
Windows. For example, I can right click on a R 2.13.1
shortcut to add to its Target path:

Vers
mode
looks

ions of
e. Belo
s like:

f Tinn-R
ow is a

 2011 Ch

R grea
screen

hristopher R.

ter tha
n captu

Bilder

n 1.17
ure of w

.2.4 re
what ve

quire t
ersion

 26

he SD
2.3.5.2

6

I
2

If Tin
by se
with
repos
make
addit
 Pro

spe

nn-R is
electing
an “x”
sition
e both
tional c
ogram
ecific ic

run fir
g the “
in a re
its win

viewa
comme
code i
cons o

 2011 Ch

rst with
R Con

ed circle
ndow a
able si
nts abo
n Tinn

on Tinn

hristopher R.

hout R
ntrol: gu
e) from
and th
multan
out Tin

n-R can
n-R's R

Bilder

opene
ui (star

m the R
e R C

neously
n-R 2.3

n be ru
R toolb

d, R ca
rt/close

R toolba
Console
y. Belo
3.5.2:

un in R
bar. Fo

an be
e)” icon
ar. Tinn
e wind

ow are

R by se
or exam

 27

started
n (, R
n-R wil
dow to
e some

electing
mple, a

7

d
R
l

o
e

g
a

hig
sel
arr

 Aft
win
to
RE
SE
two

 By
in
CO
LIN

 Us
sam

ghlighte
ecting

row tip
er sen

ndow w
preven

ETURN
END/CO
o circul
defaul
yellow

OLORS
NE (CH
ing bot
me com

ed por
the “R

pointin
nding
will com
nt this

N FO
ONTRO
lar arro
lt, the l
. To tu

S (PRE
HOICE)
th Tinn
mputer

 2011 Ch

rtion of
R SEN
ng to th
code f

me bac
s from
OCUS
OL RG
ows) on
line co
urn this

EFERE
) box.
n-R 2.3
does n

hristopher R.

f code
ND: cu
e right
from T
k as th
occur

TO
GUI) or
n the M
ntainin
s optio
NCE) a

3.5.2 a
not wor

Bilder

e is tr
rsor to
) on the
Tinn-R
he top w
rring, s
O E
r the a

Misc too
g the c

on off,
and un

nd Tin
rk well.

ransferr
o end
e R too

to R
window
select

EDITOR
appropr
olbar.
cursor
select

ncheck

n-R 1.
.

red to
line” ic

olbar.
, the
w. If yo
OPTIO

R (A
riate ic

is high
OPTIO

k the A

17.2.4

 28

R by
con (

Tinn-R
ou want
ONS >
AFTER
con (

hlighted
ONS >

ACTIVE

on the

8

y
,

R
t

>
R

d
>
E

e

 2011 Christopher R. Bilder

 29

WinEdt

I used the WinEdt editor (version 5.5) with R’s RWinEdt
package as my main program editor for many years. I
recently switched to Tinn-R because RWinEdt was not
available for 64-bit processors at the time I purchased a
new computer. The package is now available for 64-bit
processors, so WinEdt with RWinEdt provide a nice
alternative to Tinn-R. One downside is that WinEdt is
shareware (30-day free trial).

Below is a brief description of the installation process:
1) Download WinEdt from http://www.winedt.com (see

Downloads on left menu) and install on your
computer.

2) Assuming R is already installed on your computer,
install the RWinEdt package within R.

3) Type library(package = RWinEdt) at the
command prompt to complete the installation. You
can ignore any messages about running R in MDI
mode unless you want to run R in a language other
than English. Note that you may need to run R as an
Administrator before doing this step (right click on an
R shortcut and select RUN AS ADMINISTRATOR).

4) An additional menu heading in R named “R-WinEdt”
will be available now. Select R-WinEdt and click on
the SET AND START R-WinEdt option. This will
automatically start WinEdt with the R add-on!

5) In
RW
wit

To tr
and s

There
comp
 Us

the fu
WinEdt
thin R.

ransfer
select t

e are o
ponent
e this t

uture,
t) at t

r code
the PA

other w
s. In th
target p

 2011 Ch

you ca
the R C

from W
ASTE bu

ways to
he past
path to

hristopher R.

an typ
Conso

WinEdt
utton.

start W
, I have
start W

Bilder

e lib
le prom

t to R,

WinEdt
e done
WinEdt

brary(
mpt to

, highli

with its
 the fo
:

(packa
start W

ght the

s addit
llowing

 30

age =
WinEdt

e code

ional R
g:

0

=
t

e

R

 2011 Christopher R. Bilder

 31

"C:\Program Files\WinEdt Team\WinEdt\WinEdt.exe"
 -C="R-WinEdt" -e=r.ini

 Add this line of code:

options(defaultPackages = c(getOption("defaultPackages"),
 "RWinEdt"))

to the “Rprofile.site” file at “C:\Program Files\R\R-
2.13.1\etc” (for R 2.13.1). Whenever R starts, it will
automatically run library(package = RWinEdt).

RS

Studio

RStu
offers
runs
captu

udio (w
s a nic
on mu

ure of it

www.rst
ce inte
ultiple
t for ve

 2011 Ch

tudio.o
erface f
operat

ersion 0

hristopher R.

rg) is
for R.
ing sys
0.92.23

Bilder

still in
The s
stems.
3:

beta t
oftware
Below

testing
e is fre
w is a

 32

, but it
ee and
screen

2

t
d
n

 2011 Christopher R. Bilder

 33

The software package combines a program editor, R
Console window, graphics window, working database
listing, and other items within one overall window. To
create a new program, select FILE > NEW > R SCRIPT
or open an existing program by selecting FILE > OPEN
FILE. To run a segment of code, highlight it and then
select the “Run” icon in the program editor window.

 2011 Christopher R. Bilder

 34

Other editors

Please see http://www.sciviews.org/_rgui/projects/
Editors.html for a listing of other editors. In particular, the
Emacs editor (http://www.gnu.org/software/emacs) with
the Emacs Speaks Statistics (http://ess.r-project.org/)
add-on are popular especially for Unix users.

 2011 Christopher R. Bilder

 35

III. Regression Example

Suppose you would like to estimate an individual’s
college GPA by their high school GPA through a simple
linear regression model. The corresponding R program
for this example is gpa.R and the data files are gpa.txt
(plain text file using space delimiters), gpa.csv (plain text
file using comma delimiters) and gpa.xls.

Data management

Below is the code used to read the data into R:

> ##
> # NAME: Chris Bilder #
> # DATE: 8-14-11 #
> # PURPOSE: Simple data analysis example in R using the #
> # gpa data set #
> # #
> # NOTES: #
> ##

> #Read in the data with spaces separating variable values
> gpa<-read.table(file = "C:\\chris\\unl\\Dropbox\\NEW\\
 workshop\\Gallup\\gpa.txt", header=TRUE, sep = "")

> #Print data set
> gpa
 HS.GPA College.GPA
1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

 2011 Christopher R. Bilder

 36
7 3.39 3.4
8 2.32 2.6
9 2.69 2.8
10 0.83 1.6
11 2.39 2.0
12 3.65 2.9
13 1.85 2.3
14 3.83 3.2
15 1.22 1.8
16 1.48 1.4
17 2.28 2.0
18 4.00 3.8
19 2.28 2.2
20 1.88 1.6

> head(gpa)
 HS.GPA College.GPA
1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

Notes:
 The #() symbol is used to start comment lines in R.

Comments are helpful to include in programs to
describe the code.

 The read.table() function reads the data into R.
Pay special attention to the syntax used with the file
argument. The “\\” are needed between folder names
rather than only “\” (“/” can be used too). Also, because
the variable names are at the beginning of the data
file, the header = TRUE option is given. Finally, the
sep = "" option specifies that white space (spaces,
tabs, …) separates variable values in the data file.

 2011 Christopher R. Bilder

 37

 The gpa object is referred to as a data.frame in R’s
terminology. It can be printed by typing its name and
then Enter.

 The head() function is a simple way to print the first
few lines of an object as a quick check. A tail()
function also exists to print the last few lines.

Alternative data formats include:
 Comma delimited – Use sep = "," with
read.table() or use read.csv().

> gpa.comma1<-read.table(file = "C:\\chris\\unl\\Dropbox
 \\NEW\\workshop\\Gallup\\gpa.csv", header=TRUE, sep =
 ",")
> head(gpa.comma1)
 HSGPA CollegeGPA
1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

> #Another way
> gpa.comma2<-read.csv(file = “C:\\chris\\unl\\Dropbox

 \\NEW\\workshop\\Gallup\\gpa.csv", header=TRUE)
> head(gpa.comma2)
 HSGPA CollegeGPA
1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

 Excel files – Use the RODBC package

 2011 Christopher R. Bilder

 38

> library(package = RODBC)
> z<-odbcConnectExcel(xls.file = "C:\\chris\\unl\\Dropbox
 \\NEW\\workshop\\Gallup\\gpa.xls")
> gpa.excel<-sqlFetch(channel = z, sqtable = "sheet1")
> close(z)

> head(gpa.excel)
 HSGPA CollegeGPA
1 3.04 3.1
2 2.35 2.3
3 2.70 3.0
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

The write.table() and write.csv() functions
export data out of R:

> write.csv(x = gpa, file = "C:\\chris\\unl\\Dropbox\\NEW\\
 workshop\\Gallup\\temp.csv")

The summary() function provides a simple data
summary:

> summary(gpa)
 HS.GPA College.GPA
 Min. :0.830 Min. :1.400
 1st Qu.:2.007 1st Qu.:1.975
 Median :2.370 Median :2.400
 Mean :2.569 Mean :2.505
 3rd Qu.:3.127 3rd Qu.:3.025
 Max. :4.320 Max. :3.800

 2011 Christopher R. Bilder

 39

Once data is in a data.frame, one variable at a time can
be accessed by using <data.frame>$<variable>.
For example,

> names(gpa)
[1] "HS.GPA" "College.GPA"
> gpa$HS.GPA
 [1] 3.04 2.35 2.70 2.05 2.83 4.32 3.39 2.32 2.69 0.83 2.39
 3.65 1.85 3.83 1.22 1.48
[17] 2.28 4.00 2.28 1.88

Notice that the names() function provides a list of
variables included in the data.frame. We will use this
function again later for more complex data objects!

