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Part 1 - 2.77

Chapter 2 – The Basic Bootstraps

Section 2.1– Introduction
Estimate F with 
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1) The empirical distribution function (EDF): 
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where H(y – yj) = 1 if y – yj ( 0 and H(y – yj) = 0 otherwise.  
Notes: 

· Suppose y1 = 1, y2 = 5, and y3 = 2. Then 
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· The EDF puts probabilities of 1/n at each sampled yj value.  Thus, values of the EDF are 0, 1/n, 2/n, …, n/n (if yj is truly continuous) where the points of increase correspond to the ordered yj values – y(1), y(2), …, y(n).  
· 
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 is the nonparametric MLE 
of F, and it plays the role of a “fitted model” when no mathematical form is assumed for F (like a parametric CDF).  We will use this 
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 a lot for the nonparametric bootstrap.
2) Suppose we knew a parametric form for F and it had just one parameter, (, controlling it.  
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 would be F with 
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 replacing ( - again, one can think of this as a “fitted model”.  For example, suppose F is N((,1); 
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 is N(
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,1).  We will use this estimate for the parametric bootstrap.  Similar extensions can be made when there is more than one parameter.    
Statistical functions and the plug-in principle
In your first statistics class, you learned that parameters are functions of the population values. We can define this more formally through a statistical function t((). Thus, if we define our parameter of interest to be (, then ( = t(F).  Notice the role F is playing. 

Also, in your first statistics class, you learned that statistics are functions of the sample. We can define our statistic through the statistical function too!  For example, if we define our statistic of interest to be t, then t = 
[image: image10.wmf]ˆ
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.  Notice the role 
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F

 is playing. Overall, you can see how the statistical function provides a nice mathematical way to calculate a parameter or statistic.  

Many parameters can be written as some integral of a distribution.  In order to help generalize our notation for both continuous and discrete random variables, we are not going to use a standard Riemann integral, but rather a Stieltjes integral
.  For example, consider 
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If F is continuous, 
f(y) = 
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If F is discrete, 
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.  Thus, a Stieltjes integral can be more general when we have a continuous variable, but with some discontinuity points
  See http://mathworld.wolfram.com/StieltjesIntegral.html and Sections 6.8 and 6.9.3 in Khuri’s (2003) Advanced Calculus with Applications in Statistics textbook for more information on these integrals.   

Here are some examples where ( is a parameter of interest. Pay close attention to the notation.  

· Suppose ( is the expected value of a Y random variable that has a distribution F (i.e., Y~F).  Then 
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The “|F” part of “E(Y|F)” is often used to stress the dependence on the distribution of F; this will be very important to keep track of as you will soon see. 
· Suppose ( is the variance of a Y random variable that has a distribution F.  Then
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Using this functional form of our parameters, we can then use the “plug-in” principle to find statistics that estimate these parameters!

· Suppose t denotes the estimate of E(Y|F). Then plug 
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 in for F:
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Notice this notation means that Y~
[image: image22.wmf]ˆ
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· Suppose t denotes the estimate of Var(Y|F):
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If 
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 is the EDF, then 

· Estimate of E(Y|F): 
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· Estimate of Var(Y|F): 
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Additional quantities written as statistical functions:
· Median: t(F) = F-1(0.5) where 
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.  Then t(
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.  Note that this may not be the usual sample median taught in introductory statistics courses (if n is even, take the average of y(n/2) and y(n/2+1)) 

· The sampling distribution for a statistic T can be thought of as a function of F as well!  The true sampling distribution of T can be written as 
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Be careful with the notation!  It is correct to not have the ^ on 
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· Bias for a statistic T: ( = b(F) = E(T|F) – t(F); its estimator is B = b(
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) = E(T|
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) – t(
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The bootstrap is based upon this “plug-in” of 
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F

 for F into statistical functions in order to find estimators!!!
Side note for all future sections of BMA: When we have a random variable Y with a distribution of 
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, we will usually use the notation Y instead of Y. This will help with the notation to differentiate the distributions of the random variables. Thus,

· Y ~ F and T ~ G

· Y ~ 
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 and T ~ 
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Section 2.2 – Parametric simulation
This section talks about the parametric bootstrap.  Examining the bootstrap in the parametric situation provides a GREAT way to understand what is going on!

Below is a diagram that describes the non-bootstrap parametric world as you knew it before this class.
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In this setting: 
· We make the assumption that the random variable of interest, Y, has a distribution F( (or just F) with parameter(s) ( (could be a vector of parameters) that in the real-world would be unknown.  
· We take a sample from the population characterized by F to obtain Y1, Y2, …, Yn, with observed values of y1, y2, …, yn, respectively.  
· Using this sample and F, we could use statistical techniques, such as maximum likelihood estimation, to come up with an estimator for (, 
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, say.  
· This sample and F also helps to come up with a sampling distribution, G, for our statistic of interest, T (this statistic may be 
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 or some other statistic calculated on the sample).  With this sampling distribution, we can perform hypothesis tests and calculate confidence intervals with a certain level of accuracy attached to them.  

In the parametric bootstrap world, we have the following additions to our setting:

· The bootstrap uses an estimate of F, say 
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.  This estimate is the same distribution as F, but with 
[image: image45.wmf]ˆ

y

 in place of (.  

· Example: If F was N((, (2), 
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 is the sample mean and 
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 is the sample variance. Most likely, one would use the unbiased 
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·  We can define a random variable, Y ~ 
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.   A resample from 
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, respectively. Notice the  is used with the random variable to help denote that we are working with 
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.   

· Based upon this resample, we can calculate the statistic of interest, T, and it has an observed value of t.  This statistic could be the mean, variance, or other statistics of interest. The distribution of T
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is an estimate of G.  
Notation reminder: We could denote 
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 as 
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 to emphasize the plug-in principle. 

Finding expectations

We can calculate expected values for random variables with either the F or 
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 corresponding distribution.  With the previous normal distribution example, E(Y|F) = ( and E(Y|
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.  Of course, we could also find E(Yj|F) = ( and E(
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 for j = 1,…, n.  

Also, we can find expectations for T and T as well.  
· Suppose T was the sample mean, 
[image: image65.wmf]Y

, in the normal distribution example.  We can calculate E(T|F) = ( and 
E(T|
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.  Also, note that G is N((,(2/n) and 
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· Suppose T was the unbiased sample variance, S2, in the normal distribution example (this is not the plug-in principle estimate of (2). We can calculate E(T|F) = (2. Now, if we let T
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then E(T|
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) = s2. Also, remember from STAT 882 that (n-1)S2/(2 ~ 
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. This means that G results from S2 ~ Gamma(( = (n-1)/2, ( = 2(2/(n-1))
 using the Casella and Berger (2002) parameterization. Also, 
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 is Gamma(( = (n-1)/2, ( = 2s2/(n-1)).
Notation: E(Y|
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) is equivalent to E(Y) in BMA. The latter is often used because it is a little shorter. MAKE SURE YOU ARE COMFORTABLE WITH EITHER!!!  

Using Monte Carlo simulation

Sometimes, it may not be so easy to calculate E(T|
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) directly so we could use Monte Carlo simulation instead to come up with a very good approximation to it.  This leads to an addition to our earlier diagram:
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In this setting: 

· We can take our first resample from 
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 to obtain 
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 which is used to calculate 
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· Our second resample is 
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 which is used to calculate 
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· Our last resample is 
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 which is used to calculate 
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· These 
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 allow us to obtain a Monte Carlo estimate of 
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if we want to be specific with the number of resamples used.
· Refer back to the p. 1.6 discussion for using Monte Carlo simulation to approximate a distribution of a statistic. 
The resamples lead to Monte Carlo estimates of our expected values that we saw earlier,
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as long as R is a large number.  By the law of large numbers, 
[image: image91.wmf]R

r

r1

1

t

R

*

=

å

 is a consistent estimate of 
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.  
Example: Normal example from earlier (normal.R) 

While Monte Carlo simulation would not be necessary here, we can still use it to help illustrate the resampling process for a parametric bootstrap. 

