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Chapter 3 – Further Ideas

Section 3.2: Several samples
Suppose we have independent random samples from k different populations.  

Notation:

· These k populations have distributions of F1, …, Fk with estimates of 
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· Observed sample from population i: yi1, …, 
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· Resamples of 
[image: image4.wmf]i

i1in

y,...,y

**

 for i = 1, …, k.  NOTE THAT THIS RESAMPLING IS DONE WITHIN A SAMPLE.  One can think of this as stratified resampling where each original sample is a stratum.  

· Parameter is ( = t(F1, …, Fk) 
· Statistic 
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In this setting, the nonparametric (-method variance is simply  
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where lij is the natural extension of the empirical influence values for the jth observed value in the ith population.  Alternatives to calculating vL are 
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 and 
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These values can be easily found through the empinf() function, but the strata option needs to be used.  Also, one needs to use the strata option with var.linear().  The double bootstrap can also be used to find the variance as long as the resampling is done within strata.  
Examples 3.1 and 3.3 – Difference of two population means for independent samples 
The parameter of interest is 
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The statistic is 
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The unbiased estimate of the variance for T is 
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The statistic calculated on the resamples is t( = 
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.  The unbiased estimate of the variance for T( is 
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The empirical influence values are l1j = 
[image: image16.wmf]1j1

yy

-

 and l2j = 
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 using the same results as in Example 2.17.  The negative for the 2nd value comes from the second mean being subtracted from the first mean.   The nonparametric (-method variance is 
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One could also use the jackknife or regression estimates of the empirical influence values.
Next is a data example for the difference of two means where the data is simulated from two exponential distributions. 
Example: two means (two.means.R) 
> set.seed(5310)

> n1<-20

> n2<-15

> mu1<-14

> mu2<-10

> alpha<-0.1

> #Pop #1 is Exp(14) so that variance is 14^2 = 196

> y1<-rexp(n = n1, rate = 1/mu1)

> #Pop #2 is Exp(10) so that variance is 10^2 = 100

> y2<-rexp(n = n2, rate = 1/mu2)

> set1<-rbind(data.frame(y = y1, pop = 1), data.frame(y = 
     y2, pop = 2))

> head(set1)

           y pop

1 51.8617359   1

2  8.7909309   1

3  8.9954640   1

4  2.2246672   1

5  2.0871832   1

6  0.9487458   1

> tail(set1)

             y pop

101  3.9810957   2

111  0.2764594   2

121  2.5070125   2

131 12.2329886   2

141  0.6974350   2

151  0.8744755   2  
The statistic of interest, 
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, and three variance measures (vL, vjack, vboot) are found in calc.t().  Notice the use of the strata option in empinf() and var.linear().  
>  library(boot)

>   calc.t2<-function(data2, i2) {

      d2<-data2[i2,]

      group.means<-tapply(X = d2$y, INDEX = d2$pop, FUN = 
        mean)

      diff.means<-group.means[1] - group.means[2]

      diff.means

    }

>   calc.t<-function(data, i, M = 50) { 

      d<-data[i,]

      group.means<-tapply(X = d$y, INDEX = d$pop, FUN = 
        mean)

      diff.means<-group.means[1] - group.means[2]

      boot.res.M<-boot(data = d, statistic = calc.t2, R = 
        M, sim="ordinary", strata=d$pop)

      n<-tapply(X = d$y, INDEX = d$pop, FUN = length)  

      group.var<-tapply(X = d$y, INDEX = d$pop, FUN = var)

      #Variance from nonparametric delta method

      v.L<-(n[1]-1)/n[1]*group.var[1]/n[1] + 
           (n[2]-1)/n[2]*group.var[2]/n[2]

      #Would have been reasonable to use the below as well

      #v.unbiased<-group.var[1]/n[1] + group.var[2]/n[2]

      #Variance from double boot

      v.boot<-var(boot.res.M$t)  

      #Variance from using the jackknife estimate of the  

         empirical influence values
      #This stype = "i" part is needed because of the 

         second argument to calc.t2 ("i" for indices).

      l.jack<-empinf(data = d, statistic = calc.t2, stype = 
        "i", type = "jack", strata = d$pop) 

      v.jack<-var.linear(l.jack, strata=d$pop)

      c(diff.means, v.L, v.jack, v.boot) 

   }

>   #Try the calc.t function

>   calc.t(data = set1, i = 1:nrow(set1), M = 100)

       1        1                   

3.299977 8.497853 8.497853 10.719004
In the implementation of the bootstrap, notice the use of the strata option.  Also, see how I passed the M value through boot() to reach the calc.t2() function eventually.  
>   #Find start time

>   start.time<-proc.time()

>   #Bootstrap it!

>   set.seed(7153)

>   boot.res<-boot(data = set1, statistic = calc.t, R = 
      999, sim = "ordinary", strata = set1$pop, M = 800)

>   boot.res

STRATIFIED BOOTSTRAP

Call:

boot(data = set1, statistic = calc.t, R = 999, sim = "ordinary", strata = set1$pop, M = 800)

Bootstrap Statistics :

    original     bias    std. error

t1* 3.299977 -0.1185018    2.869694

t2* 8.497853 -0.8398251    4.434867

t3* 8.497853 -0.8398251    4.434867

t4* 8.343043 -0.6910278    4.444323
>   plot(boot.res)

>   #Find end time and total time elapsed

>   end.time<-proc.time()

>   save.time<-end.time-start.time

>   cat("\n Number of minutes running:", save.time[3]/60, 
      "\n \n")

 Number of minutes running: 12.28617
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Below are histograms for the variance measures.  
>   #Compare the variance measures using histograms

>   par(mfrow=c(1,3))

>   hist(boot.res$t[,2], xlim = c(0,35), ylim = c(0,230), 
      main = expression(v[L]), xlab = "Variance")

>   hist(boot.res$t[,3], xlim = c(0,35), ylim = c(0,230), 
      main = expression(v[jack]), xlab = "Variance")

>   hist(boot.res$t[,4], xlim = c(0,35), ylim = c(0,230), 
      main = expression(v[boot]), xlab = "Variance")
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Further examination of the variance measures for the resamples:
>   #My version of the parallel coordinate plot function

>   #  does not rescale variables and uses the actual y-
       axis.  

>   parcoord2<-function (x, col = 1, lty = 1,  ...)  