Parts of the data.frame can also be accessed through
using a matrix-like reference. For example,

> gpa[1,1]
[1] 3.04
> gpa[,1]
 [1] 3.04 2.35 2.70 2.05 2.83 4.32 3.39 2.32 2.69 0.83 2.39
 3.65 1.85 3.83 1.22 1.48
[17] 2.28 4.00 2.28 1.88
> gpa[1,1:2]
 HS.GPA College.GPA
1 3.04 3.1
> gpa[1,c(1,2)]
 HS.GPA College.GPA
1 3.04 3.1

Questions:
 How can you access only the first row of a data.frame?
 What does gpa[,-2] return?

 2011 Christopher R. Bilder

 40

There are times when you would like to access parts of a
data set based on some condition. For example,
suppose you would like to view observations where the
high school GPA was less than 2.5:

> gpa$HS.GPA<2.5
 [1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
 TRUE TRUE FALSE TRUE
[14] FALSE TRUE TRUE TRUE FALSE TRUE TRUE

> gpa[gpa$HS.GPA<2.5,]
 HS.GPA College.GPA
2 2.35 2.3
4 2.05 1.9
8 2.32 2.6
10 0.83 1.6
11 2.39 2.0
13 1.85 2.3
15 1.22 1.8
16 1.48 1.4
17 2.28 2.0
19 2.28 2.2
20 1.88 1.6

> sum(gpa$HS.GPA<2.5)
[1] 11

The gpa$HS.GPA<2.5 part performs the logical
comparison of “Is a high school GPA < 2.5?” A TRUE or
FALSE is produced for each entry. Using the resulting
vector, we can pull out those observations from gpa that
satisfy the condition. Also, note that R treats the TRUE
and FALSE values as 1’s and 0’s, respectively, when
working with a mathematical function. This is helpful to
determine how often a condition is satisfied.

 2011 Christopher R. Bilder

 41

The ifelse() function performs a similar logical
comparison:

> #If then else - note that "&" means "and"
> test.cond<-ifelse(test = gpa$HS.GPA<2.5 &
 gpa$College.GPA<2.5, yes = 1, no = 0)
> sum(test.cond)
[1] 10

> #If then else - note that "or" means "and"
> test.cond<-ifelse(test = gpa$HS.GPA<2.5 |
 gpa$College.GPA<2.5, yes = 1, no = 0)
> sum(test.cond)
[1] 11

The ifelse() function is useful for more complicated
resulting values from the comparison.

 2011 Christopher R. Bilder

 42

Scatter plot

Below is a simple scatter plot of the data created by the
plot() function. This plot is created in an R Graphics
window and then copied into Word:

> plot(x = gpa$HS.GPA, y = gpa$College.GPA)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1
.5

2
.0

2
.5

3
.0

3
.5

gpa$HS.GPA
g

p
a

$
C

o
lle

g
e

.G
P

A

 2011 Christopher R. Bilder

 43

Including optional arguments makes the plot look much
better:

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab =
 "HS GPA", ylab = "College GPA", main = "College
 GPA vs. HS GPA", xlim = c(0,4.5), ylim =
 c(0,4.5), col = "red", pch = 1, cex = 1.0, lwd = 2.0,
 panel.first = grid(col = "gray", lty = "dotted"))

0 1 2 3 4

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
o

lle
g

e
 G

P
A

Desc
 x

y-a
 xla

lab
 mai
 xli

lim
 col

the
can
http
ind

 pch
of p

cription
= and

axis, re
ab =

bels, re
in = s
im =
its, res
l = s

e colo
n be
p://rese

dex.htm
h = sp
possibl

s of the
y = sp
spectiv
and y

spectiv
specifie
and y

spective
pecifie
ors()
used.
earch.s

m.
pecifies
le char

 2011 Ch

e optio
pecify w
vely.
ylab =
vely.
es the
ylim =
ely. No

es the c
functio
Also,

stowers

s the p
racters

hristopher R.

nal arg
what is

= spec

main ti
= spec

otice the
color o
on to
you c

s-institu

lotting
.

Bilder

gument
s plotte

cify the

tle of th
cify the
e use o

of the p
see w
can se
ute.org

charac

ts:
ed on th

e x-axi

he plot
e x-axi
of the c
plotting
hat po

ee the
g/efg/R/

cters. B

he x-ax

is and

t.
is and
c() fun
g point
ossible
se co
/Color/

Below

 44

xis and

y-axis

y-axis
nction.
ts. Run

colors
lors at
Chart/

is a list

4

d

s

s

n
s
t

t

 2011 Christopher R. Bilder

 45

 cex = specifies the magnification level of the plotting
characters, where 1.0 is the default. A value of 1.5
means 50% larger than the default, and a value of 0.5
means 50% smaller than the default.

 lwd = specifies the thickness of plotting points or
lines, where 1.0 is the default.

 panel.first = grid() specifies that grid lines are
plotted. The line types are: 1 = solid, 2 = dashed, 3 =
dotted, 4 = dotdash, 5 = longdash, 6 = twodash. The
corresponding words "solid", "dashed", "dotted",
"dotdash", "longdash", or "twodash" can be given as
well. These line type specifications are used in other
functions too (including plot()) with the lty
argument.

 The par() function’s Help contains more information
about the different plotting options!

The plot is easily imported into Word. First, make sure
the R Graphics window is the current window in R and
then select FILE > COPY TO THE CLIPBOARD > AS A
METAFILE. Select the PASTE button in Word to import
it.

To obtain specific x-axis or y-axis tick marks on a plot,
use the axis() function. For example,

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS
 GPA", ylab = "College GPA", main = "College GPA vs. HS
 GPA", xlim = c(0,4.5), ylim = c(0,4.0), col = "red",
 pch = 1, cex = 1.0, lwd = 2, panel.first=grid(col =

 2011 Christopher R. Bilder

 46
 "gray", lty = "dotted"), xaxt = "n")
> #Major tick marks for x-axis
> axis(side = 1, at = seq(from = 0, to = 4.5, by = 0.5))
> #Minor tick marks for x-axis
> axis(side = 1, at = seq(from = 0, to = 4.5, by = 0.1),
 tck = 0.01, labels = FALSE)

Notice the use of xaxt = “n” in the plot() function.
This specifies that no tick marks are to be drawn on the
x-axis.

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
o

lle
g

e
 G

P
A

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

 2011 Christopher R. Bilder

 47

Fitting the model

The lm() function fits linear regression models:

> mod.fit<-lm(formula = College.GPA ~ HS.GPA, data = gpa)

> #A very brief look of what is inside of mod.fit
> mod.fit

Call:
lm(formula = College.GPA ~ HS.GPA, data = gpa)

Coefficients:
(Intercept) HS.GPA
 0.7076 0.6997

The ~ symbol separates the dependent and independent
variables within the formula argument. If there were
multiple independent variables, the + symbol would be
used to separate them.

The results are stored in an object called mod.fit. By
running the mod.fit object name only at a command
prompt, R prints a some information about what is inside
of it. To obtain a more thorough listing, use the names()
function:

> names(mod.fit)
 [1] "coefficients" "residuals" "effects" "rank"
 "fitted.values"
 [6] "assign" "qr" "df.residual"
 "xlevels" "call"
[11] "terms" "model"

The
termi
numb
linked
lists
more
repre
for lm

mod.f
inology
ber of
d items
are oft

e comp
esents
m():

fit o
y. Lists
other

s do no
ten use
plex fun

within

 2011 Ch

bject i
s prov
items
ot need
ed as t
nctions
this lis

hristopher R.

is refe
vide a
togeth

d to be
the obj
s. A su
st is giv

Bilder

erred to
gene

er und
 the sa
ject ret
mmary
ven in

o as
eral wa
der one
ame siz
turned
y of wh

the he

a list
ay to
e objec
ze or ty
from r

hat eac
elp web

 48

in R’s
link a

ct. The
ype, so
running
ch item
b page

8

s
a
e
o
g
m
e

 2011 Christopher R. Bilder

 49

To access part of the list, use the syntax
<list>$<component>. This is the same syntax used
with a data.frame, because a data.frame is a special
type of list (each component is a vector of the same
length). Below are a couple of examples with the
mod.fit object:

> mod.fit$coefficients
(Intercept) HS.GPA
 0.7075776 0.6996584

> mod.fit$residuals
 1 2 3 4 5 6 7 8
 0.26546091 -0.05177482 0.40334475 -0.24187731 -0.18761083 -0.03010181 0.32058048 0.26921493
 9 10 11 12 13 14 15 16
 0.21034134 0.31170591 -0.37976115 -0.36133070 0.29805437 -0.18726921 0.23883914 -0.34307203
 17 18 19 20
-0.30279873 0.29378887 -0.10279873 -0.42293538

We can combine some of these items together into one
data.frame to summarize the model’s fit:

> save.fit<-data.frame(gpa, College.GPA.hat =
 round(mod.fit$fitted.values,2), residuals =
 round(mod.fit$residuals,2))

> head(save.fit)
 HS.GPA College.GPA College.GPA.hat residuals
1 3.04 3.1 2.83 0.27
2 2.35 2.3 2.35 -0.05
3 2.70 3.0 2.60 0.40
4 2.05 1.9 2.14 -0.24
5 2.83 2.5 2.69 -0.19
6 4.32 3.7 3.73 -0.03

The summary() function can be used with the
mod.fit object to summarize the list’s contents:

 2011 Christopher R. Bilder

 50

> summary(object = mod.fit)

Call:
lm(formula = College.GPA ~ HS.GPA, data = gpa)

Residuals:
 Min 1Q Median 3Q Max
-0.42294 -0.25711 -0.04094 0.27536 0.40334

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.70758 0.19941 3.548 0.00230 **
HS.GPA 0.69966 0.07319 9.559 1.78e-08 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `
' 1

Residual standard error: 0.297 on 18 degrees of freedom
Multiple R-Squared: 0.8354, Adjusted R-squared: 0.8263
F-statistic: 91.38 on 1 and 18 DF, p-value: 1.779e-08

Notice the different results that we received here from
what we received earlier with summary(gpa)! We will
discuss soon why the same function produces different
results.

The estimated regression model is

College.GPA 0.70758 0.69966HS.GPA.