A sample of n = 100 is taken from a N(0,1)
>   set.seed(9891)

>   y<-rnorm(n = 100, mean = 0, sd = 1)

>   head(y) #check out sample

[1]  0.8138720 -0.2126663  0.8103123  0.1795171 -1.1708114 
    -1.1037322

>   #Plots to check out sample

>   par(mfrow = c(1,2), lend = "square") 

>   hist(x = y, main = "Histogram of sample from N(0,1)", 
      freq = FALSE, xlim = c(-3,3)) 

>   curve(expr = dnorm(x, mean = 0, sd = 1), add = TRUE, 
      col = "red") #f(y) for N(0,1) plotted on it

>   plot.ecdf(x = y, verticals = TRUE, do.p = FALSE, main = 
      "EDF of sample from N(0,1)", lwd = 2, panel.first = 
      grid(col="gray", lty="dotted"), ylab = 
      expression(paste(hat(F), " or F")), xlab = "y", xlim 
      =  c(-3,3))

>   curve(expr = pnorm(x, mean = 0, sd = 1), add = TRUE, 
      col = "red") #F(y) for N(0,1) plotted on it
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The resamples are taken from 
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>   t<-mean(y)

>   n<-length(y)

>   R<-1000

>   set.seed(9122)

>   y.star<-matrix(data = rnorm(n = n*R, mean = t, sd = 
      sd(y)), nrow = R, ncol = n)

>   y.star[1:5, 1:10] #First 10 observations of first 5 

                       resamples
           [,1]       [,2]        [,3]       [,4]       [,5]       [,6]       [,7]

[1,] -1.2281329  0.9034105 -0.55294982 -0.7631111 -1.0345332 -0.8013427  0.0804075

[2,] -0.5986262 -1.0832478  0.12602189 -0.4454442  0.4485739  1.0515763  0.1338070

[3,]  1.2658215 -0.7457588  0.08962094  1.7602200 -0.3465271  0.9690184 -1.2809330

[4,]  0.6222794 -1.8659698  0.53827738 -0.9143433 -0.6446672 -0.7614748 -1.3569586

[5,]  0.1878543 -0.2260052  0.62438851  0.4643090 -0.4075717  0.2714539  0.6243293

             [,8]        [,9]      [,10]

[1,] -0.219392660 -0.31722158 -1.0276954

[2,] -0.004592587 -0.74040663 -0.2415083

[3,] -0.806867084 -1.29486764  0.2796370

[4,] -0.914133063 -0.30380845  0.3375140

[5,] -0.883297948 -0.08583919 -1.2923528

>   y.star[1,1] #This is y*_11

[1] -1.228133

>   y.star[2,4] #This is y*_24

[1] -0.4454442

>   t.star<-apply(X = y.star, MARGIN = 1, FUN = mean)

>   summary(t.star)

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 

-0.34750 -0.11020 -0.05685 -0.05033  0.01439  0.28070 

>   par(mfrow = c(1,2)) #one row and two columns of plots

>   hist(x = t.star, main = "Histogram of t*'s", xlab = 
      "t*") 

>   plot.ecdf(x = t.star, verticals = TRUE, do.p = FALSE, 
      main = expression(paste("MC estimate of ", hat(G))), 
      lwd = 2, xlab = "t*", panel.first = grid(nx = NULL, 
      ny = NULL, col="gray", lty="dotted"), ylab = "EDF")
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Notice the title for the 2nd plot – “MC estimate of 
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For emphasis, please remember that 
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 and 
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 is equivalent notation.
Questions: 
· Why did we resample with replacement from the original data in the Chapter 1 example, but we are not resampling like this here?
 
· Var((T() = Var(T(|
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Example 2.4: Air conditioning data (example2.4_2.5_2.6_2.9_2.10_2.11.R)

The purpose here is to try to reproduce the examples in the book.  This is a GREAT way to learn the material, and you should try to do the same.  

Background from p. 4-5 of BMA:
[image: image103.jpg]Example 1.1 (Air-conditioning data) Table 1.2 gives n = 12 times
between failures of air-conditioning equipment, for which we wish to estimate
the underlying mean or its reciprocal, the failure rate. A simple model for this
problem is that the times are sampled from an exponential distribution.

The dotted line in the left panel of Figure 1.2 is the cumulative distribution

function (CDF)
0, y<0,
Fu(y) = =
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for the fitted exponential distribution with mean i set equal to the sample

average, § = 108.083. The solid line on the same plot is the nonparamet-
ric equivalent, the empirical distribution function (EDF) for the data, which

Table 1.2
Service-hours
between failures of
the air-conditioning
equipment in a
Boeing 720 jet
aircraft (Proschan,
1963)
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R parameterizes the exponential distribution as 
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which is different from BMA. Taking this into account, below is how I reproduced Figure 1.2  

##########################################################

# Example 1.1 and Figure 1.2

>   y<-c(3,5,7,18,43,85,91,98,100,130,230,487)

>   t<-mean(y)

>   cat("My sample is", sort(y), "\n which produces an 
        observed statistic of", t, "\n")

 My sample is 3 5 7 18 43 85 91 98 100 130 230 487 

 which produces an observed statistic of 108.0833 

>   #EDF

>   par(pty = "s", mfrow=c(1,2), lend = "square")

>   plot.ecdf(y, verticals = TRUE, do.p = FALSE, main = 
     "EDF for AC failure times", lwd = 2, xlim = c(0,600), 
     panel.first = grid(nx = NULL, ny = NULL, col="gray", 
     lty="dotted"), ylab = expression(hat(F)), xlab = "y")

>   #Note parameterization of rate = 1/scale
>   curve(expr = pexp(q = x, rate = 1/t), from = 0, to = 
          600, col = "red", add = TRUE)  

>   #QQ-Plot

>   #  Note: Book uses different version of the x-axis of 
       the plot - Exp(1).  Bottom of p. 18 gives 
       justification for the p = seq( )

>   exp.quant<-qexp(p = seq(from = 1/(length(y)+1), 
     to = 1-1/(length(y)+1), by = 1/(length(y)+1)), rate = 
     1/t)

>   plot(y = sort(y), x = exp.quant, main = "QQ-Plot for AC 
      failure times", ylab = "y", xlab = "Exp. quantiles", 
      panel.first = grid(nx = NULL, ny = NULL, col="gray", 
      lty="dotted"), ylim = c(0,600))

>   data.frame(exp.quant, y)

    exp.quant   y

1    8.651283   3

2   18.055762   5

3   28.357204   7

4   39.744920  18

5   52.475303  43

6   66.907821  85

7   83.568940  91

8  103.274862  98

9  127.392961 100

10 158.486598 130

11 202.310619 230

12 277.228276 487

>   abline(a = 0, b = 1, col = "red")
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What do you think about an Exponential distribution approximation here? 

Notes for this example: 
· F((y) is CDF for Exp(() 

· Y( ~ Exp(
[image: image107.wmf]y
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In other words, 
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 is Exp(
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) – notice this is chosen over the EDF because the distribution of Y is taken to be exponential for this example

· t(F) = ( and this is estimated by t(
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· T = 
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· E((T() = E((
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On average, what is the mean of a random sample of 
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) distribution?  What is the variance?   

Throughout the air conditioning example, we will need to work with the gamma distribution as well. Page 5 of BMA gives the following definition of a gamma distribution:
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With this formulation of the distribution, E(Y) = ( and Var(Y) = (2/(.  This is different from the usual definition of a gamma distribution as given on p. 99 of Casella and Berger (2002):
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With this formulation of the distribution, E(Y) = (( and Var(Y) = ((2.  Thus, the relationship between the two definitions results in ( = (/( and ( = (.  I will use the definition of the distribution in BMA!!!

In example 4.6.8 of Casella and Berger (2002), the distribution of the sum of n independent random variables with Exp(() is given.  This produces 
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Suppose you were interested (for some reason) in T = 1/
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instead:
· T ~ inverted gamma distribution with parameters n and (
· T( ~ inverted gamma distribution with parameters n and 
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Suppose you were interested in T = log(
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):

· What is this distribution of T and T(?  
· What is the mean and variance of T and T(?
· Could work with (-method to get approximate values
· Instead, one could resample from 
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 to approximate the values! 
Estimating the bias
Review: 
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 (still is a parametric distribution).  Equivalently, we can write 
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.  Since we know 
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, we can take as many resamples as we want:
· R different resamples result in 
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· Estimate the distribution of T from 
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· Illustration: 
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Using the resamples, we can estimate the bias.  First, the true bias is 

( = E(T|F) – ( = E(T|F) – t(F)
The estimator for the bias (without actually taking resamples) is 

B = E(T(|
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Using R resamples, the estimator for the bias is 
BR = 
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By the weak law of large numbers, BR ( B for large R. 
You need to calculate BR if you can not figure out B through the original parametric assumptions.  For example, this may occur when T = log(
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) for the air conditioning example (in Chapter 5, we will find the distribution for log(
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The variance of the T estimator is 
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[image: image145.wmf](

)

R

2

r

r1

1

TT

R1

**

=

-

å

-

 
Remember that VR is the random variable version of the variance and 

vR = 
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is the observed version of the variance.  