    {

      matplot(1:ncol(x), t(x), type = "l", col = col, lty = 
        lty, xlab = "", ylab = "", axes = FALSE, ...)

      axis(1, at = 1:ncol(x), labels = colnames(x))

      axis(side = 2, at = pretty(x)) 

      for (i in 1:ncol(x)) lines(c(i, i), c(min(x), 
        max(x)), col = "grey70")

      invisible()

   }

>   par(mfrow = c(1,1))

>   parcoord2(x = boot.res$t[1:99,2:4], main = "First 99 
      variance measures \n 1 = vL.star, 2 = vjack.star, 3 = 
      vboot.star", col = 1:99)

>   cor(boot.res$t[,2:4])

          [,1]      [,2]      [,3]

[1,] 1.0000000 1.0000000 0.9944235

[2,] 1.0000000 1.0000000 0.9944235

[3,] 0.9944235 0.9944235 1.0000000
>   abline(h = boot.res$t0[2:4], col = "black", lwd = 4)

>   text(x = 0.94, y = boot.res$t0[2:4], label = 
      c("vL.star", "vjack.star", "vboot.star"), cex = 0.75, 
      pos = 2, xpd = NA, col = "red")
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This is an interesting way to see how well the variance estimates coincide for the first 99 resamples.  We can see from the correlations that there are very close.  The thick black horizontal lines are drawn at the average values (R=999) for the variance measures.

Confidence interval calculations
>  #Usual C.I.s 

>   save.normal<-t.test(x = y1, y = y2, var.equal = FALSE, 
      conf.level = 0.95)

>   names(save.normal)

[1] "statistic"   "parameter"   "p.value"     "conf.int"    
     "estimate"   

[6] "null.value"  "alternative" "method"      "data.name"  

>   normal.ci<-save.normal$conf.int   #C.I.

>   normal.ci

[1] -2.847021  9.446976

attr(,"conf.level")

[1] 0.95

>   save.normal$parameter  #DF

      df 

27.00163 

>   save.normal$estimate[1]-save.normal$estimate[2]  #Diff 
                                                   of means

3.299977 

>   save.normal$statistic #t test statistic for testing = 0

       t 

1.101509 

>   v.unbias<-(
      (save.normal$estimate[1]-save.normal$estimate[2]) / 

                save.normal$statistic)^2

>   as.numeric(v.unbias)  #as.numeric is a quick way to 
                           strip an inappropriate name 

                           from the object 

[1] 8.975231

>   #Another way to calculate variance 

>   var(y1)/length(y1)+var(y2)/length(y2)

[1] 8.975231

>   #Boot C.I.s - using different variance measures

>   save1<-boot.ci(boot.out = boot.res, conf = 0.95, type =     

      c("basic", "stud"), var.t0 = v.unbias, var.t 
      = boot.res$t[,2]) 
>   save2<-boot.ci(boot.out = boot.res, conf = 0.95, type = 
      "stud", var.t0 = v.unbias, var.t = boot.res$t[,3]) 

>   save3<-boot.ci(boot.out = boot.res, conf = 0.95, type = 
      "stud", var.t0 = v.unbias, var.t = boot.res$t[,4]) 

>   ci.names<-c("Normal Intro STAT", "Basic", "Studentized, 
      v.unbias, v.L*", "Studentized, v.unbias, v.jack*", 
      "Studentized, v.unbias, v.boot*")

>   ci<-rbind(normal.ci, save1$basic[,4:5], 
      save1$student[,4:5], save2$student[,4:5], 
      save3$student[,4:5])

>   data.frame(ci.names, lower = ci[,1], upper = ci[,2])

                        ci.names     lower     upper

1              Normal Intro STAT -2.847021  9.446976

2                          Basic -2.667601  8.110852

3    Studentized, v.unbias, v.L* -1.359045 13.082710
4 Studentized, v.unbias, v.jack* -1.359045 13.082710

5 Studentized, v.unbias, v.boot* -1.358637 13.157695
>   #This corresponds to var.t0 = boot.res$t0[2])
>   boot.ci(boot.out = boot.res, conf = 0.95, type = 
      c("basic", "stud"), var.t = boot.res$t[,2]) 

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL : 

boot.ci(boot.out = boot.res, conf = 0.95, type = c(“norm”, “basic”, “stud”), var.t = boot.res$t[, 2])

Intervals : 

Level      Basic             Studentized     

95%   (-2.668,  8.111 )   (-1.233, 12.819 )  

Calculations and Intervals on Original Scale
Section 3.3: Semiparametric models

Semiparametric models correspond to specifying part of the model for F, but not all of it.  A model that may be used is 
Yij = (i + (i(ij 

where (ij ~ i.i.d. (0,1), (i is mean for population i, (i is the standard deviation for population i.  Notice that I do not say the distribution for (ij is normal.  This type of model is often used in linear model settings when one can not assume equal variances.  
Since the (ij ~ i.i.d. (0,1) in the above model, we could take one common distribution for them, say F0.  The EDF of (ij, F0, can be estimated by 
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which is similar to a pivotal quantity.  Sometimes you will hear these values called “semi-studentized” or “semi-standardized” residuals in a regression setting.  Since we are also estimating (i here, it is probably better to take this into account and use 

[image: image24.wmf]iji

ij

1/2

i

i

yˆ

e

1

ˆ1

n

-m

=

æö

s-

ç÷

èø

%

 
instead of eij.  Note that 
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In this result, I used 
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 since only the 
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 parts of the covariance are non-zero.  
Notice that 
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 ~ (0,1).  These 
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 could be referred to as “studentized residuals” or “standardized residuals”.  
We can take resamples from these 
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 is not used to denote whether it originally came from population i and was replicate j.  Rather, it is just meant to show the order in which the resampled value was obtained.  For example, suppose we have 
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Notes:

· We are still taking resamples from 
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· One of the main points is that the 
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’s are all IDENTICALLY distributed!  Thus, we have a larger set to resample from than if we instead just resampled within population i.   
Through using these 
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Be careful with the subscripts here again.  Note that 
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 is the first value obtained in the resample from 
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The reformed 
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’s are used as your resampled Y’s.  This idea of resampling the residuals first will be very important in Chapters 6-7 when we examine regression models (why?
).  Other model forms can be used as well and these are given in BMA.  
Another way to write 
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where 
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 are randomly selected indices from all the first and second indices, respectively, available.  This formulation is not given in BMA, and it relies on how the bootstrap can be thought of as just resampling indices.  

We will often need to change the EDF in a way to incorporate a particular assumption when it is appropriate.  For example, this is done for hypothesis testing.    
Example: Hypothesis testing
The initial assumption with hypothesis testing is that Ho is true.  This means that the CDF is 
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When using the bootstrap to do a hypothesis test, we will need to make sure 
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Example 3.4: Symmetric distributions (ex3.4.R)
Suppose it is appropriate to assume that the initial random sample came from a symmetric distribution.  This leads us to using 
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 is the median.  Why? 