What if there was a categorical independent variable? R
automatically creates indicator variables to represent it in
a model, where the “set first level equal to 0” type of

 2011 Christopher R. Bilder

 51

coding is performed (SAS does “set last level equal to
0”). Below is a quick example:

> where.live<-c("with parents", "dorm", "off-campus")
> x<-rep(x = where.live, each = 7)
> gpa2<-data.frame(gpa, where.live = x[-21])
> head(gpa2)
 HS.GPA College.GPA where.live
1 3.04 3.1 with parents
2 2.35 2.3 with parents
3 2.70 3.0 with parents
4 2.05 1.9 with parents
5 2.83 2.5 with parents
6 4.32 3.7 with parents

> levels(gpa2$where.live)
[1] "dorm" "off-campus" "with parents"
> contrasts(gpa2$where.live)
 off-campus with parents
dorm 0 0
off-campus 1 0
with parents 0 1

> mod.fit2<-lm(formula = College.GPA ~ HS.GPA + where.live,
 data = gpa2)
> summary(mod.fit2)

Call:
lm(formula = College.GPA ~ HS.GPA + where.live, data =
gpa2)

Residuals:
 Min 1Q Median 3Q Max
-0.40615 -0.25755 -0.02649 0.24466 0.45214

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.80244 0.23009 3.487 0.00304 **
HS.GPA 0.67101 0.07953 8.437 2.76e-07 ***
where.liveoff-campus -0.13862 0.17062 -0.812 0.42847
where.livewith parents 0.05806 0.16594 0.350 0.73096

 2011 Christopher R. Bilder

 52
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3033 on 16 degrees of freedom
Multiple R-squared: 0.8475, Adjusted R-squared: 0.8189
F-statistic: 29.64 on 3 and 16 DF, p-value: 9.084e-07

R uses the ordering given by levels() (this will be
alphabetical unless specified otherwise) to decide what
level to make the base level (“dorm”).

If a categorical independent variable is coded as
number, you need to specify it is categorical within
lm(). This is done by using factor(<variable>) in
the formula argument. For example, suppose
gpa2$where.live had the levels of 1, 2 and 3. The
formula argument would be:

formula = College.GPA ~ HS.GPA + factor(where.live)

The gpa.R program provides an example.

Transformations of independent variables can be
included within the formula argument. For some
transformations, the I() function needs to be used to
tell R how to interpret the transformation. For example,
suppose we would like to have HS.GPA and HS.GPA2 in
the model. The formula argument would be:

formula = College.GPA ~ HS.GPA + I(HS.GPA^2)

 2011 Christopher R. Bilder

 53

The reason for this extra function is because a formula
argument like

formula = Y ~ (X1 + X2)^2

is the syntax for R to estimate:

0 1 1 2 2 3 1 2E(Y) x x x x

 2011 Christopher R. Bilder

 54

Object oriented language

Every object in R has an attribute called a class. You
can view them by using the attributes() or class()
functions:

> class(gpa)
[1] "data.frame"
> class(gpa$HS.GPA)
[1] "numeric"
> class(lm)
[1] "function"
> class(mod.fit)
[1] "lm"

R is often referred to as an objected oriented language
because generic functions, like summary(), provide
different results depending on an object’s class. When a
generic function is invoked, it first checks for the class of
the object. R then looks for a method function with the
name format <generic function>.<class name>.

Examples for summary():
 summary(mod.fit) – The function summary.lm()

summarizes the regression model fit.
 summary(gpa) – The function
summary.data.frame() summarizes the
data.frame’s contents.

 summary.default() – R attempts to run this
function if there is no method function for a class.

 2011 Christopher R. Bilder

 55

There are many generic functions! For example, plot()
is a generic function (try plot(mod.fit) to see what
happens!). We will also see other generic functions like
predict() later.

Why is R set-up like this?

The purpose of generic functions is to use a familiar
language set with any object. For example, we
frequently want to summarize data or a model,
summary(); to plot data, plot(); and to find
predictions, predict(); so it is convenient to use
the same language set no matter the application.

Understanding generic and method functions may be
one of the most difficult parts for new R users. However,
it is important to know the basics for these functions now
in order to locate the correct help for a function. For
example, suppose you want help on what summary()
does with an object created by lm(). Do not examine
the help for the generic function itself –
help(summary). Instead, examine the help for the
method function – help(summary.lm).

To show all method functions associated with a class,
use methods(class = <class>). The method
functions associated with the lm class are:

> methods(class = lm)

 2011 Christopher R. Bilder

 56
 [1] add1.lm* alias.lm* anova.lm
 case.names.lm* confint.lm*
 cooks.distance.lm*

<OUTPUT EDITED>

 [31] rstudent.lm simulate.lm* summary.lm
 variable.names.lm* vcov.lm*

 Non-visible functions are asterisked

To show all method functions for a generic function, use
methods(generic.function = <generic
function>). Below are the method functions
associated with summary():

> methods(generic.function = summary)
 [1] summary.aov summary.aovlist
 summary.aspell* summary.connection
 summary.data.frame

<OUTPUT EDITED>

 [26] summary.stepfun summary.stl*
 summary.table summary.tukeysmooth*

 Non-visible functions are asterisked

Below are a few examples of using generic functions
with mod.fit:

> anova(object = mod.fit)
Analysis of Variance Table

Response: College.GPA
 Df Sum Sq Mean Sq F value Pr(>F)
HS.GPA 1 8.0615 8.0615 91.379 1.779e-08 ***

 2011 Christopher R. Bilder

 57
Residuals 18 1.5880 0.0882

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

> vcov(object = mod.fit)
 (Intercept) HS.GPA
(Intercept) 0.03976606 -0.013762181
HS.GPA -0.01376218 0.005357019

> confint(object = mod.fit, level = 0.95)
 2.5 % 97.5 %
(Intercept) 0.2886238 1.1265315
HS.GPA 0.5458884 0.8534283

> AIC(object = mod.fit)
[1] 12.09198

> residuals(object = mod.fit)
 1 2 3 4 5 6
 0.26546091 -0.05177482 0.40334475 -0.24187731 -0.18761083 -0.03010181
 7 8 9 10 11 12
 0.32058048 0.26921493 0.21034134 0.31170591 -0.37976115 -0.36133070
 13 14 15 16 17 18
 0.29805437 -0.18726921 0.23883914 -0.34307203 -0.30279873 0.29378887
 19 20
-0.10279873 -0.42293538

> rstudent(model = mod.fit)
 1 2 3 4 5 6 7
 0.9195704 -0.1742267 1.4343816 -0.8357009 -0.6386997 -0.1127359 1.1415092
 8 9 10 11 12 13 14
 0.9281934 0.7170342 1.2145035 -1.3420370 -1.3244262 1.0499732 -0.6720106
 15 16 17 18 19 20
 0.8717594 -1.2519781 -1.0518399 1.0945298 -0.3472377 -1.5389689

 2011 Christopher R. Bilder

 58

Estimating the response

Plot the model on the scatter plot:

> #Open a new graphics window
> win.graph(width = 6, height = 6, pointsize = 10)

> #Same scatter plot as before
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS
 GPA", ylab = "College GPA", main = "College GPA vs.
 HS GPA", xlim = c(0,4.5), ylim = c(0,4.5), col =
 "red", pch = 1, cex = 1.0, panel.first=grid(col =
 "gray", lty = "dotted"))

> #Puts the line y = a + bx on the plot
> abline(a = mod.fit$coefficients[1], b =
 mod.fit$coefficients[2], lty = 1, col = "blue",
 lwd = 2)

 2011 Christopher R. Bilder

 59

What is a problem with the above plot?

New plot:

> win.graph(width = 6, height = 6, pointsize = 10)

> #Same scatter plot as before
> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS
 GPA", ylab = "College GPA", main = "College GPA vs.
 HS GPA", xlim = c(0,4.5), ylim = c(0,4.5), col =
 "red", pch = 1, cex = 1.0, panel.first=grid(col =
 "gray", lty = "dotted"))

> #Draw a line from (x0, y0) to (x1, y1)

0 1 2 3 4

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
P

A

 2011 Christopher R. Bilder

 60
> segments(x0 = min(gpa$HS.GPA), y0 =
 mod.fit$coefficients[1] + mod.fit$coefficients[2] *
 min(gpa$HS.GPA), x1 = max(gpa$HS.GPA), y1 =
 mod.fit$coefficients[1] + mod.fit$coefficients[2] *
 max(gpa$HS.GPA), lty = “solid”, col = "blue", lwd = 2)

The predict() function finds point estimates,
confidence intervals for the mean response, and
prediction intervals for the response variable:

> pred.data<-data.frame(HS.GPA = c(2, 3, 4))
> predict(object = mod.fit, newdata = pred.data)

0 1 2 3 4

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
P

A

 2011 Christopher R. Bilder

 61
 1 2 3
2.106894 2.806553 3.506211

> predict(object = mod.fit, newdata = pred.data, se.fit =
 TRUE, interval = "confidence", level = 0.95)
$fit
 fit lwr upr
1 2.106894 1.942197 2.271591
2 2.806553 2.652079 2.961026
3 3.506211 3.245655 3.766767

$se.fit
 1 2 3
0.07839267 0.07352648 0.12401980

$df
[1] 18

$residual.scale
[1] 0.2970191

> save.pred<-predict(object = mod.fit, newdata = pred.data,
 se.fit = TRUE, interval = "confidence", level = 0.95)
> names(save.pred)
[1] "fit" "se.fit" "df"
 "residual.scale"
> save.pred$fit
 fit lwr upr
1 2.106894 1.942197 2.271591
2 2.806553 2.652079 2.961026
3 3.506211 3.245655 3.766767

 2011 Christopher R. Bilder

 62

Viewing function code

Typing a function name, like lm, and invoking it at a
command prompt gives the actual code used by a
function! This is useful when you want to know more
about how a function works or if you want to create your
own function by modifying the original version.
Sometimes, there will be code within the function like .C
or .Fortran. These are calls outside of R to a C or
Fortran program. The code within these programs can
still be viewed, but they need to be obtained from CRAN.

For new R users, the code within functions can be
difficult to understand. The following steps are helpful to
interpret the code:

1) Copy and paste the function code into a program

editor to view it with syntax highlighting.
2) Set values for the function’s arguments.
3) Run the code line-by-line to see what it does!

We will see an example of this soon.