Note that BMA will drop the subscript R on quantities like B and V since this is how we will most often need to calculate them. 
Quantile estimates of G
Frequently, we will be wanting to approximate the distribution of T ( (, not just T.  More on the reason later (for now, think about how the “usual” confidence interval for a population mean is derived).  

We will approximate the distribution of T ( ( with the distribution of 
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G(u) = P(T ( ( ≤ u | F) 

will be approximated by 
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When actual resamples are needed, we can use R resamples to obtain 


[image: image151.wmf]I

R

Rr

r1

1

ˆ

G(u)(Ttu)

R

*

=

=-£

å

.  

Remember: 
[image: image152.wmf]R

ˆ

G(u)

 is a simulation based estimate of 
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 which is an estimate of G(u).  
Suppose you want to estimate the (th quantile of G: q( = G-1(() or equivalently the q( in P(T ( ( ≤ q( | F) = (.  This is estimated by 
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· Usually, one chooses a value of R so that ((R+1) is an integer.  For example, suppose R = 999 and ( = 0.01; 
[image: image160.wmf](10)

tt

*

-

 is the estimated 0.01 quantile of 
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· Why not use R instead of R+1 in ((R+1)?  See the bottom of p. 18 in BMA.
 Note that R (software package) has 9 different ways to estimate quantiles, so we will need to be careful which one to use.
Examples 2.5 and 2.6: Air conditioning data (example2.4_2.5_2.6_2.9_2.10_2.11.R)
Remember that t = 
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 = 108.083.  Then 
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BMA call the “empirical bias“, BR = 
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 and say the “correct value” for the bias is 0, because 

B = E(T(|
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Provided R is large enough, we would expect BR to be close to 0.

Also, 
[image: image172.wmf]Var(Y)

**

 = 
[image: image173.wmf]2

y

/n = 973.5.  Provided R is large enough, we would expect vR = 
[image: image174.wmf](

)

R

2

r

r1

1

tt

R1

**

=

-

å

-

 to be very close to this value.

> #########################################################

> # Example 2.5

>   R.max<-500

>   set.seed(4130)

>   y.star<-matrix(data = rexp(n = length(y)*R.max, rate = 
              1/t), nrow = 500, ncol = length(y))

>   #r = 1

>   y.star[1,]

 [1]  36.20971 193.58192  15.24387  74.71435  14.97918 
     135.62681  12.39832

 [8]  83.84276  90.34572 109.55716  72.21281  12.94817

>   t.star<-apply(X = y.star, FUN = mean, MARGIN = 1)

>   mean(t.star) - t #B_500

[1] -1.260844

>   var(t.star)      #V_500

[1] 812.162

>   R.max<-10000

>   set.seed(2891)

>   y.star<-matrix(data = rexp(n = length(y)*R.max, rate = 

      1/t), nrow = R.max, ncol = length(y))  

>   t.star<-apply(X = y.star, FUN = mean, MARGIN = 1)

>   mean(t.star) - t #B_10000

[1] -0.1713141

>   var(t.star)      #V_10000

[1] 969.3978

We are somewhere around where we would expect to be for R = 500, and we are closer for R = 10,000.  

The purpose of this next code is to reproduce Figure 2.1.  This plot looks at a number of different R values to see how the BR and VR values become closer to B and V.  This is done for four separate sets of simulated data to help show the variability of the numerical measures.    
>   R.values<-c(10, 20, 50, 100, 200, 300, 400, 500)

>   save2<-data.frame(R.values = NULL, bias = NULL, 
      variance=NULL, sim=NULL)

>   set.seed(4131)

>   bias<-numeric(length(R.values))

>   variance<-numeric(length(R.values))

>   for (sim.numb in 1:4) {

      y.star<-matrix(data = rexp(n = length(y)*R.max, rate 
         = 1/t), nrow = 500, ncol = length(y))

      t.star<-apply(X = y.star, FUN = mean, MARGIN = 1)

      counter<-1

      for (i in R.values) { 

        bias[counter] = mean(t.star[1:i]) - t

        variance[counter] = var(t.star[1:i])  

        counter = counter + 1

      }

      save<-data.frame(R.values, bias, variance, sim = 
        sim.numb)

      #There are more # efficient ways to save the results!

      save2<-rbind.data.frame(save2, save)    }

>   head(save2, n = 10) #Check values in it.

   R.values        bias variance sim

1        10 14.89785027 523.4049   1

2        20 10.83373410 725.4933   1

3        50  0.33823010 738.8489   1

4       100  1.06438195 892.9405   1

5       200  2.69465248 886.5944   1

6       300  0.61663794 883.4254   1

7       400  0.14199743 868.2774   1

8       500 -0.07480097 875.2024   1

9        10  1.85559186 706.6224   2

10       20  0.61425840 846.4769   2

>   #Figure 2.1
>   par(pty = "s", mfrow=c(1,2))

>   plot(x = save2$R.values, y = save2$bias, col = 
     rep(c("red", "blue", "darkgreen", "lightblue"), times 
     = 1, each = length(R.values)), pch = rep(c(1, 2, 3, 
     4), times = 1, each = length(R.values)), xlab = "R", 
     ylab = "Bias", main = "4 simulation runs for bias",   

     panel.first = grid(col="gray", lty="dotted"), type = 
     "p") 

>   abline(h = 0, col = "black", lwd = 2)   

>   lines(x = R.values, y = save2$bias[save2$sim == 1], col 
      = "red")

>   lines(x = R.values, y = save2$bias[save2$sim == 2], col 
      = "blue")

>   lines(x = R.values, y = save2$bias[save2$sim == 3], col 
      = "darkgreen")

>   lines(x = R.values, y = save2$bias[save2$sim == 4], col 
      = "lightblue")   

>   legend(locator(1), legend = c("1", "2", "3", "4"), 
      col=c("red", "blue", "darkgreen", "lightblue"), pch = 
      c(1, 2, 3, 4), bty="n", cex=0.75)

>   plot(x = save2$R.values, y = save2$variance, col = 
     rep(c("red", "blue", "darkgreen", "lightblue"), times 
     = 1, each = length(R.values)), pch = rep(c(1, 2, 3, 
     4), times = 1, each = length(R.values)), xlab = "R", 
     ylab = "Variance", main = "4 simulation runs for 
     variance", panel.first = grid(col="gray", 
     lty="dotted"), type = “p") 

>   abline(h = t^2/length(y), col = "black", lwd = 2)   

>   lines(x = R.values, y = save2$variance[save2$sim == 1], 
      col = "red")

>   lines(x = R.values, y = save2$variance[save2$sim == 2], 
      col = "blue")

>   lines(x = R.values, y = save2$variance[save2$sim == 3], 
      col = "darkgreen")

>   lines(x = R.values, y = save2$variance[save2$sim == 4], 
      col = "lightblue")

>   legend(locator(1), legend = c("1", "2", "3", "4"), 
      col=c("red", "blue", "darkgreen", "lightblue"), pch = 
      c(1, 2, 3, 4), bty="n", cex=0.75)
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How large of an R is needed? 
What is Var((BR) = Var(BR|
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This gives you a measure of how much of the variability in estimating the bias through simulation is due to the number of resamples taken.  For example, when n = 12 and R = 500, Var((B500) = 108.08332/(12(500) = 1.9470.  

Work for Example 2.6. 

The purpose of this example is to examine the simulation approximation for 
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.  Since T( ~ Gamma(n, 
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 (distribution for T( – t that estimates G).  The purpose of the code next is to reproduce Figure 2.2 which has Q-Q plots to examine normal and gamma distributions for T(.  Why do you think a normal distribution is examined?