Here is an example showing that this indeed is a symmetric EDF:

>   set.seed(5310)

>   n1<-20

>   mu1<-14

>   #Pop #1 is Exp(14) so that variance is 14^2 = 196

>   y<-rexp(n = n1, rate = 1/mu1)

>   #Symmetric distribution 

>   y.sym<-c(y, 2*median(y)-y)

> #########################################################

> # Investigate the new symmetric distribution

>   par(pty = "s", mfrow=c(1,2))

>   hist(x = y.sym, main = "Symmetric distribution", xlab = 
      "y.sym", freq=FALSE)

>   #Normal distribution

>   curve(expr = dnorm(x, mean = mean(y.sym), sd = 
      sd(y.sym)), col  = "red", add = TRUE, lty = "dotted")   
>   lines(x = density(x = y.sym), col = "blue", lty = 
      "solid") #Use default settings – density estimation

>   #EDF

>   plot.ecdf(x = y.sym, verticals = TRUE, do.p = FALSE, 
      main = "EDF for symmetric distribution", lwd = 2, 
      panel.first = grid(nx = NULL, ny = NULL, col="gray", 
      lty="dotted"), ylab = "F.sym^", xlab = "y.sym")

>   #Symmetric distribution should be mirror image

>   abline(h = 0.5, col = "blue", lty = "dashed")  
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Note that the data is simulated from an Exp(14), which is obviously not a symmetric distribution.  Also, examine how y.sym is formed.   The histogram has a normal distribution approximation (obviously, it is not very good
) and a density estimator plotted upon it.  The EDF for y.sym is also plotted; why should a horizontal line at 0.5 be drawn?    
From examining these plots, do you think 
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 for y.sym, say 
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, is symmetric?
Using the nonparametric bootstrap resampling with this data is done the following way.  Remember that a resample of size n needs to be taken while y.sym has 2n elements in it.   

>  library(boot)

>   #No particular reason why I chose the mean for t

>   #  The important part of this example is to understand 
       how the resampling is done

>   calc.t<-function(data, i, n) {

      d<-data[i]

      mean(d[1:n]) 

   }

>   #Try the statistic function - see note by the boot() 
       function for reason of specifying n  

>   calc.t(data = y.sym, i = 1:length(y.sym), n = 
      length(y))

[1] 8.412839

>   #Bootstrap it!

>   #  Notice how I use just a sample of size n in the 
       resamples even though there are 2n different values 
       in y.sym

>   set.seed(2134)

>   boot.res<-boot(data = y.sym, statistic = calc.t, R = 
      999, sim = "ordinary", n = length(y))

>   boot.res

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = y.sym, statistic = calc.t, R = 999, sim = "ordinary",  n = length(y))

Bootstrap Statistics :

    original    bias    std. error

t1* 8.412839 -3.446295    2.743511

There is no particular reason why I chose the mean as the statistic of interest.  The most important item you should take from this example is how the resample of size n is obtained.  Notice how d[1:n] is used in the calculations of calc.t(), and how the value of n is passed into it through the boot() function.  
There are a lot of sections in Chapter 3 (3.4-3.8) that talk about the bootstrap in the context of a specific area of statistics.  Without having a class in these areas, it would be difficult to go over them in detail.  To make sure that we at least cover the basics of the bootstrap, I have chosen to skip over them and to use items from them (if needed) as we progress through the course.  If there is sufficient time remaining at the end of the course, we can go back and investigate a few of them.   

Here are brief summaries of these sections.  

Section 3.4: Smooth estimates of F
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 is discrete for the nonparametric bootstrap so it may be helpful at times to smooth it out some.  This is helpful when the distribution is really discrete. 
To smooth the distribution out, one can perturb what you normally use as Y(, 
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where (j are sampled from a continuous symmetric distribution, h is the smoothing parameter (notice h = 0 gives back what we would have normally), 
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 denotes an integer randomly sampled from 1, …, n (remember how the bootstrap can be thought of as just resampling indices).  The h(j then can be thought of as the “noise” being put into the resamples to avoid discreteness problems.  This whole process is called the “smoothed bootstrap”.
Section 3.5: Censoring 

Censoring occurs when the full observed value is not observed due to circumstances such as a study has been stopped or an item has been removed from testing.  Partial information though is still available about the observation.  Censoring often occurs in survival analysis and reliability testing.   

Example: Clinical trial

A person is in a clinical trial for a new drug meant to prolong their life where the response measured is number of months survived.  Suppose the study stops after 36 months without observing the person dying.  Thus, we know their survival time is >36.  This is often denoted as 36+ and is called a censored observation.
Suppose a person decides to pull out of study after 24 months without dying.  Thus, we know their survival time is >24.  This is often denoted as 24+ and is called a censored observation.

The above two examples illustrate right censoring.  We can define the response variable more precisely as Y = min(Y0, C) where Y0 is the true response (number of months survived) and C is the censoring value (when study ended or person pulled out of study).  Y0 is observed only if Y0 ≤ C.  Otherwise, C is the “partial” information we get like 36+ above

Section 3.6: Missing data

Generally, this refers to observations which were not observed.  Procedures developed to solve these problems include imputation.
Section 3.7: Finite population sampling

This discusses modifications to resampling that need to be done in a finite population size setting.  

Remember that the variance of the sample mean is not just (2/n, but rather 
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 is often called the finite population correction factor.  Resampling like we have done before fails to capture this extra factor so adjustments need to be made to the resampling strategy to account for it.  Various methods have been proposed, such as the mirror-match bootstrap and the super population bootstrap.  This section then leads up to how one can use the bootstrap in more general non-simple random sampling settings.   

Section 3.8: Hierarchical data

This section discusses resampling with multiple sources of variation in an experiment.  For example, this includes split plot experiments.  Recent papers on this area include Field and Welsh (JRSS-B, 2007, p. 369-390) and Owen (Annals of Applied Statistics, 2007).     

Section 3.9: Bootstrapping the bootstrap

We used the double bootstrap in Section 2.7 to obtain a variance used in an approximately pivotal quantity. Bootstrapping the bootstrap can be used as well to help understand how well the bootstrap is performing and/or to help suggest tools for an analysis (like a variance stabilizing transformation). 

Section 3.9.1 – Bias correction of bootstrap calculations

Be careful with the notation used here.  BMA gets a little “notation happy” to emphasize certain points.  
Remember how E(T(|
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) = E((T() denotes the same thing?  BMA in this section will sometimes use E((T(|
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) as well for emphasis.  

True bias: 
( = b(F) = E(T|F) – t(F) = E(T) – (
Bootstrap estimator for bias: 
B = b(
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In BMA’s notation, 

B = b(
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More on notation: We can also think of E((T() as 
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B is a statistic so it will vary from sample to sample to sample … .  It is natural to wonder about its statistical properties like bias and variance.  We can use the bootstrap to investigate these properties!