 2011 Christopher R. Bilder

 63

Writing your own functions

When the same code is run for different analyses, it is
helpful to write a function for it. Below is a function
written to estimate a regression model and construct a
scatter plot with the estimated model:

my.reg.func<-function(x, y, data) {

 #Fit the simple linear regression model and save the
 results in mod.fit
 mod.fit<-lm(formula = y ~ x, data = data)

 #Open a new graphics window
 win.graph(width = 6, height = 6, pointsize = 10)

 #Same scatter plot
 plot(x = x, y = y, xlab = "x", ylab = "y", main = "y
 vs. x", col = "red", pch = 1, cex = 1.0,
 panel.first=grid(col = "gray", lty = "dotted"))

 #Draw a line from (x0, y0) to (x1, y1)
 segments(x0 = min(x), y0 = mod.fit$coefficients[1] +
 mod.fit$coefficients[2]*min(x), x1 = max(x), y1 =
 mod.fit$coefficients[1] + mod.fit$coefficients[2] *
 max(x), lty = 1, col = "blue", lwd = 2)

 #This is the object returned
 mod.fit
 }

#Run the function and save the results
save.it<-my.reg.func(x = gpa$HS.GPA, y = gpa$College.GPA,
 data = gpa)

If this was the first time that you saw the code within the
function, it might not be clear what it does (especially if

 2011 Christopher R. Bilder

 64

the comments were not given). Following the steps given
on page 62 would enable you to figure it out.

I created the next function for a regression course. The
function automates the process of examining diagnostic
tools for a simple linear regression model. You can see
its code in the file examine.model.simple.R. This code
can be run as before or the source() function can be
used to run it. Below is an example:

> source("C:\\chris\\unl\\Dropbox\\NEW\\workshop\\

 Gallup\\examine.model.simple.R")
> save.it<-examine.model.simple(mod.fit.obj = mod.fit,
 const.var.test = TRUE, boxcox.find = TRUE)
> names(save.it)
[1] "sum.data" "semi.stud.resid" "levene" "bp"
[5] "lambda.hat"

> save.it$sum.data
 Y X
 Min. :1.400 Min. :0.830
 1st Qu.:1.975 1st Qu.:2.007
 Median :2.400 Median :2.370
 Mean :2.505 Mean :2.569
 3rd Qu.:3.025 3rd Qu.:3.127
 Max. :3.800 Max. :4.320

> save.it$levene
Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 1 0.0766 0.7851
 18

 2011 Christopher R. Bilder

 65

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
5

2
.0

2.
5

3.
0

3
.5

Response vs. predictor

Predictor variable

R
es

po
ns

e
v
ar

ia
b
le

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0
.4

-0
.2

0.
0

0
.2

0.
4

Residuals vs. predictor

Predictor variable
R

e
si

d
u
al

s

1.5 2.0 2.5 3.0 3.5

-0
.4

-0
.2

0.
0

0
.2

0
.4

Residuals vs. estimated mean response

Estimated mean response

R
es

id
u
al

s

1.5 2.0 2.5 3.0 3.5

-3
-2

-1
0

1
2

3

e
i

*
 vs. estimated mean response

Estimated mean response

S
em

is
tu

d
.
re

si
du

al
s 3

12

 2011 Christopher R. Bilder

 66

5 10 15 20

-0
.4

-0
.2

0.
0

0.
2

0.
4

Residuals vs. observation number

Observation number

R
e

si
du

al
s

Histogram of semistud. residuals

Semistud. residuals

D
e

ns
ity

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

-2 -1 0 1 2

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Normal Q-Q Plot

Theoretical Quantiles

S
em

is
tu

d.
 r

es
id

ua
ls

-2 -1 0 1 2

-1
4

-1
2

-1
0

-8
-6

lo
g-

L
ik

e
lih

oo
d

 95%

Box-Cox transformation plot

 2011 Christopher R. Bilder

 67

IV. Graphics

“Traditional” R plots are created using functions from the
graphics package. This package is installed in R by
default, and its functions are always available for use. The
functions within it should be able to satisfy the majority of
your needs. The best way to start learning about R
graphics is with this package, because many of its basics
can be applied to other packages. These other packages,
like lattice and ggplot2, produce most of the same plots,
but they can also produce more sophisticated plots.

Curves

The curve() function draws mathematical functions,
like f(x), of one variable on a plot (see curve.R). Below is
an example with f(x) = x2:

> curve(expr = x^2, from = -2, to = 1, n = 101, main =
 "Plot of f(x) = x^2", ylab = "f(x)", xlab = "x^2", col =
 "red")

 2011 Christopher R. Bilder

 68

Notes:
 The mathematical equation given in the expr

argument must vary over the letter x.
 By default, f(x) is evaluated at n = 101 equally

spaced x values in the range given. A larger value for
n can produce a smoother curve.

Below is how the standard normal density is plotted:

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

0
1

2
3

4

Plot of f(x) = x^2

x^2

f(
x)

 2011 Christopher R. Bilder

 69
> curve(expr = dnorm(x = x, mean = 0, sd = 1), from = -4,
 to = 4, n = 1000, main = "Plot of standard normal
 density", ylab = "f(x)", xlab = "x", col = "red")
> abline(h = 0) #horizontal line at 0

What is your favorite probability distribution for a
continuous random variable? Plot the density with the
curve function!

The curve() function is useful for adding curves to
another plot. The code below shows how to add an

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

Plot of standard normal density

x

f(
x)

 2011 Christopher R. Bilder

 70

estimated regression model and confidence interval
bands to a scatter plot with the gpa data:

> plot(x = gpa$HS.GPA, y = gpa$College.GPA, xlab = "HS
 GPA", ylab = "College GPA", main = "College GPA vs. HS
 GPA", xlim = c(0,4.5), ylim = c(0,4.5), col = "red",
 pch = 1, cex = 1.0, panel.first = grid(col = "gray",
 lty = "dotted"))
> curve(expr = predict(object = mod.fit, newdata =
 data.frame(HS.GPA = x)), from = min(gpa$HS.GPA),
 to = max(gpa$HS.GPA), add = TRUE, n = 1000)
> curve(expr = predict(object = mod.fit, newdata =
 data.frame(HS.GPA = x), se.fit = TRUE, interval =
 "confidence", level = 0.95)$fit[,2], from =
 min(gpa$HS.GPA), to = max(gpa$HS.GPA), add = TRUE,
 col = "red", lty = "dashed")
> curve(expr = predict(object = mod.fit, newdata =
 data.frame(HS.GPA = x), se.fit = TRUE, interval =
 "confidence", level = 0.95)$fit[,3], from =
 min(gpa$HS.GPA), to = max(gpa$HS.GPA), add = TRUE,
 col = "red", lty = "dashed")
> legend(x = 1, y = 4, legend = c("Estimated college GPA",
 "95% confidence interval"), lty = c("solid", "dashed"),
 col = c("black", "red"), bty = "n")
> #identify(x = gpa$HS.GPA, y = gpa$College.GPA)

 2011 Christopher R. Bilder

 71

Two new functions are included in the above code:
 legend() – The legend is placed at (x,y) = (1,4) on

the plot. Alternatively, you can interactively specify the
legend location with locator(1):

> legend(locator(1), legend = c("Estimated college
 GPA", "95% confidence interval"), lty = c("solid",
 "dashed"), col = c("black", "red"), bty = "n")

0 1 2 3 4

0
1

2
3

4

College GPA vs. HS GPA

HS GPA

C
ol

le
ge

 G
P

A

Estimated college GPA
95% confidence interval

 2011 Christopher R. Bilder

 72

After running the code, left-click on the location in the
plot for the legend.

 identify() – This function is used to interactively
label points on a plot. After running the uncommented
code given above, left click on points in the plot, which
are then identified with an observation number. To end
identifying points, right click and select stop.

Question: How would you add the prediction interval
bands to the plot?

 2011 Christopher R. Bilder

 73

Histograms

The hist() function plots histograms. The code below
shows how to include two histograms in one R Graphics
window:

> par(mfrow = c(2,1)) #Two rows and one column of plots
> hist(x = gpa$HS.GPA, xlab = "HS GPA", main = "Histogram
 of HS GPA", breaks = c(0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5,
 4, 4.5))
> hist(x = gpa$College.GPA, xlab = "College GPA", main =
 "Histogram of College GPA", breaks = seq(from = 0, to =
 4.5, by = 0.5))

Histogram of HS GPA

HS GPA

F
re

q
u

e
n

cy

0 1 2 3 4

0
1

2
3

4
5

6

Histogram of College GPA

College GPA

F
re

q
u

e
n

cy

0 1 2 3 4

0
1

2
3

4
5

6

 2011 Christopher R. Bilder

 74

If you do not specify the breaks argument, R will
choose the histogram classes for you. Usually, R’s
choice will work well. I chose the classes here to make
sure that each histogram has the same classes. The use
of both the c() function and the seq() function was
done only for demonstration purposes.

We can combine the hist() function with the curve()
function to produce a histogram with a probability density
function overlay:

> hist(x = gpa$HS.GPA, xlab = "HS GPA", main = "Histogram
 of HS GPA", breaks = c(0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5,
 4, 4.5), freq = FALSE)
> curve(expr = dnorm(x = x, mean = mean(gpa$HS.GPA), sd =
 sd(gpa$HS.GPA)), col = "red", add = TRUE)
> hist(x = gpa$College.GPA, xlab = "College GPA", main =
 "Histogram of College GPA", breaks = seq(from = 0, to =
 4.5, by = 0.5), freq = FALSE)
> curve(expr = dnorm(x = x, mean = mean(gpa$College.GPA),
 sd = sd(gpa$College.GPA)), col = "red", add = TRUE)

 2011 Christopher R. Bilder

 75

The freq = FALSE argument value in hist() leads to
a rescaling of the y-axis for the histogram bars so that
the density overlay can be performed.