>   R.max<-999

>   set.seed(4130)

>   y.star<-matrix(data = rexp(n = length(y)*R.max, rate = 
      1/t), nrow = R.max, ncol = length(y))

>   t.star<-apply(X = y.star, FUN = mean, MARGIN = 1)

>   #Figure 2.2

>   #QQ-Plot

>   par(pty = "s", mfrow=c(1,2))

>   norm.quant<-qnorm(p = seq(from = 
      1/(length(t.star[1:99])+1), to = 1-

      1/(length(t.star[1:99])+1), by = 
      1/(length(t.star[1:99])+1)), mean = 
      mean(t.star[1:99]), sd = sd(t.star[1:99]))

>   plot(y = sort(t.star[1:99]), x = norm.quant, main = 
      "QQ-Plot for t.star, R=99", ylab = "t.star", xlab = 
      "Normal quantiles", panel.first = grid(col="gray", 
      lty="dotted"))

>   abline(a = 0, b = 1, col = "red")

>   norm.quant<-qnorm(p = seq(from = 1/(length(t.star)+1), 
      to = 1-1/(length(t.star)+1), by = 
      1/(length(t.star)+1)), mean = mean(t.star), sd = 
      sd(t.star))

>   plot(y = sort(t.star), x = norm.quant, main = "QQ-Plot 
      for t.star, R=999", ylab = "t.star", xlab = "Normal 
      quantiles", panel.first = grid(col="gray", 
      lty="dotted"))

>   abline(a = 0, b = 1, col = "red")
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What do you think about a normal approximation?
>   #T* ~ Gamma(alpha = n, beta = t/n) in Casella and 

      Berger and R’s parameterization of Gamma
>   gam.quant<-qgamma(p = seq(from = 
      1/(length(t.star[1:99])+1), to = 1-

      1/(length(t.star[1:99])+1), by = 
      1/(length(t.star[1:99])+1)), shape = length(y), scale 
      = t/length(y))

>   plot(y = sort(t.star[1:99]), x = gam.quant, main = "QQ-
      Plot for t.star, R=99", ylab = "t.star", xlab = 
      "Gamma quantiles", panel.first = grid(col="gray", 
      lty="dotted"))
>   abline(a = 0, b = 1, col = "red")

>   gam.quant<-qgamma(p = seq(from = 1/(length(t.star)+1), 
      to = 1-1/(length(t.star)+1), by = 
      1/(length(t.star)+1)), shape = length(y), scale = 
      t/length(y))

>   plot(y = sort(t.star), x = gam.quant, main = "QQ-Plot 
      for t.star, R=999", ylab = "t.star", xlab = "Gamma 
      quantiles", panel.first = grid(col="gray", 
      lty="dotted"))
>   abline(a = 0, b = 1, col = "red")
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What do you think about the gamma distribution here?  Notice the tails of the distribution for R = 99; what could be a cause?

The purpose of this code is reproduce Figure 2.3
 where normality is examined again through histograms.    

>   #Figure 2.3

>   par(pty = "s", mfrow=c(1,2))

>   hist(t.star[1:99], main = "Histogram for t*, R=99", 
      freq=FALSE, xlab = "t*")

>   curve(dnorm(x, mean = mean(t.star[1:99]), sd = 
      sd(t.star[1:99])), col = 2, add = TRUE)

>   hist(t.star, main = "Histogram for t*, R=999", 
      freq=FALSE, xlab = "t*", ylim = c(0,0.014))

>   curve(dnorm(x, mean = mean(t.star), sd = sd(t.star)), 
      col = 2, add = TRUE)
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What do you think about the normal distribution approximation?

Next, compare how close the quantiles are for using R resamples and the exact distribution

>   #p quantiles

>   p<-c(0.01, 0.05, 0.10, 0.5, 0.90, 0.95, 0.99)

>   # p*(R+1) quantiles of t.star 

>   data.frame(p, t.star = quantile(x = t.star, probs = p, 
     type = 1), gamma.quant = qgamma(p = p, shape = 
     length(y), scale = t/length(y))) 

     p    t.star gamma.quant

1 0.01  46.55624    48.89132

2 0.05  62.29059    62.36600

3 0.10  69.96137    70.51845

4 0.50 102.73513   105.09630

5 0.90 144.63880   149.49836

6 0.95 160.27212   163.99407

7 0.99 189.86985   193.55843

# p*(R+1) quantiles of t.star - t 

>   data.frame(p, t.star = quantile(x = t.star, probs = p, 
      type = 1) - t, gamma.quant = qgamma(p = p, shape = 
      length(y), scale = t/length(y)) - t)

     p    t.star gamma.quant

1 0.01 -61.52709  -59.192011

2 0.05 -45.79275  -45.717336

3 0.10 -38.12197  -37.564885

4 0.50  -5.34820   -2.987035

5 0.90  36.55547   41.415031

6 0.95  52.18879   55.910736

7 0.99  81.78652   85.475093

BMA quote: “As a general rule, good estimates of density require at least R = 1,000; density estimation is usually harder than probability or quantile estimation.”  
Regarding the p. 19-20 discussion on kernel density estimation, see the R function density() and p. 126-132 of Venables and Ripley (2002) for implementation.  

Another way to perform the parametric bootstrap is through using the boot() function.  The code below is similar to the example on p. 528-9.  
>  #Need to load boot package first even though it is 
      automatically installed with R (only need to do once 
      during the R session)

>   library(boot)

>   #Function for the statistic

>   #  First element is the original or resampled data.

>   #  No second element for parametric bootstrap - see p. 
       528 of BMA

>   mean.t<-function(data) {

       mean(data) 

    }

>   #Function for how to simulate the resamples

>   sim.data<-function(data, mle) {

      rexp(n = length(data), rate = 1/mle)
    }

>   #Do bootstrap

>   set.seed(4162)

>   boot.res<-boot(data = y, statistic = mean.t, R = 1000, 
      sim = "parametric", ran.gen = sim.data, mle = 
      mean(y)) 
>   boot.res

PARAMETRIC BOOTSTRAP

Call:

boot(data = y, statistic = mean.t, R = 1000, sim = "parametric", ran.gen = sim.data, mle = mean(y))

Bootstrap Statistics :

    original     bias    std. error

t1* 108.0833 -0.7772052     30.8132
>   plot(boot.res)   
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Notes:

· The data option in boot() specifies the original data.

· A function needs to be written for the parametric method used to simulate the data.  There NEEDS to be two items passed into to – data and mle with these names.  The boot() function calls this function using the ran.gen option.  The mle option in boot() specifies the parameter estimates used in the simulating data process.  The value passed into to it can be a list type or a vector in order to include multiple parameter estimates.  

· A function needs to be written to calculate the statistic where data is at least the first element to be passed into it.  This function is named in the statistic option of boot().    
· The R option in boot() specifies the number of resamples to be taken.  
· The sim option specifies the type of bootstrap procedure to be used.  

There are more complicated parametric problems where a parametric bootstrap can be useful.  For example, the likelihood ratio test statistic has an approximate (2 distribution for a large sample.  There are times when this approximation may not work well due to sample size or other reasons
.  If this happens, one could use the assumed distribution of Y and the original sample to estimate parameters.  Using the estimated parameters, resamples can be taken from 
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-2log( for each resample.  

Section 2.3 – Nonparametric simulation
This section talks about the nonparametric bootstrap where the goal again is to estimate 
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.  The bootstrap obtains an estimate through resampling from the EDF of F, denoted simply by 
[image: image190.wmf]ˆ

F

.  

The EDF is used in the same a way as the estimate of F was used in the parametric bootstrap situation.  Remember that the EDF puts a probability of 1/n on each observation y1, y2, …, yn.  Thus, resampling from 
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 is the same as resampling with replacement from y1, y2, …, yn.  Usually, a resample of size n is taken. 
There are a finite number of resamples.  The actual order of the observations appearing in a resample does not matter.  This produces 
[image: image192.wmf]2n1

n1

-

æö

ç÷

-

èø

 different resamples
 (see #5 on p. 61).  As you can see, there can be a lot of different resamples!!!
Moment estimates
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 (again, this is the EDF).  Equivalently, we can say 
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Moment estimates for a Y (could be 
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Also, 
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Moment estimates for 
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Second, the variance:
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Remember that usual variance of a sample mean is 
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 = (2/n.
Optimally, one would like to take all possible resamples, find t( for each, and then form 
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.  Instead since there are so many possible resamples, R different resamples are taken.  Therefore, we obtain 
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.  Since R will be large, there will not be much difference between these two quantities.    

Taking the resamples
In addition to resampling from y1, y2, …, yn each with probability 1/n and with replacement, one can think of the resampling process as resampling from the indices.  Thus, one is resampling 1, 2, …, n with replacement and then matching the indices back up with the original y’s.  This is how the boot() function works for the nonparametric bootstrap!!! 
It is also helpful to see how resampling for the nonparametric bootstrap is like sampling from a multinomial distribution with n categories and 1/n as the probability for each category.  This is an important concept to understand because later we may need to change the probability of each category to something other than 1/n (this happens for some types of hypothesis tests).

MAKE SURE TO READ Example 2.8 on your own.  There is a nice table demonstrating the resampling process.  Also, this is a nice example of how there is no clear distribution that can be used for the statistic of interest and how a normal approximation is not the best.  My example2.8.R program demonstrates some of the calculations.  
Example 2.9 – Air conditioning data (example2.4_2.5_2.6_2.9_2.10_2.11.R)

The purpose here is to compare the nonparametric bootstrap to the parametric bootstrap.    
Pay special attention to “i” in the calc.t() function.   
>   #Just a reminder: Need to load boot first even though 
     it is automatically installed with R (only 

     need to do it once per R session)
>   library(boot)

>   #Function for the statistic

>   #  First element is the original or resampled data.