Quantities of interest:

1. The bias of B: 

	(  
	= c(F) 

	
	= expected value of B – true bias

	
	= E(B) – (

	
	= E(B) – [E(T) – (]


2. The bootstrap estimate of the bias of B

	C  
	= E((B() – [E((T() – T]

	
	= expected value of B( – boot. estimated bias

	
	= E((B() – B 


What is E((B()?

B itself is already a bootstrap estimate!  This is where a 2nd bootstrap is used; i.e., the “double bootstrap”.  Then 
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What is 
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What is C?
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Here are some further explanations to help clarify the items.  
· T( comes about through resampling from 
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· T(( comes about through resampling from 
[image: image94.wmf]ˆ

F

*

, the estimated distribution for the resample 
[image: image95.wmf]12n

Y,Y,...,Y

***


· BMA defines 
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How can we use this information about the bias? 

Suppose ( = 3; thus, T is a biased estimator of (.  How would you improve the estimate of ( then?  If E(T) – ( = 3 then use E(T – 3) – ( = 0.  Thus, take TBC = T – ( as a bias corrected estimator of (.  Of course, ( is not known in real-life applications. 

We can use the bootstrap though to help perform this process with ( unknown.  Take B = E((T() – T as an estimate of the bias where the goal is to find an adjusted estimate of (.  The estimator TBC = T – B is the estimator and the actual observed value used as an estimate would be t – b.  This information was from first introduced in Chapter 2.   
Now, C is an estimate of the bias of B.  Again, B is not perfect!  The adjusted estimator of the bias of T: Badj = B – C.  The double bootstrap bias corrected estimator of ( is Tadj = T - Badj.  

Review of the above 
1. T is not a perfect estimator for (.

2. T – B is a better estimator for ( since it takes into account the possible bias of T.

3. B is not a perfect estimator of (.

4. Badj = B – C is a better estimator for ( since it takes into account the possible bias of B.

5. We can use Badj instead of B to produce, T – Badj, the best (of the estimators shown here) estimator of (.
Example 3.18: Sample variance

Let 
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True bias: 
( = E(T) – (2 = 
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Bootstrap estimator for bias: 
B = E((T() – T  = 
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Note that #3 on p. 61 shows E((T() = 
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Bias of B: 
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The bootstrap estimate of the bias of B: 
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Note that 
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Adjusted estimate of the bias of T: 
Badj = B – C = -T/n – T/n2 

The double bootstrap bias corrected estimate of (2 is 
Tadj = T – Badj = T – (-T/n – T/n2) = T(1 + 1/n + 1/n2)

Is this an improvement?
Remember that ( = -(2/n and note that the book’s answer is a little incorrect (replace + with – signs in the last line of the example).  
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Notice how E(Badj) is closer to ( than E(B)!  
Of course, we typically will not be able to evaluate the E(( ) directly so we will need to actual take resamples from 
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Algorithm 3.3 (Double bootstrap for bias adjustment) 

1) Estimate B = E((T() – T  (bootstrap estimate of ()
a) Take R resamples from 
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b) Calculate 
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d) Note: BMA will call this B and not differentiate between a random variable and its observed value.  This would be most appropriately called bR to reflect the finite number of resamples taken.  

2) Estimate 
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 (bootstrap estimate of the bias of B)
a) Take M resamples from each 
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b) Calculate 
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d) Note: BMA will call this C and not differentiate between a random variable and observed value.  This would be most appropriately called cR,M to reflect the finite number of resamples taken.

3) Adjusted estimator of the bias of T: badj = b – c
4) Double bootstrap bias corrected estimator of ( is tadj = t – badj
There are R + RM resamples being taken here. Depending upon the statistic, T, of interest, this may or may not take a long time.  At least, it is not as bad as BMA make it out to be.  
Pages 105-107 of BMA give some of theory behind the double bootstrap.  Read this on your own to obtain a general sense of what BMA is trying to do. 
Discuss how to program this into R

Section 3.9.2 – Variation of properties of T

This section discusses how one can use the bootstrap to examine if the variance for T is a function of (.  In other words, we want to check if the variance is stable.  If the variance is not a function of (, this can then lead to a pivotal statistic.  

In the perfect statistical world, how could we check if the variance was a function of (?  

In a parametric setting, look for ( to be in an equation for the variance!  Suppose we could not simply look at a closed form function for the variance.  In this setting, we can select a number of (’s and simulate samples from F.  For each sample, calculate the estimated variance.  Below is a type of plot we would want to construct.    
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Unfortunately, we do not live in a perfect world.  We usually only have one sample to work with and we do not know its (.  Also, we do not know F.  We can use the bootstrap to simulate this process instead.  
Bootstrap algorithm to examine if the variance is a function of (
1) Take R resamples from 
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2) Calculate 
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3) Plot 
[image: image126.wmf]r

v

*

 vs. 
[image: image127.wmf]r

t

*

 and look for trends
4) If there is no trend, the variance is stable.  If there is a trend, the variance is unstable; the variance stabilizing transformation can sometimes be discovered through examining this trend.
What do we use for 
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· 
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· 
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 = nonparametric (-method variance estimate 
· 
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 = nonparametric (-method variance estimate using the jackknife to estimate the empirical influence values

· 
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 = nonparametric (-method variance estimate using the regression estimate of the empirical influence values

· 
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 = double bootstrap variance estimate
· Take m = 1,…, M resamples for the rth resample 
· Calculate 
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; BMA divides by M, not M – 1, since they are using the actual plug-in estimate (see Chapter 2).  
What are the possible trends?
Think in terms of the variance stabilizing transformation discussed in Section 2.5.  We want to find an h(() such that 
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N(0, c2) for some positive constant c without ( present in it.  Meaning, find c2 = 
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 where c = 1 is usually taken.  

Example #1

If k(() = (2, this results in 
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Look for a (2 trend in the 
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 plot.  If this type of trend exists, a log(() transformation should be used.    
Example #2

If k(() = (, this results in 
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Look for a linear trend in the 
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 plot. If this type of trend exists, a square root transformation should be used.  
Example 3.21: Correlation (ex3.21.R)

Let r be the correlation coefficient.  
Be careful with r denoting the correlation, r denoting a particular resample, R denoting the number of resamples, and R being our statistical software package! (
The purpose of this example is to examine how unstable the variance is for r and show how the variance stabilizing transformation actually does stabilize the variance.  Why is this important?