Histogram of HS GPA

HS GPA

D
e

n
si

ty

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

Histogram of College GPA

College GPA

D
e

n
si

ty

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

 2011 Christopher R. Bilder

 76

Box and dot plots

Box plots are produced by boxplot(), and dot plots
are produced by stripchart():

> par(mfrow = c(1,1))
> boxplot(x = gpa, col = "lightblue", main = "Box and dot
 plots", ylab = "GPA", xlab = "")
> stripchart(x = gpa, lwd = 2, col = "red", method =
 "jitter", vertical = TRUE, pch = 1, add = TRUE)

 HS.GPA College.GPA

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Box and dot plots

G
P

A

 2011 Christopher R. Bilder

 77

Please see the program for another way to create this
plot when the data are organized as:

> head(HS.college)
 school gpa
1 HS 3.04
2 HS 2.35
3 HS 2.70
4 HS 2.05
5 HS 2.83
6 HS 4.32

> tail(HS.college)
 school gpa
35 College 1.8
36 College 1.4
37 College 2.0
38 College 3.8
39 College 2.2
40 College 1.6

 2011 Christopher R. Bilder

 78

lattice package

The lattice package produces many of the same plots as
the graphics package. The package is installed by
default within R, but you still need to run
library(package = lattice) to make its functions
available for use. Below is an example with the
xyplot() function and the gpa data.frame.

> library(package = lattice)
> xyplot(x = College.GPA ~ HS.GPA, data = gpa, main =
 "College GPA vs. HS GPA")

College GPA vs. HS GPA

HS.GPA

C
o

lle
g

e
.G

P
A

1.5

2.0

2.5

3.0

3.5

1 2 3 4

 2011 Christopher R. Bilder

 79

An advantage of the lattice package is that co-plots
(often referred to as Trellis graphics) can be produced.
These plots allow you to plot multivariate data by
conditioning on variable values. For example, below is
how I produced a scatter plot of diamond prices versus
carat size, where I condition on diamond color and use
plotting points corresponding to the diamond clarity.

> library(package = RODBC)
> z<-odbcConnectExcel(xls.file = "C:\\chris\\unl\\Dropbox\\
 NEW\\workshop\\Gallup\\diamond.xls")
> diamond<-sqlFetch(channel = z, sqtable = "Set1")
> close(z)

> #Change order of the levels of clarity
> diamond$clarity<-factor(x = diamond$clarity, levels =
 c("IF", "VVS1", "VVS2", "VS1", "VS2"))
> levels(x = diamond$clarity)
[1] "IF" "VVS1" "VVS2" "VS1" "VS2"

> head(diamond)
 carat color clarity price
1 0.30 D VS2 745.9184
2 0.30 E VS1 865.0820
3 0.30 G VVS1 865.0820
4 0.30 G VS1 721.8565
5 0.31 D VS1 940.1322
6 0.31 E VS1 890.8626

> library(package = lattice)
> trellis.device(theme = "col.whitebg")

> win.graph(width = 10, height = 7, pointsize = 12)
> xyplot(x = price ~ carat | clarity, data = diamond,
 layout = c(5,1), groups = color, main = "Price vs.
 Carat", auto.key = list(points = TRUE, space =
 "right"), xlab = "Carat", ylab = "Price", panel =
 function(x, y, ...)

 2011 Christopher R. Bilder

 80
 { panel.grid(h = -1, v = -1, col = "grey", lwd = 1,
 lty = "dotted")
 panel.xyplot(x, y, ...)
 }
)

The layout argument gives the number of columns for
the plot and then the number of rows, which is a different
order from how one normally specifies the dimension of
a matrix.

A disadvantage of the lattice package is that the code
can be less readable to a new R user, especially for
more complicated plots.

Price vs. Carat

Carat

P
ri
ce

0

2000

4000

6000

8000

0.2 0.4 0.6 0.8 1.0

IF

0.2 0.4 0.6 0.8 1.0

VVS1

0.2 0.4 0.6 0.8 1.0

VVS2

0.2 0.4 0.6 0.8 1.0

VS1

0.2 0.4 0.6 0.8 1.0

VS2

D
E
F
G
H
I

 2011 Christopher R. Bilder

 81

ggplot2 package

The ggplot2 package is a much newer package for
plotting. It currently is at version 0.8.9. I have very little
experience with the package, but it seems to be
attracting new users. There is even a book on the
package (ggplot2: Elegant Graphics for Data Analysis)
written by its author. A recent plot created by the
package appeared in the New York Times
(http://bits.blogs.nytimes.com/2011/09/07/
the-lifespan-of-a-link):

 2011 Chhristopher R. Bilder

 822

 2011 Christopher R. Bilder

 83

Resources

R graphics gallery: http://addictedtor.free.fr/graphiques/

R Graphics (2nd edition) book and corresponding
website: http://www.stat.auckland.ac.nz/~paul/RG2e

 2011 Christopher R. Bilder

 84

V. Logistic regression

Bilder and Loughin (Chance, 1998) estimated the
probability of success for an NFL placekick through a
logistic regression model. Their final model was

logit(ˆ) = 4.4984 – 0.3306change + 1.2592pat +
 2.8778wind – 0.0807distance –

 0.0907distance´wind

where
 change is a 1 for a “lead-change” placekick and 0

otherwise
 pat is a 1 for a point-after-touchdown and 0 for a field

goal
 wind is a 1 for “windy” conditions (>15 MPH at kickoff)

and 0 otherwise.
 distance is the distance of the placekick in yards

The corresponding code for this example is in the
placekick.R file.

 2011 Christopher R. Bilder

 85

Reading in data

The data is in the comma delimited file placekick.csv.
The response variable is named “good” where a 1 is a
success and a 0 is a failure.

> placekick<-read.csv("C:\\chris\\unl\\Dropbox\\NEW\\
 workshop\\Gallup\\placekick.csv")
> head(placekick)
 distance change pat wind good
1 21 1 0 0 1
2 21 0 0 0 1
3 20 0 1 0 1
4 28 0 0 0 1
5 20 0 1 0 1
6 25 0 0 0 1

Each observation can be viewed as a Bernoulli trial.

 2011 Christopher R. Bilder

 86

Fitting the model

The glm() function fits generalized linear models. The
family argument within the function specifies the type of
generalized linear model. Below is the code used to fit
the model:

> mod.fit<-glm(formula = good ~ change + distance + pat +
 wind + distance:wind, data = placekick, family =
 binomial(link = logit))
> summary(mod.fit)

Call:
glm(formula = good ~ change + pat + wind + distance +
distance:wind, family = binomial(link = logit), data =
placekick)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.8839 0.1775 0.1775 0.4679 1.7098

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.49835 0.48163 9.340 < 2e-16 ***
change -0.33056 0.19444 -1.700 0.08913 .
pat 1.25916 0.38707 3.253 0.00114 **
wind 2.87783 1.78593 1.611 0.10709
distance -0.08074 0.01143 -7.064 1.62e-12 ***
wind:distance -0.09074 0.04569 -1.986 0.04701 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 1013.43 on 1424 degrees of freedom
Residual deviance: 751.27 on 1419 degrees of freedom
AIC: 763.27

 2011 Christopher R. Bilder

 87
Number of Fisher Scoring iterations: 6

> names(mod.fit)
 [1] "coefficients" "residuals" "fitted.values"
 [4] "effects" "R" "rank"
 [7] "qr" "family" "linear.predictors"
[10] "deviance" "aic" "null.deviance"
[13] "iter" "weights" "prior.weights"
[16] "df.residual" "df.null" "y"
[19] "converged" "boundary" "model"
[22] "call" "formula" "terms"
[25] "data" "offset" "control"
[28] "method" "contrasts" "xlevels"

Notes:
 The formula and data arguments are in the same

format as for the lm() function.
 To include the interaction between distance and wind,

I used distance:wind. Alternatively, I could have
also used

formula = good ~ change + pat + distance*wind

or

formula = good ~ change + pat + (distance + wind)^2

 The names() function shows what is within
mod.fit. For example, mod.fit$coefficients
gives the parameter estimates in a vector.

 2011 Christopher R. Bilder

 88

Data used for logistic regression often comes in a
binomial form. For example, there are 7 successes out
of 8 trials when change = 1, pat = 0, wind = 0, and
distance = 20. Below is how you can convert the data to
a binomial format and then estimate the model:

> set1<-aggregate(formula = good ~ change + pat + wind +
 distance, data = placekick, FUN = sum)
> head(set1)
 change pat wind distance good
1 0 0 0 18 1
2 1 0 0 18 1
3 0 0 0 19 3
4 1 0 0 19 4
5 0 0 0 20 15
6 1 0 0 20 7

> set2<-aggregate(formula = good ~ change + pat + wind +
 distance, data = placekick, FUN = length)
> head(set2)
 change pat wind distance good
1 0 0 0 18 1
2 1 0 0 18 2
3 0 0 0 19 3
4 1 0 0 19 4
5 0 0 0 20 15
6 1 0 0 20 8

> placekick.bin<-data.frame(set1[,-5], success = set1$good,
 trials = set2$good, proportion = round(set1$good /

 set2$good, 4))
> head(placekick.bin)
 change pat wind distance success trials proportion
1 0 0 0 18 1 1 1.000
2 1 0 0 18 1 2 0.500
3 0 0 0 19 3 3 1.000
4 1 0 0 19 4 4 1.000
5 0 0 0 20 15 15 1.000
6 1 0 0 20 7 8 0.875

 2011 Christopher R. Bilder

 89
> #Estimate the model with the binomial form of the data
> mod.fit.bin<-glm(formula = success/trials ~ change + pat
 + wind + distance + distance:wind, data =
 placekick.bin, weight = trials, family = binomial(link
 = logit))
> summary(mod.fit.bin)

Call:
glm(formula = success/trials ~ change + pat + wind +
 distance + distance:wind, family = binomial(link =
 logit), data = placekick.bin, weights = trials)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.2386 -0.5836 0.1965 0.8736 2.2822

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.49835 0.48163 9.340 < 2e-16 ***
change -0.33056 0.19445 -1.700 0.08914 .
pat 1.25916 0.38714 3.252 0.00114 **
wind 2.87783 1.78643 1.611 0.10719
distance -0.08074 0.01143 -7.064 1.62e-12 ***
wind:distance -0.09074 0.04570 -1.986 0.04706 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 376.01 on 118 degrees of freedom
Residual deviance: 113.86 on 113 degrees of freedom
AIC: 260.69

Number of Fisher Scoring iterations: 5

The estimated model is the same as before. Note how
the response was specified in the formula argument
and how the number of trials was specified in the
weight argument.