>   #  Second element represents the indices of the data.  
       For example, the indices will be 1:length(y) for the 
       observed data.   

>   calc.t<-function(data, i) {

       d<-data[i]

       mean(d) 

    }

>   #Try it

>   calc.t(data = y, i = 1:length(y))

[1] 108.0833

By specifying i = 1:length(y), elements 1, 2, …, 12 in data are put into d.  Notice that I could implement calc.t with 

>   #Other implementations of calc.t:

>   calc.t(data = y, i = rep(x = 1, times = 12))

[1] 3

>   set.seed(7828)

>   calc.t(data = y, i = sample(x = 1:length(y), size = 12, 

      replace = TRUE))

[1] 90.25

The second implementation demonstrates one resample taken through first resampling the indices.  
Question: In this situation, y is a vector. What if y was a data.frame instead? What would need to be changed in the second line of calc.t()? 

Next, the boot() function uses this same method to take R = 1,000 resamples.  

>   #Do bootstrap

>   set.seed(9182)

>   boot.res<-boot(data = y, statistic = calc.t, R = 1000, 
      sim="ordinary") 

>   boot.res

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
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boot(data = y, statistic = calc.t, R = 1000, sim = "ordinary")
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Bootstrap Statistics :
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    original    bias    std. error

t1* 108.0833 -0.9579167    38.38268





>   plot(boot.res)    #Note: plot.boot is the actual 
                             function implemented  
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>   #What's available from the boot() function?

>     names(boot.res)

 [1] "t0"        "t"         "R"         "data"      "seed"      
     "statistic" "sim"      

 [8] "call"      "stype"     "strata"    "weights"  

>     boot.res$t0

[1] 108.0833

>     head(boot.res$t)

          [,1]

[1,] 113.16667

[2,] 130.25000

[3,] 157.50000

[4,]  49.83333

[5,] 114.00000

[6,]  42.58333

>     boot.res$statistic

function(data, i) {

     data<-data[i]

     mean(data) 

  }

>     #List of indices from the resamples

>     save.ind<-boot.array(boot.out = boot.res, 
        indices = TRUE)

>     head(save.ind)

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,]    9    5   12    7    1   11   10    3    5     1     7    10

[2,]   10    3    1    5    5    2   12    9    5     6    10    12

[3,]    6   12   12    3   10    2    7    3    5    12     5     4

[4,]    4    1    6    2    4    4   11    6    1     6     2     5

[5,]    1    9    2   12    5    5    2   10    3    11     6    11

[6,]    3    4    1    8    4    1    8    4    9     8     5     3

>     #First resample

>     y[save.ind[1,]]

 [1] 100  43 487  91   3 230 130   7  43   3  91 130

>     mean(y[save.ind[1,]])

[1] 113.1667

As an instructive activity, change calc.t() to

>   calc.t<-function(data, i) {

       print(i) #Another way to do this is through

                 cat(“My resample indices are”, i, “\n”)
       d<-data[i]

       mean(data) 

    }

as another way to see the indices that boot() sends to the function for each resample.  

The purpose of Figure 2.7 is to compare the nonparametric bootstrap quantiles for T( ( t

to those we obtained in Section 2.2 using the parametric bootstrap; also, see how the quantiles become less variable for larger R.  
>   #Work for Figure 2.7

>   R.max<-999

>   R.values<-c(19, 39, 99, 199, 299, 399, 499, 599, 699, 
      799, 899, 999)

>   save2<-data.frame(R.values = NULL, p05 = NULL, 
      p95=NULL, sim=NULL)

>   set.seed(9182)

>   p05<-numeric(length(R.values))

>   p95<-numeric(length(R.values))

>   for (sim.numb in 1:4) {

      boot.res<-boot(data = y, statistic = calc.t, R = 999, 
        sim="ordinary") 

      counter<-1

      for (i in R.values) { 

        p05[counter] = quantile(x = boot.res$t[1:i], probs 
          = 0.05, type = 1) - t  
        p95[counter] = quantile(x = boot.res$t[1:i], probs 
          = 0.95, type = 1) - t   

        counter = counter + 1

      }

      save<-data.frame(R.values, p05, p95, sim = sim.numb)

      save2<-rbind.data.frame(save2, save)

   }

>   #Figure 2.7

>   par(pty = "m", mfrow=c(1,1))

>   plot(x = c(save2$R.values, save2$R.values), y = 
      c(save2$p05, save2$p95), col = rep(c("red", "blue", 
      "darkgreen", "lightblue"), times = 1, each = 
      length(R.values)), pch = rep(c(1, 2, 3, 4), times = 
      1, each = length(R.values)), xlab = "R", ylab = 
      "Quantiles of t* - t", main = "4 simulation runs for 
      quantiles (using nonpar boot)", panel.first = grid(nx 
      = NULL, ny = NULL, col="gray", lty="dotted"), type = 
      "p") 
>   abline(h = qgamma(p = c(0.05, 0.95), shape = length(y), 
      scale = t/length(y)) – t, col = "black", lwd = 2)  

>   lines(x = R.values, y = save2$p05[save2$sim == 1], col 
      = "red")

>   lines(x = R.values, y = save2$p05[save2$sim == 2], col 
      = "blue")

>   lines(x = R.values, y = save2$p05[save2$sim == 3], col 
      = "darkgreen")

>   lines(x = R.values, y = save2$p05[save2$sim == 4], col 
      = "lightblue")      

>   lines(x = R.values, y = save2$p95[save2$sim == 1], col 
      = "red")

>   lines(x = R.values, y = save2$p95[save2$sim == 2], col  

      = "blue")

>   lines(x = R.values, y = save2$p95[save2$sim == 3], col 
      = "darkgreen")

>   lines(x = R.values, y = save2$p95[save2$sim == 4], col 
      = "lightblue")      

>   legend(locator(1), legend = c("1", "2", "3", "4"), 
      col=c("red", "blue", “darkgreen", "lightblue"), pch = 
      c(1, 2, 3, 4), bty="n", cex=2)

> #Could do a similar plot for bias and variance
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Thoughts about the comparison?  How many resamples are needed?

P. 25 BMA quote: “Under nonparametric resampling there is no reason why the quantiles should approach the theoretical quantiles under the exponential model, and it seems that they do not do so.”  Why? 

In Figure 2.8, the quantiles of the true theoretical model
 under the parametric bootstrap in Section 2.2 to those obtained from the non-parametric bootstrap here.  The plot on the left uses Y ~ Exp(() that leads to 
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 and further leads to T( ~ Gamma(n, 
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).  BMA says the plot on the right starts first with a Y ~ Gamma((, () distribution instead of the exponential originally done in the Section 2.2 examples. 

When Y ~ Gamma((, (), 
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Also, note that one can derive the MOMs to be 
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; these can be used in the numerical estimation method below.  

>    #-log likelihood function for a gamma(kappa, mu)

>     logL<-function(par.gam, data) {

        kappa<-par.gam[1]

        mu<-par.gam[2]

        n<-length(data)

        #optim() finds a minimum so I need to put a 

               negative here since want a max

        -(-n*lgamma(kappa) + n*kappa*log(kappa) – 

          n*kappa*log(mu) - kappa/mu * sum(data) + 

          (kappa-1)*sum(log(data)))

           }

      #MOM estimators - used as starting points

      par.gam<-c(mean(y)^2/var(y), mean(y))

      #Find MLEs (default method did not produce 

                  convergence)

>     save.opt<-optim(par = par.gam, fn = logL, data = y, 

        control=list(trace = 0, maxit=10000), method = 

        "BFGS", hessian = TRUE)

>     save.opt

$par

[1]   0.7064935 108.0833333

$value

[1] 67.64542

$counts

function gradient 

      19        4 

$convergence

[1] 0

$message

NULL

$hessian

         [,1]         [,2]

[1,] 16.52842 0.0000000000

[2,]  0.00000 0.0007257164

I had a few problems with convergence when using the default optimization method so I wanted to see what the log likelihood function looked like.  Here is a contour plot (code only in program):
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You can see it is fairly flat over many values of (.  The maximum value of log(L) is -67.6454 (use 
-save.opt$value to see it)      

Under the parametric bootstrap procedure, notice that T( = 
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 when starting with Y ~ Gamma((, ().  We can use quantiles from this distribution to compare to those from T( obtained from the non-parametric bootstrap.  
>   #Figure 2.8 - left plot

>   par(pty = "s", mfrow=c(1,2))