Bootstrap C.I.s and other measures will perform better in a stabilized variance setting.  See second paragraph of Example 3.20 on p. 108.  
See p. 316-318 of Lehmann (1999) and Section 8 of Ferguson (1996) for how to derive the asymptotic distributions for r and its transformation.  
Why are we examining the asymptotic distributions here?  After all, this class is on the bootstrap!  The asymptotic results give us something for comparison.  We would hope that as n grows large, the results would be similar.  
One can show that 
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 through a combination of a CLT argument for 1st and 2nd moments and then the (-method.  Note that ( denotes the population correlation coefficient.  The variance stabilizing transformation is 
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so that
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To show the transformation, note the following:
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BMA say that 20 observations from a bivariate normal distribution are taken with the correlation coefficient estimated to be r = t = 0.74.  Unfortunately, BMA does not provide any data. Therefore, I decided to simulate the data as follows:

>   library(mvtnorm)

>   set.seed(8719)

>   set1<-rmvnorm(n = 20, mean = c(0, 0), sigma = 
      matrix(data = c(1, 0.74, 0.74, 1), ncol = 2, nrow = 
      2))

>   set1

             [,1]        [,2]

 [1,] -0.62639887 -0.15417517

 [2,] -0.90567299 -0.76396445

 [3,] -0.20306993 -0.26388694

 [4,] -1.03405910 -0.63829849

 [5,] -0.58365574 -0.43918650

 [6,] -0.40605628 -1.33870540

 [7,]  0.90701060 -0.16329415

 [8,]  1.05814147  0.63901573

 [9,]  0.34785560  0.50687219

[10,]  0.35800559  0.09822764

[11,] -1.52341407 -2.26371221

[12,]  0.37141925 -0.71488414

[13,]  0.80024910  0.57066890

[14,]  2.12238120  1.50117910

[15,]  0.03024259 -1.03585689

[16,] -0.64319168  0.23826947

[17,] -1.06796014 -1.72174989

[18,]  0.01323887 -0.40836252

[19,]  0.26848344 -0.73665598

[20,]  0.83032223  0.49631623

>   n<-nrow(set1)

>   #Check observed

>   apply(X = set1, FUN = mean, MARGIN = 2)

[1]  0.005693558 -0.329609174

>   var(set1)

          [,1]      [,2]

[1,] 0.7863164 0.6193685

[2,] 0.6193685 0.7822537

>   cor(set1)

          [,1]      [,2]

[1,] 1.0000000 0.7897263

[2,] 0.7897263 1.0000000

Here’s how I perform the bootstrap for this data:

>  library(boot)

>   calc.t2<-function(data2, i2) {

      d2<-data2[i2,]

      r<-cor(d2)[1,2] 

      r

    }

>   calc.t<-function(data, i, M = 800) { 

     d<-data[i,]

     n<-nrow(d)

     r<-cor(d)[1,2]

     boot.res.M<-boot(data = d, statistic = calc.t2, R = M, 
       sim="ordinary")

     #Calculate variance - See example 2.18

     u.s<-(d[,1]-mean(d[,1]))/sqrt(mean(d[,1]^2) – 
           mean(d[,1])^2) 

     x.s<-(d[,2]-mean(d[,2]))/sqrt(mean(d[,2]^2) – 
           mean(d[,2])^2) 

     v.L<-1/n^2 * sum( (u.s*x.s - 0.5*r*(u.s^2 + 
           x.s^2))^2 )  

     v.L.tran<-1/n^2 * sum( (1/(1-r^2) * (u.s*x.s 
           - 0.5*r*(u.s^2 + x.s^2)))^2 ) 

     v.boot<-var(boot.res.M$t) 
     v.boot.tran<-var(0.5*log((1+boot.res.M$t)/
          (1-boot.res.M$t)) )

     c(r, v.L, v.boot, v.L.tran, v.boot.tran) 

   }

>   #Try it

>   calc.t(data = set1, i = 1:20, M = 800)

[1] 0.78972632 0.00817985 0.01701463 0.05775668 0.07938438

  

>   #Remember: Could have used other ways to get the 
      variance in addition to v.L and v.boot

>   l.jack<-empinf(data = set1, statistic = calc.t, stype = 
     "i", type = "jack", index = 1) 

>   var.linear(l.jack) 

[1] 0.01159504

>   #Do bootstrap

>   set.seed(1652)

>   boot.res<-boot(data = set1, statistic = calc.t, R = 
      999, sim="ordinary", M = 800) 

> boot.res

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = set1, statistic = calc.t, R = 999, sim = "ordinary", M = 800)

Bootstrap Statistics :

      original       bias    std. error

t1* 0.78972632 -0.022104129  0.11197319

t2* 0.00817985  0.001736279  0.00848856

t3* 0.01182876  0.003230475  0.01329156

t4* 0.05775668 -0.003452861  0.01345923

t5* 0.06513378  0.003599725  0.01938484

>   plot(boot.res) 
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Both the nonparametric (-method variance and the variance resulting from a double bootstrap are found in calc.t().  When boot() uses the calc.t() function, the following is returned for the rth resample (subscript r is suppressed here):

· r( = t(
· 
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 where lj is the empirical influence value from equation 2.40 on p. 48 of BMA; this is the nonparametric (-method variance
· 
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 which is the transformed version of the variance estimate (see p. 48) using the 
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 denotes the mean of the transformed correlation coefficients (sorry about the notation).
So far, we have done steps 1 and 2 of the bootstrap algorithm given on p. 3.36.  Step 3 is to plot 
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 vs. 
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 and look for trends.  First, let’s use 
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 and  
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 for the variance and recreate the plots in Figure 3.8.   
>  par(mfrow = c(1,2))

>   #Figure 3.8 left

>   plot(x = boot.res$t[,1], y = boot.res$t[,2], main = 
      "vL* vs. t*", xlab = "t*", ylab = "vL*", col = "red") 
>   curve(expr = 1/n * (1 - x^2)^2, col = "blue", add = 
      TRUE, lwd = 1)

>   lines(supsmu(x = boot.res$t[,1], y = boot.res$t[,2]), 
      col = "darkgreen", lwd = 2) #using defaults

>   legend(x = 0.7, y = 0.04, legend = c("Asymptotic var", 
      "Smoother"), col=c("blue", "darkgreen"), lty = c(1, 
       1), lwd = c(1,2), bty="n", cex=0.75)

>   #Figure 3.8 right

>   plot(x = 0.5*log((1+boot.res$t[,1])/(1-
      boot.res$t[,1])), y = boot.res$t[,4], main = 
     "vL.tran* vs. t*", xlab = "t.tran*", ylab = 
     "vL.tran*", col = "red") 

>   abline(h = 1/n, col = "blue", lwd = 1)  #asymptotic 
                                             var. app.