 2011 Christopher R. Bilder

 90

Estimating the response

The estimated model can be also written as

exp(4.50 0.33change 0.08distance 1.26pat 2.88wind 0.09distance wind)

ˆ
1 exp(4.50 0.33change 0.08distance 1.26pat 2.88wind 0.09distance wind)

Using this form, we can estimate the probability of
success for a placekick with change = 1, pat = 0, wind =
0, and distance = 30. Below are a few different ways to
perform these calculations in R:

> beta.hat<-mod.fit.bin$coefficients
> beta.hat

 (Intercept) change pat wind distance
 4.49835224 -0.33055778 1.25916109 2.87783050 -0.08073996
wind:distance
 -0.09074258

> exp(beta.hat[1] + beta.hat[2]*1 + beta.hat[5]*30) /
 (1 + exp(beta.hat[1] + beta.hat[2]*1 + beta.hat[5]*30))
(Intercept)
 0.8513964
> plogis(q = beta.hat[1] + beta.hat[2]*1 + beta.hat[5]*30)
(Intercept)
 0.8513964
> as.numeric(plogis(q = beta.hat[1] + beta.hat[2]*1 +
 beta.hat[5]*30)) #Removes label
[1] 0.8513964

> predict(object = mod.fit.bin, newdata =
 data.frame(change = 1, pat = 0, wind = 0, distance =
 30), type = "response")
 1
0.8513964

> save.lp<-predict(object = mod.fit.bin, newdata =
 data.frame(change = 1, pat = 0, wind = 0, distance =
 30), type = "link")

 2011 Christopher R. Bilder

 91
> save.lp
 1
1.745596
> plogis(q = save.lp)
 1
0.8513964

Notes:
 The plogis() function evaluates the cumulative

distribution function for a logistic random variable with
location parameter = 0 and scale parameter = 1.

 as.numeric() removes unnecessary labels left over
from beta.hat.

 The predict() function works in the same manner
as with simple linear regression. The type argument
is new, and this specifies the estimation for (type
= “response”) or logit() (type = “link”).

 A 95% confidence interval for is

0 1 1 p p 1 /2 0 1 1 p p

0 1 1 p p 1 /2 0 1 1 p p

ˆ ˆ ˆ ˆ ˆ ˆx x Z Var(x x)

ˆ ˆ ˆ ˆ ˆ ˆx x Z Var(x x)

e

1 e

R does not calculate this interval with the predict()
function. To find the interval, you need to calculate an
interval for the linear predictor 0 1 1 p px x (i.e.,

logit()) first. The exponential function is then used to
find the interval for :

 2011 Christopher R. Bilder

 92

> save.lp<-predict(object = mod.fit.bin, newdata =
 data.frame(change = 1, pat = 0, wind = 0, distance =
 30), type = "link", se = TRUE)
> save.lp
$fit
 1
1.745596

$se.fit
[1] 0.1895555

$residual.scale
[1] 1

> alpha<-0.05
> lower.lp<-save.lp$fit-qnorm(p = 1-alpha/2)*save.lp$se.fit
> upper.lp<-save.lp$fit+qnorm(p = 1-alpha/2)*save.lp$se.fit
> lower.pi<-plogis(q = lower.lp)
> upper.pi<-plogis(q = upper.lp)
> data.frame(lower.pi, upper.pi)
 lower.pi upper.pi
1 0.7980375 0.8925558

Below is my function for these calculations:

> ci.pi<-function(newdata, mod.fit.obj, alpha){
 save.lp<-predict(object = mod.fit.obj, newdata =
 newdata, type = "link", se = TRUE)
 lower.lp<-save.lp$fit-qnorm(1-alpha/2)*save.lp$se.fit
 upper.lp<-save.lp$fit+qnorm(1-alpha/2)*save.lp$se.fit
 lower.pi<-plogis(q = lower.lp)
 upper.pi<-plogis(q = upper.lp)
 list(pi.hat = plogis(save.lp$fit), lower = lower.pi,
 upper = upper.pi)
 }

> ci.pi(newdata = data.frame(change = 1, pat = 0, wind = 0,
 distance = c(30, 40)), mod.fit.obj = mod.fit.bin, alpha
 = 0.05)
$pi.hat

 2011 Christopher R. Bilder

 93
 1 2
0.8513964 0.7187352

$lower
 1 2
0.7980375 0.6541806

$upper
 1 2
0.8925558 0.7753770

Notice the use of the list() function at the end of the
function.

Because there is only one “continuous” independent
variable, we can construct a plot of the estimated
probability of success versus the distance:

> #Dummy plot of the estimated proportion of success at
 each distance
> plot(x = placekick.bin$distance, y =
 placekick.bin$proportion, xlab="Distance in Yards",
 ylab="Estimated Probability of Success", type="n",
 panel.first=grid(col = "gray", lty = "dotted"), main =
 "Estimated probability of success of a field goal
 (PAT=0)")

> #Put estimated logistic regression model on the plot –
 change=0, wind=0
> curve(expr = plogis(beta.hat[1] + beta.hat[5]*x), lwd=2,
 col = "red", add = TRUE, n = 1000)
> #Another way to do the same curve as above
> #curve(expr = predict(object = mod.fit.bin, newdata =
 data.frame(change = 1, pat = 0, wind = 0, distance =
 x), type = "response"), lwd=2, col = "red", add =
 TRUE, n = 1000)

> #Put estimated logistic regression model on the plot –

 2011 Christopher R. Bilder

 94
 change=1, wind=0
> curve(expr = plogis(beta.hat[1] + beta.hat[2]*1 +
 beta.hat[5]*x), lty=3, lwd=2, col = "green", add =
 TRUE)

> #Put estimated logistic regression model on the plot –
 change=0, wind=1
> curve(expr = plogis(beta.hat[1] + beta.hat[4]*1 +
 beta.hat[5]*x + beta.hat[6]*1*x), lty=4, lwd=2, col =
 "blue", add = TRUE)

> #Put estimated logistic regression model on the plot –
 change=1, wind=1
> curve(expr = plogis(beta.hat[1] + beta.hat[2]*1 +
 beta.hat[4]*1 + beta.hat[5]*x + beta.hat[6]*1*x),
 lty=2, lwd=2, col = "purple", add = TRUE)

> names1<-c("Change=0, Wind=0", "Change=1, Wind=0",
 "Change=0, Wind=1", "Change=1, Wind=1")
> legend(locator(1), legend = names1, lty = c(1,3,4,2), col
 = c("red","green","blue","purple"), bty="n", cex=0.75,
 lwd=2)

 2011 Christopher R. Bilder

 95

20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated probability of success of a field goal (PAT=0)

Distance in Yards

E
st

im
at

ed
 P

ro
ba

bi
lit

y
of

 S
uc

ce
ss

Change=0, Wind=0
Change=1, Wind=0
Change=0, Wind=1
Change=1, Wind=1

 2011 Christopher R. Bilder

 96

The placekick.R program contains the code for this plot:

20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated probability of success of a field goal (PAT=0)

Distance in Yards

E
st

im
at

ed
 P

ro
ba

bi
lit

y
of

 S
uc

ce
ss

Low est Number of Risk Factors

Estimated Probability
90% Confidence Interval

Highest Number of Risk Factors

Estimated Probability
90% Confidence Interval

 2011 Christopher R. Bilder

 97

Object oriented language

Objects resulting from glm() have the following classes:

> class(mod.fit.bin)
[1] "glm" "lm"

When using generic functions, R looks for a method
function corresponding to the glm class. If a function
does not exist, R looks for a method function
corresponding to the lm class.

Below are the method functions for glm class objects:

 > methods(class = glm)
 [1] add1.glm* anova.glm confint.glm*
 [4] cooks.distance.glm* deviance.glm* drop1.glm*
 [7] effects.glm* extractAIC.glm* family.glm*
[10] formula.glm* influence.glm* logLik.glm*
[13] model.frame.glm nobs.glm* predict.glm
[16] print.glm residuals.glm rstandard.glm
[19] rstudent.glm summary.glm vcov.glm*
[22] weights.glm*

 Non-visible functions are asterisked

What do the following generic functions calculate?
 vcov()
 anova()
 confint()
 deviance()

 2011 Christopher R. Bilder

 98

The car package gives some useful additions to these
method functions. For example, below are the results
from the Anova() function:

> library(package = car)
> Anova(mod = mod.fit)
Analysis of Deviance Table (Type II tests)

Response: good
 LR Chisq Df Pr(>Chisq)
change 2.863 1 0.0906281 .
pat 11.224 1 0.0008074 ***
wind 2.646 1 0.1038115
distance 73.185 1 < 2.2e-16 ***
wind:distance 5.415 1 0.0199610 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

This function performs likelihood ratio tests to determine
the importance of an independent variable given all of
the other variables are in the model.

The anova() function (stats package) can be used in a
similar manner to test a full model vs. a reduced model:

> mod.fit.bin.reduced<-glm(formula = success/trials ~
 change + pat, data = placekick.bin, weight = trials,
 family = binomial(link = logit))
> anova(mod.fit.bin.reduced, mod.fit.bin, test = "Chisq")
Analysis of Deviance Table

Model 1: success/trials ~ change + pat
Model 2: success/trials ~ change + pat + wind + distance +
distance:wind
 Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 116 194.33
2 113 113.86 3 80.475 < 2.2e-16 ***

 2011 Christopher R. Bilder

 99

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

 2011 Christopher R. Bilder

 100

Writing your own functions

I created the next function for a categorical data analysis
course. The function automates the process of
examining diagnostic tools for a logistic regression
model. You can see its code in the file
examine.model.logistic.reg.R. This code can be run as
before or the source() function can be used to run it.
Below is an example:

> #The examine.model() function is in this program:
> source("C:\\chris\\unl\\Dropbox\\NEW\\workshop\\
 Gallup\\examine.model.logistic.reg.R")

> examine.model(mod.fit.obj = mod.fit.bin)
The Pearson statistic is 104.8678 with p-value = 0.6949
The G^2 is 113.858 with p-value = 0.4597

> names(save.it)
[1] "h" "pearson" "sq.stand.resid"
 "delta.beta" "pear.stat"
[6] "dev"

 2011 Christopher R. Bilder

 101

0 20 40 60 80 100 120

-2
-1

0
1

2

Pearson residuals vs. j

j (explanatory variable pattern number)

P
e
a
rs

o
n
 r

e
s
id

u
a
ls

0 20 40 60 80 100 120

-2
-1

0
1

2

Standardized residuals vs. j

j (explanatory variable pattern number)
S

ta
n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Sq. standardized residuals vs. pred. prob.