>   #t* ~ Gamma(n, t/n) in R’s syntax

>   gam.quant<-qgamma(p = seq(from = 1/(boot.res$R+1), to = 
      1-1/(boot.res$R+1), by = 1/(boot.res$R+1)), shape = 
      length(y), scale = t/length(y))

>   plot(y = sort(boot.res$t), x = gam.quant, main = "QQ-
      Plot for t*, R=999, Y~Exp", ylab = "t*", xlab = 
      "Gamma quantiles", panel.first = grid(col="gray", 
      lty="dotted"))
>   abline(a = 0, b = 1, col = "red")

>   #Figure 2.8 - right plot - Suppose started with a gamma 
      instead of an exponential model
>     gam.quant<-qgamma(p = seq(from = 1/(boot.res$R+1), to 
        = 1-1/(boot.res$R+1), by = 1/(boot.res$R+1)), shape 
        = length(y)*save.opt$par[1], scale = 
        save.opt$par[2]/length(y))

>     plot(y = sort(boot.res$t), x = gam.quant, main = "QQ-
        Plot for t*, R=999, Y~Gamma", ylab = "t*", xlab = 
        "Gamma quantiles", panel.first = grid(col="gray", 
        lty="dotted"))
>     abline(a = 0, b = 1, col = "red")
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What do you think about the nonparametric bootstrap procedure and how it compares to the parametric?  See BMA’s reasoning on bottom of p. 26.  
Discreteness
T( has a discrete distribution for the nonparametric bootstrap because there are  
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 different resamples (problem #5, p. 61).  Especially when the sample size is small, one will notice this discreteness by having groups of 
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> choose(2*length(y)-1, length(y)-1)

[1] 1352078

different possible resamples.  This results in the right-side plots of Figure 2.9 experiencing “banding”.  Also, this discreteness may lead to problems due to outliers in the original data (more on this later).
Section 2.4 – Simple confidence intervals 
Chapter 5 will discuss confidence intervals in detail (and better intervals), but this section will give us a start.  

In general, a (1 – 2()(100% confidence interval for ( has a lower bound, L, and an upper found, U, such that 

P(L ≤ ( ≤ U) = 1 – 2(
The L and U are statistics based upon the sampling distribution for T – (, G.  
Basic bootstrap C.I. 
This is also known as the hybrid C.I.
G(t|F) denotes the CDF for T – ( with 1 – ( quantile of 
G-1(1 – (|F).  Then 

P[G-1((|F) < T – ( < G-1(1 – (|F)] = 1 – 2( 

( P[G-1((|F) – T < -( < G-1(1 – (|F) – T ] = 1 –  2(

( P[-G-1((|F) + T > ( > -G-1(1 – (|F) + T ] = 1 –  2(

( P[T – G-1(1 – (|F) < ( < T – G-1((|F)] = 1 –  2(
Thus, a (1-2()(100% C.I. is 
t – G-1(1–(|F) < ( < t – G-1((|F)
The placement of the quantiles is correct in the interval above (i.e., “upper” quantile of G is used for the “lower” bound of the interval).  If this seems strange, derive a C.I. for the population mean starting with 
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where t(,n-1 is the (th quantile from a t-distribution, and show that the interval is 
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Consider the nonparametric setting where G is unknown. This means obtaining the exact quantiles needed for the (1-2()(100% C.I. would be difficult; so, plug-in 
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 (EDF)!  

The (1 – 2()(100% C.I. is 
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How do we get 
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?  

Remember that G-1(1-(|F) is the (1-() quantile for the distribution of T – (.  So, 
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Thus, the (1 – 2()(100% basic bootstrap C.I. actually calculated is 

t – 
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or

2t – 
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for a nonparametric bootstrap interval.  
Question
: How would you obtain 
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 if a parametric bootstrap was used? Give an answer with respect to:

· Without actual resamples being taken
· With actual resamples being taken

The use of extreme quantiles for the distribution of 
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 leads us to need a large R for estimation purposes; BMA recommend R ≥ 1,000.  

The accuracy of the interval depends on how well the distribution of T – ( agrees with the distribution of T( – t.  The main thing to worry about is if the T – ( distribution depends upon other unknowns (like other parameters).  If it does not, then it is a “pivotal statistic” (p. 427 of Casella and Berger, 2002) and this C.I. can be good in terms of accuracy.  As you will see, the accuracy of the bootstrap often depends upon pivotal statistics and this will be discussed in more detail later.
Studentized bootstrap C.I. 

This is also known as the bootstrap-t interval.  Peter Hall 
developed this interval.  
In the formulation of the interval, a statistic is used to try to mimic the Student’s t statistic (pivotal quantity for normally distributed data when estimating the population mean).  A “studentized” version of T – ( is 
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where V is an estimator
 of Var(T|F).  Note that T and V are both random variables.  A (1 – 2()(100% C.I. for ( is 
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where z1-( is the (1 – () quantile from the distribution for 
T – (; z1-( is NOT necessarily a normal distribution quantile.  Notice the use of “v” in the interval means the observed value of V.  The bootstrap version of Z uses 
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to produce the limits of
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for a nonparametric bootstrap interval.  Be very careful with what has the ( on it!  ONLY the z part does since this distribution is the only item unknown.  The original sample is used to calculate t and v1/2.  The 
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 denotes the (R+1)(1-() quantile from the resampling distribution for Z(.  
Question
: What is 
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Since only distributional quantiles from the resampling distribution are used for this interval, some people like to think of this as finding a new “t-table” for the specific problem of interest!  Instead of using a t-distribution quantity, the bootstrap provides a new distribution table.  One finds the (R+1)(1-() and (R+1)( quantiles from the “table” in order calculate the interval.  
Question
: How would you calculate 
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 if a parametric bootstrap was used where resamples are actually taken?   What would you need to avoid actually taking the resamples with the parametric bootstrap?
Estimating the V( part of Z( can a little more difficult if there is no parametric model for F.  Remember that V( is an estimate of Var((T) = Var(T|
[image: image260.wmf]ˆ
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).  There is generally no specific functional form of V available without knowing F.  What can be done?
· The asymptotic variance for T could be used (probably through some parametric (-method approximation)

· The nonparametric (-method can be used – Section 2.7
· Possibly a simple derivation can be done – see p. 22 of BMA and 
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Example 2.11: Air conditioning data (example2.4_2.5_2.6_2.9_2.10_2.11.R)
For the parametric part of this example, remember that Y ~ F = Exp(().  Also, T = 
[image: image262.wmf]Y

 ~ Gamma(n, () and Var(T|F) = (2/n which can be estimated by 
[image: image263.wmf]2

y/n

.  
Using the parametric settings, we derive an “exact” interval for (.  The interval is called exact due to the exact probability distribution for a statistic being used.  Note that  
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 ~ Gamma(n, 1) so Z is a pivotal quantity (n is known).  A (1 – 2()(100% C.I. for ( is 
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where K-1(1 – () is the (1 – () quantile from a 
Gamma(n, 1).  The distribution of Z could have been worked with as well if desired.  The distribution of Z 
is 
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where K is a Gamma(n, 1) random variable.  Using this result leads to the same interval:
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Using the parametric bootstrap, notice that 
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Also, 
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 ~ Gamma(n, 1) as well since T( ~ Gamma(n, 
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results!  To see this another way, let’s start from the actual studentized bootstrap interval limits of 
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For this case, t = 
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 and v = 
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 where K is a Gamma(n, 1) random variable.  For example, the 0.025 and 0.975 quantiles would be 
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and 
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where K0.025 = 0.5167 and K0.975 = 1.6402.  Now the interval’s limits in general are  
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Therefore, the limits of the 95% C.I. are
108.0833 – 1.3521(
[image: image286.wmf]973.5006

 = 65.8965

and 
108.0833 + 3.2402(
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 = 209.1741
R code and output: 

>   z.star.0.025<-sqrt(length(y))*(1-1/qgamma(p=0.025, 

      shape = length(y), scale = 1/length(y)))

>   z.star.0.975<-sqrt(length(y))*(1-1/qgamma(p=0.975, 

      shape = length(y), scale = 1/length(y)))

>   lower<-t - z.star.0.975*sqrt(t^2/length(y))

>   upper<-t - z.star.0.025*sqrt(t^2/length(y))

>   data.frame(interval = "Parametric studentized", lower, 

      upper)

                interval    lower    upper

1 Parametric studentized 65.89765 209.1741

While this is unnecessary here, one could take R resamples from an Exp(
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What would the basic bootstrap C.I. produce?  The interval is 
2t – 
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For this case, t = 
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 = 108.08)  distribution.  The interval is

2t – 
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( 2(108.0833) – 177.28 < ( < 2(108.0833) – 55.85

( 38.89 < ( < 160.32

>   #Basic parametric bootstrap C.I.