>   lines(supsmu(x = 0.5*log((1+boot.res$t[,1])/(1-
       boot.res$t[,1])), y = boot.res$t[,4]), col = 
       "darkgreen", lwd = 2) #using defaults
>   legend(x = 1.4, y = 0.12, legend = c("Asymptotic var", 
       "Smoother"), col=c("blue", "darkgreen"), lty = c(1, 
       1), lwd = c(1,2), bty="n", cex=0.75)

>   mean(boot.res$t[,4])  

[1] 0.05430382
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The left plot shows that the variance is changing as a function of t( = r(.  This is the bootstrap way to show the variance is unstable; thus, this shows the variance is a function of the parameter.  The asymptotic variance of r is 
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 (make sure you know why the 1/n is there) Thus, the variance is a function of the parameter.  Notice how the plotting points follow this same pattern when I plotted 
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.  I also included a smoother to estimate the relationship between t( and 
[image: image166.wmf]L
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, which follows a similar pattern.  Regarding the smoother, I used the default settings for the supsu() function.  Pages 228-231 of Venables and Ripley (2002) give a description of smoothing and a list of a few other functions that do smoothing in R.  Note that smoothers often have problems with the extreme x-axis values.  
Remember: The empirical influence values used in the nonparametric (-method could be estimated using the jackknife or regression methods described in Sections 2.7.3 and 2.7.4.

The right plot shows what happens after the variance stabilizing transformation is performed.  Notice how there is pretty much just a random scattering of points.  Thus, the bootstrap procedure suggests that the variance is not a function of the parameter after this transformation.  The asymptotic variance of 
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 is 1/n and this is plotted as the horizontal line.  
Now, let’s use 
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 and  
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 for the variance and recreate the plots in Figure 3.8.  The purpose here is to show that the nonparametric (-method does not have to be used, and the double bootstrap can be used as a substitute.  
>   par(mfrow = c(1,2))

>   ymax<-max(boot.res$t[,2], boot.res$t[,3]) #Get plots on 
                                          same y-axis scale

>   #Figure 3.8 left with v.boot

>   plot(x = boot.res$t[,1], y = boot.res$t[,3], main = 
      "v.boot* vs. t*", xlab = "t*", ylab = "v.boot*", col 
      = "red", ylim = c(0, ymax)) 
>   curve(expr = 1/n * (1 - x^2)^2, col = "blue", add = 
      TRUE, lwd = 1)

>   lines(supsmu(x = boot.res$t[,1], y = boot.res$t[,3]), 
      col = "darkgreen", lwd = 2) #using defaults

>   legend(x = 0.7, y = 0.1, legend = c("Asymptotic var", 
       "Smoother"), col=c("blue", "darkgreen"), lwd = 
       c(1,2), lty = c(1, 1), bty="n", cex=0.75)

>   #Allows for a direct comparison to Figure 3.8 left plot

>   plot(x = boot.res$t[,1], y = boot.res$t[,2], main = 
      "vL* vs. t*", xlab = "t*", ylab = "vL*", col = "red", 
      ylim = c(0, ymax)) 
>   curve(expr = 1/n * (1 - x^2)^2, col = "blue", add = 
      TRUE, lwd = 1)

>   lines(supsmu(x = boot.res$t[,1], y = boot.res$t[,2]), 
      col = "darkgreen", lwd = 2) #using defaults

>   legend(x = 0.7, y = 0.1, legend = c("Asymptotic var", 
      "Smoother"), col=c("blue", "darkgreen"), lwd = 
      c(1,2), lty = c(1, 1), bty="n”, cex=0.75)
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>   ymax<-max(boot.res$t[,4], boot.res$t[,5])  #Get plots 
                                      on same y-axis scale

>   #Figure 3.8 left with v.boot.tran

>   plot(x = 0.5*log((1+boot.res$t[,1])/(1-

      boot.res$t[,1])),  y = boot.res$t[,5], main = 
      "v.boot.tran* vs. t*", xlab = "t.tran*", ylab = 
      "v.boot.tran*", col = "red", ylim = c(0, ymax)) 
>   abline(h = 1/n, col = "blue")  #asymptotic variance 
                                    approximation

>   lines(supsmu(x = 0.5*log((1+boot.res$t[,1])/(1-
       boot.res$t[,1])), y = boot.res$t[,5]), col = 
       "darkgreen", lwd = 2) #using defaults
>   legend(x = 1.4, y = 0.14, legend = c("Asymptotic var", 
       "Smoother"), col=c("blue", "darkgreen"), lty = c(1, 
       1), bty="n", cex=0.75)

>   mean(boot.res$t[,5])  

[1] 0.06866468

>   #Allows for a direct comparison to Figure 3.8 right 
       plot

>   plot(x = 0.5*log((1+boot.res$t[,1])/(1-
       boot.res$t[,1])), y = boot.res$t[,4], main = 
      "vL.tran* vs. t*", xlab = "t.tran*", ylab = 
      "vL.tran*", col = "red", ylim = c(0, ymax)) 

>   abline(h = 1/n, col = "blue")  #asymptotic variance 
                                    approximation

>   lines(supsmu(x = 0.5*log((1+boot.res$t[,1])/(1-
       boot.res$t[,1])), y = boot.res$t[,4]), col = 
       "darkgreen", lwd = 2) #using defaults
>   legend(x = 1.4, y = 0.14, legend = c("Asymptotic var", 
       "Smoother"), col=c("blue", "darkgreen"), lty = c(1, 
        1), bty="n", cex=0.75)

>   mean(boot.res$t[,4])  

[1] 0.05430382
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Remember that the asymptotic variance is not necessarily the correct variance! 
Chapter 5 will talk about in more detail how to take advantage of the variance stabilizing transformation to construct confidence intervals.  Note that practical #1 in Chapter 5 is an example with the correlation coefficient.  
Frequency smoothing
Read on your own (not responsible for)
Variance stabilization 

We have already discussed this, but BMA examines a more nonparametric way to do it; read on your own (not responsible for).  
Section 3.10: Bootstrap Diagnostics

Section 3.10.1: Jacknife-after-bootstrap

We hope to get similar results with or without particular observations.  The purpose here is to examine the sensitivity of these bootstrap calculations.  Only the   nonparametric case will be considered here.  
Let’s examine what happens if one observation, say yj, has been removed.  How should you do this?  Simply, examine only the resamples where the yj has not appeared (see p. 114 of BMA for justification
).       

Example: Bias

The bootstrap bias estimate without yj in the resamples is 
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where R-j is number of resamples without yj and t-j is the statistic of interest calculated on the SAMPLE without yj.  Note that BMA uses a capital letter with b-j instead; it is more proper to use a lower case letter here since lowercase t’s are used in their equation 3.41.  
Remember that the bootstrap bias estimate from Chapter 2 is: 
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How much has the bias changed?  
b-j – b
BMA use “n(B-j – B)” and then say “the scaling factor n in (3.41) is not essential”.  If it is not essential, why use it?