Predicted probabilities

S
q
.

s
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

2

2544

46

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Sq. standardized residuals vs. pred. prob.
 with plot point proportional to n_j

Predicted probabilities

S
q
.

s
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

 2011 Christopher R. Bilder

 102

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

Delta.beta vs. j

j (explanatory variable pattern number)

D
el

ta
.b

et
a

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Delta.beta vs. pred. prob.

Predicted probabilities

D
el

ta
.b

et
a

7

2544

99

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Sq. standardized residuals vs. pred. prob.
 with plot point proportion to delta.beta

Predicted probabilities

S
q.

 s
ta

nd
ar

di
ze

d
re

si
du

al
s

X
2
 104.87 0.6949, G2

 113.86 0.4597

 2011 Christopher R. Bilder

 103

VI. Additional topics

R Commander

Are there any point-and-click ways to produce plots or
output? Yes, the Rcmdr (short for “R Commander”)
package can for many statistical methods. This package
does not come with the initial installation of R, so you will
need to install it. Once the package is installed, use
library(package = Rcmdr) to start it. The first time
that you run this code, R will ask if you want to install a
number of other packages. Select yes, but note that this
may take some time to install all of them.

Below is the R Commander window:

To b
intere
data
SELE
show

begin u
est. Be
set by

ECT A
wn towa

using R
ecause
y selec

ACTIVE
ard the

 2011 Ch

R Com
 gpa w
cting D

E DATA
 top of

hristopher R.

mande
was cre
DATA
A SET
the R

Bilder

er, spec
eated
> ACT
. Now,
Comm

cify the
earlier,
TIVE D
, “Data

mander

e data
, I cho
DATA
a set: g
window

 104

set of
ose this
SET >
gpa” is
w.

4

f
s
>
s

One
help
STAT
find s

of the
with

TISTIC
summa

nice th
learn

CS > S
ary stat

 2011 Ch

hings a
ing R

SUMMA
tistics:

hristopher R.

bout R
R code
ARIES

Bilder

R Comm
e. For
> ACT

mander
r exam
TIVE D

r is tha
mple,

DATA S

 105

at it can
select

SET to

5

n
t

o

 2011 Christopher R. Bilder

 106

The Script Window logs the R code that performs the
calculations. We see here that the summary() function
is used just like we did earlier with this data set. To save
this code, select FILE > SAVE SCRIPT.

To estimate the simple linear regression model, select
STATISTICS > FIT MODEL > LINEAR REGRESSION.
Next, choose the response and explanatory variables
and select OK when completed:

The a
of his
lead
are
exam

author
s own
to func
differe

mple, w

of the
functio

ctions
nt from
we can

 2011 Ch

packa
ons to
being

m wha
n crea

hristopher R.

ge, Jo
perfor
given

at we
ate con

Bilder

hn Fox
rm calc
in the
have

nfidenc

x, has c
culation
Script
used

ce inte

created
ns. Th
Windo
befor

rvals f

 107

d many
is may

ow that
re. For
for the

7

y
y
t
r
e

mode
CON
Conf
funct

el pa
NFIDEN
fint()
tion:

aramet
NCE
) funct

 2011 Ch

ters
INTER
tion is u

hristopher R.

by s
RVALS
used ra

Bilder

selectin
and

ather th

ng M
then

han the

MODEL
n OK.
e conf

 108

LS >
. The
fint()

8

>
e

 2011 Christopher R. Bilder

 109

To construct a scatter plot, select GRAPHS > SCATTER
PLOT. After selecting what goes on the x and y-axis and
using the defaults, R Commander produces the following
code and plot.

scatterplot(College.GPA~HS.GPA, reg.line=lm, smooth=TRUE,
 spread=TRUE, boxplots='xy', span=0.5, data=gpa)

R Commander also provides a quick way to find
quantiles and probabilities for particular distributions. For

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1
.5

2
.0

2
.5

3
.0

3
.5

HS.GPA

C
o
lle

g
e
.G

P
A

exam
calcu
CON
DIST
in the

mple, th
ulated
NTINUO
TRIBUT
e proba

he 0.9
by

OUS
TION >
abilities

 2011 Ch

5 quan
sele

DIST
> NOR
s box a

hristopher R.

ntile fr
ecting
TRIBUT
MAL Q

and the

Bilder

om a
DIS

TIONS
QUANT
n selec

standa
STRIBU

>
TILES.
ct OK:

ard nor
UTION

NO
Type

 110

rmal is
S >

ORMAL
in 0.95

0

s
>
L
5

 2011 Christopher R. Bilder

 111

Explore the menus on your own to examine the
resources available! Note that HELP > INTRODUCTION
TO THE R COMMANDER within R Commander opens a
PDF file giving an introduction to the package.

 2011 Christopher R. Bilder

 112

Contingency tables

Contingency tables in R are created by using the
array() function rather using a data.frame. The next

example shows how this is done with a 2´2 contingency

table. The Bird.R program contains the code.

A question of interest for many basketball fans is
whether or not the outcome for a second free throw
attempt is dependent on the outcome for the first
attempt. Below is a contingency table summarizing Larry
Bird’s first and second free throw attempts during the
1980-1 and 1981-2 NBA seasons (Wardrop, 1995):

 Second
 Made Missed Total

First
Made 251 34 285

Missed 48 5 53
 Total 299 39 338

Below is how to create the contingency table:

> n.table<-array(data = c(251, 48, 34, 5), dim = c(2,2),
 dimnames = list(First = c("made", "missed"), Second =
 c("made", "missed")))
> n.table
 Second
First made missed
 made 251 34
 missed 48 5

> class(n.table)

 2011 Christopher R. Bilder

 113
[1] "matrix"
> n.table[1,1]
[1] 251
> n.table[1,]
 made missed
 251 34

> #Estimated odds ratio
> theta.hat<-n.table[1,1]*n.table[2,2] /
 (n.table[1,2]*n.table[2,1])
> theta.hat
[1] 0.7689951
> 1/theta.hat
[1] 1.300398

Notes:
 Counts are entered in the data argument by columns

within the contingency table.
 To name the rows and columns, the dimnames()

function is used with the list() function.
 Parts of the contingency table can be accessed in the

same manner as with a data.frame. This enables the
calculation of quantities like an odds ratio.

The Pearson chi-square test for independence is
performed using the chisq.test() function:

> ind.test<-chisq.test(n.table, correct = FALSE)
> ind.test

 Pearson's Chi-squared test

data: n.table
X-squared = 0.2727, df = 1, p-value = 0.6015

> names(ind.test)

 2011 Christopher R. Bilder

 114
[1] "statistic" "parameter" "p.value" "method"
 "data.name" "observed"
[7] "expected" "residuals" "stdres"

> #just p-value
> ind.test$p.value
[1] 0.6015021

> #Exact test
> chisq.test(n.table, correct = FALSE, simulate.p.value =
 TRUE, B = 1000)

 Pearson's Chi-squared test with simulated p-value
 (based on 1000 replicates)

data: n.table
X-squared = 0.2727, df = NA, p-value = 0.6843

Notes:
 The correct = FALSE argument prevents the Yates

continuity correction from being applied.
 The results from chisq.test() are given in a list.
 An exact form of the test is performed through

specifying simulate.p.value = TRUE where the
number of permutations taken is specified in the B
argument.

Below is the code to obtain a data.frame form of the
data:

> bird.df<-as.data.frame(as.table(n.table))
> bird.df
 First Second Freq
1 made made 251
2 missed made 48
3 made missed 34

 2011 Christopher R. Bilder

 115
4 missed missed 5

To fit a loglinear model to the data, we can use the
glm() function:

> mod.fit<-glm(formula = Freq ~ First + Second, data =
 bird.df, family = poisson(link = log))
> summary(mod.fit)

Call:
glm(formula = Freq ~ First + Second, family = poisson(link
= log), data = bird.df)

Deviance Residuals:
 1 2 3 4
-0.0703 0.1623 0.1934 -0.4659

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.52989 0.06241 88.61 <2e-16 ***
Firstmissed -1.68220 0.14959 -11.25 <2e-16 ***
Secondmissed -2.03688 0.17025 -11.96 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 402.05553 on 3 degrees of freedom
Residual deviance: 0.28575 on 1 degrees of freedom
AIC: 28.212

Number of Fisher Scoring iterations: 3

> #LRT for independence
> 1 - pchisq(q = mod.fit$deviance, df =
 mod.fit$df.residual)
[1] 0.5929559

 2011 Christopher R. Bilder

 116

What if the data was not in a contingency table format
already? For example, it may be in the form:

 First Second
1 Made Made
2 Made Missed

338 Made Made

The table() and xtabs() functions calculate the
necessary counts for the contingency table (i.e., perform
a “crosstab”). Alternatively, the chisq.test() works
directly with the data in this format too. Please see the
program for the code.

 2011 Christopher R. Bilder

 117

More data management

Below are some useful functions demonstrated by small
examples. The data_management.R program contains
the code.