>   lower<-2*t - qgamma(p=0.975, shape = length(y), scale = 
      t/length(y))

>   upper<-2*t - qgamma(p=0.025, shape = length(y), scale = 
      t/length(y))

>   data.frame(interval = "Parametric basic", lower, upper)

          interval    lower    upper

1 Parametric basic 38.89164 160.3184
While this is unnecessary here, one could take R resamples from a Exp(
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 can be found.  These should be very close to the exact values shown here.    
Here is what the usual t-distribution based interval would find as the C.I. for (.  
>   #Regular t-distribution interval; remember that t is 

      mean(y) here

>   data.frame(name = "STAT 218 t-based interval",

      lower = t - qt(0.975, length(y)1)*sd(y)/ 

        sqrt(length(y)), 

      upper = t + qt(0.975, length(y)-1)*sd(y)/ 

        sqrt(length(y)))

              name    lower    upper

1 t-based interval 21.52561 194.6411

Nonparametric bootstrap intervals are not discussed in Chapter 2 for this example (they are partially on p. 199-200).  Below is my implementation of these intervals.   
>   #Nonparametric bootstrap

>   calc.t<-function(data, i) {

       d<-data[i]

       n<-length(d)

       v.L<-1/n^2*(n-1)*var(d) #BMA p. 22 variance, also 

                               # npar delta-method var

       t<-mean(d)

       c(t, v.L) 

    }

>   calc.t(data = y, i = 1:length(y))

[1]  108.0833 1417.7147

>   set.seed(9182)                   #Same seed as earlier

>   boot.res<-boot(data = y, statistic = calc.t, R = 999, 
      sim="ordinary") 

>   plot(boot.res)  #Note: only boot.res$t[,1] is plotted

                    # Can use index = 2 option to plot  

                    # boot.res$t[,2]
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>   head(boot.res$t)

          [,1]      [,2]

[1,] 169.16667 2207.1921

[2,]  81.33333  315.9213

[3,]  97.00000 1525.2500

[4,]  75.41667 1370.9508

[5,] 146.33333 3339.7269

[6,] 135.33333 2344.4491

>   boot.res$t0

[1]  108.0833 1417.7147

>   #Easier way to get quantiles

>   Tstarq<-quantile(x = boot.res$t[,1], probs = 
      c(0.025, 0.975), type = 1)

>   Tstarq
     2.5%     97.5% 

 45.83333 193.00000 

>   #Harder way to get quantiles

>   data.frame(
      q025 = sort(boot.res$t[,1])[(999+1)*(0.025)], 
      q975 = sort(boot.res$t[,1])[(999+1)*(1-0.025)])

      q025 q975

1 45.83333  193

Note that type = 1 in quantile() gives the inverse of the EDF for this situation. Thus, 
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 is distribution of T ( t). This is not exactly the same as the definition given on p. 18 in BMA. When (R+1)(1–() and (R+1)( is not an integer, you may see some small differences between quantile() and using 
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.  You may calculate quantiles either way in our class. 
>   #Basic interval – remember: boot.res$t0[1] = t
>   basic<-data.frame(lower = 2*boot.res$t0[1]-Tstarq[2], 

                      upper = 2*boot.res$t0[1]-Tstarq[1])

>   basic

       name    lower    upper

97.5% Basic 23.16667 170.3333
>   #One way to remove the "97.5%" from being shown.

>   data.frame(name = "Basic", lower = 2*boot.res$t0[1]-

      as.numeric(Tstarq[2]), upper = 2*boot.res$t0[1]-

      as.numeric(Tstarq[1]))

   name    lower    upper

1 Basic 23.16667 170.3333

>   #Studentized boot interval

>   z.star<-(boot.res$t[,1] - t)/sqrt(boot.res$t[,2])

>   z.star.quant<-quantile(x = z.star, probs = c(0.025, 
       0.975), type = 1)

>   z.star.quant

     2.5%     97.5% 

-5.187838  1.676667 

Note: One would use -2.2 and 2.2 (0.025 and 0.975 quantiles from a t-distribution with 11 degrees of freedom, respectively) in the usual t-distribution based interval. 

>   boot.stud.nonpar1<-data.frame(name = "Studentized boot 
       interval nonpar", 

       lower = t - z.star.quant[2]*sd(y)/sqrt(length(y)), 

       upper = t - z.star.quant[1]*sd(y)/sqrt(length(y)))
>   boot.stud.nonpar

                                  name    lower    upper

97.5% Studentized boot interval nonpar 42.14538 312.1044
Notice how wide the studentized bootstrap intervals are!

The boot.ci() function will also calculate these nonparametric bootstrap intervals.  
>   #When using the studentized interval, boot.ci assumes 
     that boot.res$t has a first column containing the 
     statistic of interest and the second column 
     contains the variance.  If the variance is not the 

     second column, use var.t = ___ as an additional option 

     to show where the variances are (like boot.res$t[,3]).  
>   boot.ci(boot.out = boot.res, conf = 0.95, type = 
      c("norm", "basic", "stud")) 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates
CALL : 

boot.ci(boot.out = boot.res, conf = 0.95, type = c("norm", "basic", "stud"))

Intervals : 

Level   Normal              Basic             Studentized     

95%   ( 33.8, 184.2 )   ( 23.2, 170.3 )   ( 45.0, 303.4 )  

The basic interval agrees with our previous calculations, but the studentized bootstrap interval does not.  The reason for this disagreement is due to the default variance that boot.ci() uses for v in   
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If I use my own specified variance, I obtain

>   #Using my own value of v

>   boot.ci(boot.out = boot.res, conf = 0.95, type = 
      c("norm", "basic", "stud"), var.t0 = 
      var(y)/length(y)) 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL : 

boot.ci(boot.out = boot.res, conf = 0.95, type = c("norm", 

  "basic", "stud"), var.t0 = var(y)/length(y))

Intervals : 

Level   Normal              Basic             Studentized     

95%   ( 31.9, 186.1 )   ( 23.2, 170.3 )   ( 42.1, 312.1 )  

Calculations and Intervals on Original Scale

Now, the studentized interval matches my calculations. Without specifying my own variance, boot.ci() will use the variance as calculated by my calc.t() function, which is boot.res$t0[2]. Remember that the second value the function returns is the variance and that boot.ci() looks to the second element for a variance by default.  To verify that boot.ci() is using this values as a variance, here is another implementation of the function.  

>   #Using variance from second element of calc.t()

>   boot.ci(boot.out = boot.res, conf = 0.95, type = 
      c("norm", "basic", "stud"), var.t0 = boot.res$t0[2])

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL : 

boot.ci(boot.out = boot.res, conf = 0.95, type = c("norm",   

  "basic", "stud"), var.t0 = boot.res$t0[2])

Intervals : 

Level   Normal              Basic             Studentized     

95%   ( 35.2, 182.8 )   ( 23.2, 170.3 )   ( 45.0, 303.4 )  

Calculations and Intervals on Original Scale

In order to find out how all of the calculations were being done, I had to look back inside of the boot.ci() function itself.  I simply typed boot.ci at the command prompt in R to see the actual code of the function.  Being able to do something like this is one of the biggest advantages that R has over most other statistical software packages.  The user has a way to look at the actual code that performs the calculations!  (Try doing this in SAS ().  Here is the actual function (pasted from Tinn-R using RTF):

function (boot.out, conf = 0.95, type = "all", index = 
    1:min(2, length(boot.out$t0)), var.t0 = NULL, var.t = 
    NULL, t0 = NULL, t = NULL, L = NULL, h = function(t) t, 
    hdot = function(t) rep(1, length(t)), hinv = 
    function(t) t, ...)