Again, we are looking for changes due to the removal of yj.  Here are some useful plots: 
· Plot b-j – b vs. empirical influence values
· Plot the quantiles of 
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 vs. empirical influence values.  This is what the function, jack.after.boot(), tries to do, but actually is doing something a little different (see discussion later). 
The jackknife or regression estimates of the empirical influence values can be used instead of the actual empirical influence values.  Remember what an empirical influence value represents in addition to being used in the nonparametric (-method variance method calculation.  

Example 3.24: Fret’s heads data (ex3.24.R)

The data set contains the head breadth and length of the first two adult sons in n = 25 families.  You can find the data located in the boot package under the name frets.  The variables are l1, b1, l2, and b2 where “l” is for length, “b” is for breadth, and the second character denotes which son (first or second).  

The statistic of interest here is a partial correlation, 
[image: image175.wmf]1212
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, calculated on the LOG data.  What is a partial correlation?
Suppose there are four variables of interest, called X1, X2, X3,and X4.  The correlation between variables X1 and X2 after accounting for all other variables (or conditioning on the other variables) is called the partial correlation.  The partial correlation between X1 and X2 is denoted by 
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A first-order partial correlation is 
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A second-order partial correlation: 
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Notice this is similar to the first-order partial correlation except X4 is playing the role of X3 and X3 is now being conditioned upon in the formula.  Other partial correlations and higher-order partial correlations can be found in a similar manner.  Sometimes, partial correlation is discussed at length in a multivariate methods or a linear models classes.  

A more general method for finding partial correlations (with justification for the formulas) can be found in terms of a partitioned covariance matrix.  For more details, see the SAS PROC CORR documentation at http://support.sas.com/91doc/
getDoc/procstat.hlp/corr_sect16.htm, Graybill (1976, Chapter 11), or Johnson and Wichern (1998, p. 437).  
The corpcor package in R contains a cor2pcor()  function that will calculate these partial correlations.  Note that this package is not automatically installed in R so you will need to install it yourself.  

The R function jack.after.boot() does the necessary plots.  Note that the example given in the function’s help documentation corresponds to this example.  
Here is some initial code and output:
>   library(boot)
>   n<-nrow(frets)

>  #Measurements in millimeters

>   frets

    l1  b1  l2  b2

1  191 155 179 145

2  195 149 201 152

3  181 148 185 149

(*OUTPUT EDITED*)

25 190 163 187 150

>   #Table 3.11 - BMA work on the log scale with no 
       reasoning given

>   cor.mat<-cor(log(frets))  

>   cor.mat

          l1        b1        l2        b2

l1 1.0000000 0.7470018 0.7213507 0.7209567

b1 0.7470018 1.0000000 0.7047004 0.7214057

l2 0.7213507 0.7047004 1.0000000 0.8496844

b2 0.7209567 0.7214057 0.8496844 1.0000000

>   #Calculate the pairwise partial correlations using 
       the cor2pcor function 

>   #  Works with covariance or correlation matrix

>   library(corpcor)

>   cor2pcor(m = cor.mat)

          l1        b1        l2        b2

l1 1.0000000 0.4307436 0.2097308 0.1654441

b1 0.4307436 1.0000000 0.1313337 0.2204845

l2 0.2097308 0.1313337 1.0000000 0.6351404

b2 0.1654441 0.2204845 0.6351404 1.0000000

>   #Scatter plot matrix 

>   pairs(log(frets))
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Note that 
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The bootstrap results and jackknife-after-bootstrap plot at the top of Figure 3.12:
>   calc.t<-function(data, i) { 

      d<-data[i,]

      cor.mat<-cor(d) 

      part.cor<-cor2pcor(m = cor.mat)

      t<-part.cor[2,3]

      t 

    }

>   calc.t(data = log(frets), i = 1:n)

[1] 0.1313337

>   set.seed(8918)

>   boot.res<-boot(data = log(frets), statistic = calc.t, 
       R = 999, sim = "ordinary")

>   boot.res

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = log(frets), statistic = calc.t, R = 999, sim = "ordinary")

Bootstrap Statistics :

     original      bias    std. error

t1* 0.1313337 0.001417946   0.2261185

>   jack.after.boot(boot.out = boot.res, index = 1, stinf 
       = FALSE, main = "Figure 3.12")
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I used the jackknife to estimate the empirical influence values on the x-axis (the default).  It appears that BMA use the infinitesimal jackknife (i.e., the actual empirical influence values, lj).  

Make sure to take some time to see exactly what is plotted.  

· The quantiles of 
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 vs. estimates of the empirical influence values are the asterisks.  

· The quantiles of 
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are the dotted horizontal lines
· The numbers in the lower part of the plot are just observation number labels.  

We can see from the plot that observation #2 has a large (in absolute value) estimated empirical influence value.  Its effect on the resampling distribution can be seen with the quantiles becoming more “squished” into the center of the distribution.  Thus, the distribution will have a higher peak.  

The same plot as given by jack.after.boot() can also be generated using the plot() function with boot.res.  
> #Gives same plot plus usual plots from plot()

>   plot(x = boot.res, jack = TRUE, stinf = FALSE) 
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I had to go into the jack.after.boot() function code to figure out what it is exactly doing.  On the x-axis, 
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 is being plotted instead of ljack,j = (n – 1)(t – t-j).  The x-axis ordered values are 
[1] -4.84928016 -1.35062492 -0.87974970 -0.62477508 

    –0.53419186 -0.50056546 -0.48437113

 [8] -0.09278942 -0.09029876  0.06612347  0.08098198  

      0.08334017  0.09583927  0.11039605

[15]  0.19127716  0.21685668  0.29096133  0.48594633  

      0.52069272  0.52097564  0.80031064

[22]  0.97046987  1.03235998  1.66754157  2.27257366

with observation numbers: 

[1]  2 18  7 23  3  9 19 14  1  6 10  5 25  8 21 22 13 16  4 20 12 15 17 24 11
The actual ljack,j values are
> l.jack<-empinf(data = log(frets), statistic = calc.t, 

    stype = "i", type = "jack")

> l.jack[order(l.jack)]

 [1] -4.83278981 -1.44773993 -0.67128366 -0.60483825 

     -0.44736544 -0.44283911 -0.38977939

 [8] -0.18290680 -0.09964376 -0.05448265 -0.04903098     

      0.03640102  0.07622455  0.07643006

[15]  0.12887698  0.28419061  0.32239274  0.34723260  

      0.46413312  0.60122698  0.60293636

[22]  1.22461124  1.35797390  1.47495442  2.15848055  

with observation numbers:

> order(l.jack)

 [1]  2 18  7  9 19 23  1  3  6  8 10 21  5 22 13 14 25 16 20  4 12 15 17 24 11

Notice these two sets of values are similar, but not quite the same.  I am not for sure why jack.after.boot() is plotting the first set of values.  If you want to have ljack,j plotted instead, you could write your own function.  
Next are plots at the bottom of Figure 3.12.  
I added simple linear regression models to help visualize the association with and without #2.  
>   par(mfrow = c(1,2))