1) cbind() – combine data by columns

> x<-1:10
> y<-c(rep(x = 1, times = 5), rep(x = 6, times = 5))
> x
 [1] 1 2 3 4 5 6 7 8 9 10
> y
 [1] 1 1 1 1 1 6 6 6 6 6

> cbind(x, y)
 x y
 [1,] 1 1
 [2,] 2 1
 [3,] 3 1
 [4,] 4 1
 [5,] 5 1
 [6,] 6 6
 [7,] 7 6
 [8,] 8 6
 [9,] 9 6
[10,] 10 6

> data.frame(x, y)
 x y
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 6
7 7 6
8 8 6
9 9 6

 2011 Christopher R. Bilder

 118
10 10 6

> class(cbind(x, y))
[1] "matrix"
> class(data.frame(x, y))
[1] "data.frame"

When the two vectors are not of the same length, R
may try to recycle the smaller vector’s contents:

> #Examples of recycling
> cbind(x, y[-10])
 x
 [1,] 1 1
 [2,] 2 1
 [3,] 3 1
 [4,] 4 1
 [5,] 5 1
 [6,] 6 6
 [7,] 7 6
 [8,] 8 6
 [9,] 9 6
[10,] 10 1

Warning message:
In cbind(x, y[-10]) :
 number of rows of result is not a multiple of vector
length (arg 2)

> data.frame(x, y[-10])
Error in data.frame(x, y[-10]) :
 arguments imply differing number of rows: 10, 9

> cbind(x, 1)
 x
 [1,] 1 1
 [2,] 2 1
 [3,] 3 1
 [4,] 4 1
 [5,] 5 1
 [6,] 6 1

 2011 Christopher R. Bilder

 119
 [7,] 7 1
 [8,] 8 1
 [9,] 9 1
[10,] 10 1

> #data.frame(x, 1) #similar to cbind(x, 1)

2) rbind() – combine data by rows

> rbind(x, y)
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
x 1 2 3 4 5 6 7 8 9 10
y 1 1 1 1 1 6 6 6 6 6

3) merge() – merge data.frames by unique values

> set1<-data.frame(name1 = c("a", "b", "c", "d", "e",
 "f"), response1 = c(1, 2, 3, 4, 5, 6))
> set2<-data.frame(name2 = c("a", "a", "b", "c", "d",
 "e"), response2 = c(10, 11, 20, 30, 40, 50))

> set1
 name1 response1
1 a 1
2 b 2
3 c 3
4 d 4
5 e 5
6 f 6

> set2
 name2 response2
1 a 10
2 a 11
3 b 20
4 c 30
5 d 40
6 e 50

> merge(x = set1, y = set2, by.x = "name1", by.y =

 2011 Christopher R. Bilder

 120
 "name2", all = TRUE)
 name1 response1 response2
1 a 1 10
2 a 1 11
3 b 2 20
4 c 3 30
5 d 4 40
6 e 5 50
7 f 6 NA

> merge(x = set1, y = set2, by.x = "name1", by.y =
 "name2", all = FALSE)
 name1 response1 response2
1 a 1 10
2 a 1 11
3 b 2 20
4 c 3 30
5 d 4 40
6 e 5 50

The all argument specifies whether or not non-
matching rows are included in the resulting data.frame.
The default is all = FALSE.

4) expand.grid() – Find all possible combinations of
elements in vectors

> x<-1:3
> y<-c("a", "b")

> expand.grid(x, y)
 Var1 Var2
1 1 a
2 2 a
3 3 a
4 1 b
5 2 b
6 3 b

> expand.grid(y, x)

 2011 Christopher R. Bilder

 121
 Var1 Var2
1 a 1
2 b 1
3 a 2
4 b 2
5 a 3
6 b 3

The first argument value is varied over the fastest.

5) sort() and order() – used to sort the elements of
a vector or data.frame

Sorting a vector:

> #Example 1
> x<-c("b", "c", 1)
> x
[1] "b" "c" "1"
> sort(x)
[1] "1" "b" "c"
> class(x)
[1] "character"

Sorting a data.frame by one variable:

> #Example 2
> set1<-data.frame(ID = c(3, 2, 1), response = c(10,
 20, 15))
> set1
 ID response
1 3 10
2 2 20
3 1 15
> sort(set1) #Does not work
Error in `[.data.frame`(x, order(x, na.last = na.last,
decreasing = decreasing)) :
 undefined columns selected

 2011 Christopher R. Bilder

 122

> order(set1$ID)
[1] 3 2 1
> set1[order(set1$ID),]
 ID response
3 1 15
2 2 20
1 3 10

The order() function provides the row indexes to
use with data.frame.

Sorting a data.frame by two variables:

> #Example 3
> set1<-data.frame(ID = c(2, 2, 1), response1 = c(20,
 10, 15), response2 = c(20, 40, 18))
> set1
 ID response1 response2
1 2 20 20
2 2 10 40
3 1 15 18
> set1[order(set1$ID),]
 ID response1 response2
3 1 15 18
1 2 20 20
2 2 10 40
> set1[order(set1$ID, set1$response1),]
 ID response1 response2
3 1 15 18
2 2 10 40
1 2 20 20

6) rev() – reverse the order of items in a vector

> x<-1:10
> rev(x)
 [1] 10 9 8 7 6 5 4 3 2 1

 2011 Christopher R. Bilder

 123

7) reshape() – Useful for transforming longitudinal data

from a “long” to a “wide” format and vice versa.

> set1<-data.frame(ID.name = c("subject1", "subject2",
 "subject3"), ID.number = c(1, 2, 3), age = c(19, 16,
 21), time1 = c(1, 0 ,0), time2 = c(0, 0, 1))
> set1
 ID.name ID.number age time1 time2
1 subject1 1 19 1 0
2 subject2 2 16 0 0
3 subject3 3 21 0 1

> #Long format
> set2<-reshape(data = set1, idvar = "ID.name", varying
 = c("time1", "time2"), v.names = "response",
 direction = "long", drop = "ID.number")
> set2
 ID.name age time response
subject1.1 subject1 19 1 1
subject2.1 subject2 16 1 0
subject3.1 subject3 21 1 0
subject1.2 subject1 19 2 0
subject2.2 subject2 16 2 0
subject3.2 subject3 21 2 1

> row.names(set2)<-NULL
> set2
 ID.name age time response
1 subject1 19 1 1
2 subject2 16 1 0
3 subject3 21 1 0
4 subject1 19 2 0
5 subject2 16 2 0
6 subject3 21 2 1

> #Back to wide format
> set3<-reshape(data = set2, timevar = "time", idvar =
 "ID.name", direction = "wide")
> set3
 ID.name age.1 response.1 age.2 response.2

 2011 Christopher R. Bilder

 124
1 subject1 19 1 19 0
2 subject2 16 0 16 0
3 subject3 21 0 21 1

 2011 Christopher R. Bilder

 125

Miscellaneous

Below is a list of items that did not fit elsewhere (see
miscellaneous.R for code):
 The RExcel package allows for Excel to use R

functions.
 The traceback() function is useful to help diagnose

code errors.
 The for() function is the most commonly used

function for loops:

> #Create a 3x2 matrix of observed normal random
 variables
> set.seed(1929)
> set1<-matrix(data = rnorm(n = 6, mean = 0, sd = 1),
 nrow = 3, ncol = 2)
> set1
 [,1] [,2]
[1,] 0.1102744 -1.06010197
[2,] -0.5237226 0.29005040
[3,] -0.1333107 0.03343786

> save.it<-numeric(3) #Initialize vector to save results
> save.it
[1] 0 0 0

> for (i in 1:3) {

 save.it[i]<-mean(set1[i,])
 }

> save.it
[1] -0.47491379 -0.11683612 -0.04993643

 The apply() function performs many of the same

calculations as for(), but much more efficiently:

 2011 Christopher R. Bilder

 126

> #Apply a function by row (MARGIN = 1)
> apply(X = set1, MARGIN = 1, FUN = mean)
[1] -0.47491379 -0.11683612 -0.04993643

> #Apply a function by column (MARGIN = 2)
> apply(X = set1, MARGIN = 2, FUN = mean)
[1] -0.1822530 -0.2455379

 search() displays the search path for R. For

example, suppose two packages contain functions
with the same name and both packages are loaded
into R. R will run the function from the package that
appears first in the search path.

 The boot package is the main package used for the
bootstrap. The package is installed by default within R,
but you still need to use library(package =
boot) to make its functions available for use.

 The multcomp package is useful for performing
hypothesis tests involving multiple parameters. The
package also provides ways to control the overall
familywise error rate for multiple tests.

 setwd() function sets the “working directory” for all R
files that you read in or write out. For example,

> setwd(dir = "C:\\chris\\unl\\Dropbox\\NEW\\workshop\\
 Gallup\\")
> gpa<-read.table(file = "gpa.txt", header = TRUE, sep =
 "")
> head(gpa)
 HS.GPA College.GPA
1 3.04 3.1
2 2.35 2.3
3 2.70 3.0

 2011 Christopher R. Bilder

 127
4 2.05 1.9
5 2.83 2.5
6 4.32 3.7

This is helpful when there is a long folder structure
and/or a need to read in or write out many times.

 2011 Christopher R. Bilder

 128

VII. Index of R terms

Argument 12
Assignment 5
Attribute 54
Class .. 54
Comment 36
Comprehensive R Archive Network

 ... 16
Concatenate 7
Data.frame 37
Function .. 7
Generic function 54
List .. 48
MDI ... 25
Method function 54
Object ... 5
Packages 10

base 11

boot 126
car .. 98
ggplot2 81
graphics 67
lattice 78
multcomp 126
Rcmdr 103
RExcel 125
RODBC 16
RWinedt 29
stats 11

Program 20
R Console window 5
R Graphics window 42
Recycle 118
SDI .. 25
Vector ... 14

 2011 Christopher R. Bilder

 129

VIII. Index of R functions

36
$ 39, 49
<- 5
= 5
abline() 58
aggregate() 88
AIC() 57
anova() 56, 97, 98
Anova() 98
apply() 125
array() 112
as.numeric() 91
attributes() 54
axis() 45
boxplot() 76
c() 7, 14
cat() 8
cbind() 117
cex 45
chisq.test() 113
ci.pi() 92
class() 54, 97
col 44
confint() 97, 108
Confint() 108
cos() 5
curve() 67
deviance() 97
dimnames() 113
examine.model.simple() . 64
expand.grid() 120
factor() 52
glm() 86, 115
grid() 45
head() 37

help() 13
hist() 73
I() 52
identify() 72
ifelse() 41
legend() 70
length() 88
library() 17
list() 113
lm() 47
locator(1) 71
log() 5
ls() 6
lty 45
lwd 45
merge() 119
methods() 55
my.reg.func() 63
names() 39, 87
objects() 6
odbcConnectExcel() 38
order() 121
panel.first 45
par() 45
pch 44
plogis() 91
plot() 42, 55
pnorm() 5, 12, 14
predict() 60
qt() 14
rbind() 119
read.csv() 37
read.table() 36, 37
reshape() 123
residuals() 57

 2011 Christopher R. Bilder

 130
rev() 122
rm() 6
rstudent() 57
sd() 7
search() 126
segments() 60
setwd() 126
sin() 5
sort() 121
source() 64
sqlFetch() 38
sqrt() 8
stripchart() 76
sum() 40, 88
summary() 38, 49, 106

summary.data.frame() ... 54
summary.default() 54
t.test() 15
table() 116
tail() 37
traceback() 125
var() 7
vcov() 97
win.graph() 58
write.csv() 38
write.table() 38
xlab 44
xtabs() 116
xyplot() 78
ylab 44