{

    call <- match.call()

    if ((is.null(t) && !is.null(t0)) || (!is.null(t) && 
      is.null(t0)))

      stop("t and t0 must be supplied together")

    t.o <- t

    t0.o <- t0

    vt0.o <- var.t0
    if (is.null(t)) {

        if (length(index) == 1) {

            t0 <- boot.out$t0[index]

            t <- boot.out$t[, index]

        }

        else if (ncol(boot.out$t) < max(index)) {

            warning("index out of bounds; minimum index 
                     only used.")

            index <- min(index)

            t0 <- boot.out$t0[index]

            t <- boot.out$t[, index]

        }

        else {

            t0 <- boot.out$t0[index[1]]

            t <- boot.out$t[, index[1]]

            if (is.null(var.t0))

                var.t0 <- boot.out$t0[index[2]]
            if (is.null(var.t))

                var.t <- boot.out$t[, index[2]]

        }

    }

    if (const(t, min(1e-08, mean(t)/1e+06))) {

        print(paste("All values of t are equal to ", 
        mean(t), "\n Cannot calculate confidence 
        intervals"))

        return(NULL)

    }

    if (length(t) != boot.out$R)

        stop(paste("t must of length", boot.out$R))

    if (is.null(var.t))

        fins <- (1:length(t))[is.finite(t)]

    else {

        fins <- (1:length(t))[is.finite(t) & 
          is.finite(var.t)]

        var.t <- var.t[fins]

    }

    t <- t[fins]

    R <- length(t)

    if (!is.null(var.t0))

        var.t0 <- var.t0 * hdot(t0)^2

    if (!is.null(var.t))

        var.t <- var.t * hdot(t)^2

    t0 <- h(t0)

    t <- h(t)

    if (missing(L))

        L <- boot.out$L

    output <- list(R = R, t0 = hinv(t0), call = call)

    if (any(type == "all" | type == "norm"))

      output <- c(output, list(normal = norm.ci(boot.out, 
       conf, index[1], var.t0 = vt0.o, t0 = t0.o, t = t.o, 
       L = L, h = h, hdot = hdot, hinv = hinv)))

    if (any(type == "all" | type == "basic"))

        output <- c(output, list(basic = basic.ci(t0, t, 
          conf, hinv = hinv)))

    if (any(type == "all" | type == "stud")) {

        if (length(index) == 1)

            warning("bootstrap variances needed for 
              studentized intervals")

        else output <- c(output, list(student = 
          stud.ci(c(t0, var.t0), cbind(t, var.t), conf, 
          hinv = hinv)))

    }

    if (any(type == "all" | type == "perc"))

        output <- c(output, list(percent = perc.ci(t, conf, 
          hinv = hinv)))

    if (any(type == "all" | type == "bca")) {

        if (as.character(boot.out$call[1]) == "tsboot")

            warning("BCa intervals not defined for time 
              series bootstraps.")

        else output <- c(output, list(bca = 
          bca.ci(boot.out, conf, index[1], L = L, t = t.o, 
            t0 = t0.o, h = h, hdot = hdot, hinv = hinv, 
            ...)))

    }

    class(output) <- "bootci"

    output

}

Also, I dug deeper inside of the boot.ci() function to see how some of the calculations are being done.  You will notice that boot.ci() function calls another function called stud.ci() to do the studentized interval calculations.  When one types stud.ci at a command prompt, R responds with  

> stud.ci

Error: object "stud.ci" not found

Where is stud.ci then?  It is actually hidden.  Older versions of R would show it immediately, but now R will hide some functions that are meant to be only called by another function.  To see this function, simply type getAnywhere(stud.ci) at a command prompt.   

> getAnywhere(stud.ci)

A single object matching 'stud.ci' was found

It was found in the following places

  namespace:boot

with value

function (tv0, tv, conf = 0.95, hinv = function(t) t) 

{

    if ((length(tv0) < 2) || (ncol(tv) < 2)) {

        warning("variance required for Studentized CI's")

        out <- NA

    }

    else {

        z <- (tv[, 1] - tv0[1])/sqrt(tv[, 2])

        qq <- norm.inter(z, (1 + c(conf, -conf))/2)

        out <- cbind(conf, matrix(qq[, 1], ncol = 2), 

               matrix(hinv(tv0[1] - sqrt(tv0[2]) * qq[, 

               2]), ncol = 2))

    }

    out

}

<environment: namespace:boot>

One item that I noticed from examining this function is that the quantiles from the T( distribution are not calculated the same way as outlined in BMA.  Instead, interpolations are performed in order to get a little better estimate of a quantile (see norm.inter() function).  Note that there may be slightly different interval limits calculated by boot.ci() than those through BMA’s formulas.  
How did I find out about this getAnywhere() function?  I searched the R listserv archives for information on stud.ci(), but could not find what I was looking for at first.  I posted a message then to the R listserv and a few people, including Brian Ripley, replied to it (on a Saturday!).  You can see Ripley’s reply to my 1-7-06 posting at http://finzi.psych.upenn.edu/R/
Rhelp02a/archive/67867.html.  
In the boot.ci() output, there is a “normal” interval listed. In order to understand how this interval is calculated, suppose 
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where b is an estimated bias, v is an estimated variance and z1-( denotes a 1 – ( quantile from a standard normal.  Note that the true bias is 

( = E(T|F) – (
This is estimated by the bootstrap with 

b = 
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Specifically, because R resamples are being taken, 
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is being used for b in the C.I. formula. The estimated variance of 
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is used for v in the formula by default.  You can change this to a different variance by using the var.t0 option.  Here are a couple of implementations 

>   #"Normal" interval in boot.ci() calculations

>   b<-mean(boot.res$t[,1]) - t

>   b

[1] -0.9155822

>   #Reproduces  boot.ci(boot.out = boot.res, conf = 0.95, 
      type = "norm")

>   lower<-t - b - qnorm(0.975, mean = 0, sd = 1) * 

      sd(boot.res$t[,1])  

>   upper<-t - b - qnorm(0.025, mean = 0, sd = 1) * 

      sd(boot.res$t[,1])

>   data.frame(name = "Normal interval calc in boot.ci", 

      lower, upper)

                             name    lower    upper

1 Normal interval calc in boot.ci 33.82529 184.1725

>   #Reproduces boot.ci(boot.out = boot.res, conf = 0.95, 
      type = "norm"), var.t0 = (length(y)-1) / 

      length(y)*var(y)/ length(y))

>   lower<-t - b - qnorm(0.975, mean = 0, sd = 1)* 

      sqrt(calc.t(y, 1:length(y))[2])

>   upper<-t - b - qnorm(0.025, mean = 0, sd = 1)* 

      sqrt(calc.t(y, 1:length(y))[2])

>   data.frame(name = "Normal interval calc in boot.ci", 

      lower, upper)

                             name    lower    upper

1 Normal interval calc in boot.ci 35.20127 182.7966

�See Efron and Tibshirani (1993, p. 310) for discussion


�Some may call this a Riemann-Stieltjes integral


�I used Lehman (1999, p. 382) definition here.  Another definition is that dF(x) =f(x)dx at continuity points of F and dF(x) = p(x_j)*I(x_j) at all discontinuity points x_j of F (think of a distribution that is mostly continuous with some discontinuous points).


�Later, we will see this is the distribution of T*. For now, we can think of this simply as an estimate of the true sampling distribution G(t).


�P. 245 MGB


�We performed a nonparametric bootstrap in the Chapter 1 notes to give a quick example of the bootstrap and what we will be doing in this course.  With the nonparametric bootstrap, we use the EDF as � EMBED Equation.DSMT4 ��� so we can resample directly from the original observed data with replacement.  In Section 2.2 of BMA, we are using the parametric bootstrap.  With the parametric bootstrap, we use the distribution of F with estimates of its parameters as � EMBED Equation.DSMT4 ���.  Resamples from � EMBED Equation.DSMT4 ��� can be taken then in a similar manner to how one takes samples from F using a statistical software package





�Think about what would happen if used just 1/n to 1-1/n by 1/n - only would have it for n-1 values


�P. 131 CB #3.24c


�P. 131 CB #3.24e for Y~Exp(1)


�independence is assumed; I could put a "ind." over the tilde


�Just because of the common definition of a quantile


�CLT


�right skewed distribution; hard to estimate these well with small R


�How is the y-axis produced here to allow both the histogram and PDF to be on one plot?  Rescale the height of the histogram bars to be (# in category)/[(# of t*'s overall)*(category width)]


�Right skewed some - compare the right tail to that obtained in the q-q plot


�See Bilder and Loughin (2007) for a case where a Pearson or LRT "like" statistic does not have a large-sample chi-square distribution


�Side note: If order did matter, there would be n^n resamples with some of the resamples containing the exact same values.


�BMA says >=500


�Maybe the data did not come from an exponential!


�i.e., without resampling we know what the resampling distribution is


�Can also use the "control = list(fnscale = -1)" within optim() so that you do not need the NEGATIVE in the last line of logL()


�If know G^, just get quantile; if do not know G^, take resamples from F^ and find the same type of t* ordered value


�U. of Melbourne 


�I would prefer if BMA put a ^ on V


�Notice what t(F^*) = T*. Thus, calculate the statistic of interest on the resample. Then F^* is the EDF of a specific resample.


�NOTE: If you could figure out the distribution of Z*, then you would not need to take the resamples and get the ordered z*_( ) value


�Partially defeats the purpose of using a fully nonparametric method


�Just work through K(alpha) < Y_bar / mu < K(1-alpha) until you have sqrt(n)(1 - mu/Y_bar) in the middle
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