>   plot(x = log(frets$b1), y = log(frets$l2), type = 
      "n", xlab = "Log b1", ylab = "Log l2", main = 
      "Figure 3.12 lower left")

>   text(x = log(frets$b1), y = log(frets$l2), labels = 
       1:n, cex = 0.75, col = c("red", "blue", 
       rep("red", n-2)))

>   abline(lm(formula = log(l2) ~ log(b1), data = 
       frets), col = "darkgreen", lwd = 1)

>   abline(lm(formula = log(l2) ~ log(b1), data = 
       frets[-2,]), col = "purple", lwd = 2)

>   legend(x = 4.91, y = 5.25, legend = c("all obs.", 
       "w/o #2"), col=c("darkgreen", "purple"), lty = 
       c(1, 1), lwd = c(1,2), bty="n", cex=0.75)

>   resid.log.b1<-lm(formula = log(b1) ~ log(b2) + 
       log(l1), data = frets)$residuals

>   resid.log.l2<-lm(formula = log(l2) ~ log(b2) + 
       log(l1), data = frets)$residuals

>   plot(x = resid.log.b1, y = resid.log.l2, type = 
       "n", xlab = "Residual for log b1", ylab = 
       "Residual for log l2", main = "Figure 3.12 lower 
       right")

>   text(x = resid.log.b1, y = resid.log.l2, labels = 
       1:n, cex = 0.75, col = c("red", "blue", 
       rep("red", n-2)))

>   abline(lm(formula = resid.log.l2 ~ resid.log.b1), 
       col = "darkgreen", lwd = 1)

>   abline(lm(formula = resid.log.l2[-2] ~ 
       resid.log.b1[-2]), col = "purple", lwd = 2)

>   legend(x = -0.02, y = 0.05, legend = c("all obs.", 
       "w/o #2"), col= c("darkgreen", "purple"),lty = 
       c(1, 1), lwd = c(1,2), bty="n", cex=0.75)
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>   cor(resid.log.b1, resid.log.l2)  #Another way to think of the partial cor.

[1] 0.1313337

We can see how #2 is kind of away from the rest in the plots.  The reason for the second plot is that the partial correlation can be thought of as the correlation between the residuals of a model for l2 with b2 and l1 as the explanatory variables and a model for b1 with b2 and l1 as the explanatory variables (of course, this is for the log data).

Here’s what happens to the partial correlation value and bootstrap standard deviation without #2 in the data set

>  set.seed(6871)

>   boot.res.wo2<-boot(data = log(frets[-2,]), 
     statistic = calc.t, R = 999, sim = “ordinary”)

>   boot.res.wo2

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = log(frets[-2, ]), statistic = calc.t, R = 999, sim = “ordinary”)

Bootstrap Statistics :

    original       bias    std. error

t1*   0.3327 -0.005668439     0.17231

Previously, the observed partial correlation was 0.1313 and the bootstrap standard deviation was 0.2261.  We can see how the partial correlation increases without #2 and the standard deviation decreases.  What type of effect could this have on hypothesis testing? 
What should be done about #2? 

BMA suggests to examine a plot of b-j – b vs. empirical influence values, but do not for example 3.24 itself.  Here is how I created a plot (possibly more efficient code could be possible!)

>   t.bar.j<-numeric(n)

>   t.star.bar.j<-numeric(n)

>   for (j in 1:n) {

      freq<-boot.array(boot.res)

      values<-boot.res$t[freq[, j] == 0]  #Key part of 
                                            the code

      t.star.bar.j[j]<-mean(values)

      t.bar.j[j]<-calc.t(log(frets[-j,]))

    }

>   #I am not including the n constant in equation 3.41

>   bj.b<-t.star.bar.j - t.bar.j - (mean(boot.res$t) – 
                                    boot.res$t0)

>   l.jack<-empinf(data = log(frets), statistic = 
      calc.t, stype = "i", type = "jack") 

>   plot(x = l.jack, y = bj.b, type = "n", main = "b_-j 
      - b vs. jackknife estimated empirical influence 
      values",  xlab = "jackknife estimated empirical 

     influence values", ylab = "b_-j - b", col = "red")

>   abline(h=0, col = "black", lty = "dotted")

>   text(x = l.jack, y = bj.b, labels = 1:n, cex = 
      0.75, col = c("red", "blue", rep("red", n-2)))
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Notice #2 does not have a large influence on the bias.  The largest |b-j – b| is about 0.017 (#14).  Is this something to be concerned about?
  The estimated bias itself is b = 0.0014 meaning #14 has b-14 = 0.0184.  
Notes:

· A recent paper on bootstrap diagnostics is Canty, Davison, Hinkley, and Ventura (Canadian Journal of Statistics, 2006, p. 5-27).  The paper does discuss other types of diagnostic measures not given in BMA.    

· The parametric case for bootstrap diagnostics is considered in this section as well.  You can read this on your own, but you are not responsible for it.  
Section 3.10.2: Linearity 

This section discusses methods for how to find a transformation of T, h(T), so that a linear approximation (thus, nonparameteric (-method) work well.  Example 3.25 discusses this with the city data set and how to use the Box-Cox family of transformations (see boxcox() function in MASS package and p.170-2 of Venables and Ripley (2002)).  You are not responsible for this section.
Section 3.11: Choice of estimator from the data

Suppose more than one statistic is being consider to estimate a parameter of interest.  We would like to choose the one with the best statistical properties; such as, smallest variance or smallest MSE if the statistic is biased.  The bootstrap and double bootstrap can be used to help make this decision.  

You are not responsible for this section.
�Each set of explanatory variables gives a different distribution for Y - here, we have one common distribution for the entire data


�mu^ +(y - mu^)  = y should be equally likely as mu^ - (y - mu^) = 2mu^ - y; 


Think of starting from mu^ at the middle.  Then examine + or - distances from the middle depending on a data point.  


�It does help see symmetry 


�Median


�Should a new R resamples be selected first?  Maybe so to help alleviate any dependence between B and C terms???  BMA do not so I will follow their strategy (I do not think there is much to worry about here)


�Remaining resamples serve as random samples from F^ with j removed


�Are these plots useful???  Skip over them.


�Of course, BMA (similar to other books) do not say what to do next when diagnostic measures show something is potentially causing problems.  Without knowing more about the data set, it is kind of hard to do anything here.  


�While the bias is changing a lot relative to what it was, think about what the bias is estimating, E(T) - theta, and theta is a partial correlation between -1 and 1; is having a correlation off by 0.0184 really that important?  
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