16
4.72

Chapter 4 – Tests

Section 4.1: Introduction
Please read this section on your own. Generally, this will be review and you are responsible for its content. Note that equation 4.7 for the likelihood ratio is presented the reverse from how it is normally presented (numerator and denominator are exchanged).
Here are some main points to get out of this section.

· Ho specifies that F = F0, say
· The test statistic, T, measures the discrepancy between the data and Ho. Like usual, t is the observed value of T.

· Typically, we will look at situations where only “large” values of T indicate evidence against Ho. Note that there may be problems where one can think of SMALL values or both SMALL AND LARGE values as evidence against Ho. Examples where only small values indicate evidence against Ho include bootstrap p-value combination methods as shown in Bilder, Loughin, and Nettleton (2000) and Bilder and Loughin (2002, 2004) and regular p-value combination methods as shown in Hedges and Olkin (1985), Goutis, Casella, and Wells (1996), and Loughin (2004).

· A p-value provides a measure for how much evidence exists against Ho. When only large values of T indicate evidence against Ho, p = P(T ≥ t | F0). One of the most important points here is that the p-value uses the distribution of T under Ho. Thus, Y1, …, Yn come from F0. Also, note that T ~ G0.

· Under Ho and a continuous T, P, the random variable version of p (the p-value), has a U(0,1) distribution!

· P-values can also be defined in terms of conditioning on sufficient statistics. See p. 399 of Casella and Berger (2002) for more information.
Section 4.2: Resampling for parametric tests

Section 4.2.1: Monte Carlo tests and
Section 4.2.3: Parametric bootstrap tests

There is a small differentiation between these two sections so it is not too difficult to consider them both at that the same time.
We assume Y1, …, Yn come from F0 for hypothesis testing in general. For “parametric bootstrap tests”, resampling needs to occur using
[image: image190.jpg]

 (a parametric distribution under Ho). This may involve having to estimate “nuisance” parameters first which are not involved in the hypotheses.
Example: Testing (from normal distribution

Suppose Y ~ N((, (2) and H0: (= (0 vs. Ha: (((0.
(2 is a nuisance parameter so
[image: image2.wmf]0

ˆ

F

 could be N((0,
[image: image3.wmf]2

ˆ

s

)
Note that
[image: image4.wmf](

)

2

n

i0

i1

Y

n

=

-m

å

 would be the unbiased estimator of (2 under Ho.

BMA also talk about “Monte Carlo tests” which take resamples from
[image: image5.wmf]0

ˆ

F

, but there are no unknown nuisance parameters in
[image: image6.wmf]0

ˆ

F

 that need to be estimated first. Thus, the distribution of T, the test statistic, does not depend upon any nuisance parameters. This may involve working with a conditional probability distribution where the nuisance parameter’s sufficient statistic is being conditioned upon. Overall, I do not think there really is a need to differentiate between “Monte Carlo” tests and “Parametric bootstrap” tests.

General algorithm

1. Sample to obtain y1, …, yn and calculate t
2. Take R resamples from
[image: image7.wmf]0

ˆ

F

 to obtain
[image: image8.wmf]r1rn

y,,y

**

K

 and compute
[image: image9.wmf]r

t

*

 for r = 1, …, R
3. Estimate p = P(T ≥ t | F0) with
[image: image10.wmf]0

ˆ

pP(Tt|F)

**

=³=

[image: image11.wmf]P(Tt)

**

³

 where this is typically done by computing

[image: image12.wmf]{

}

r

1#tt

R1

*

+³

+

This p-value calculation assumes that only large values of T indicate evidence against Ho. If both small and large values indicate evidence against Ho, there is not necessarily one specific way to calculate the p-value. One common way is:

[image: image13.wmf]{

}

00

ˆˆ

p2minP(Tt|F),P(Tt|F)

éù

=³£

ëû

where this is typically done by

[image: image14.wmf]{

}

{

}

rr

1#tt1#tt

p2min,

R1R1

**

*

ìü

éù

+³+£

=

íý

êú

++

ëû

îþ

Comments about the p-value calculation above

· The p-value gives a measure of how extreme observing t would be if Ho was true. Remember the distribution of T(is simulated under Ho.
· Why is the +1 in the numerator and denominator of the p-value?
· R + 1: If Ho was really true, then the original t would be just one more piece of information about the null distribution of T.
·
[image: image15.wmf]{

}

r

1#tt

*

+³

: t is always at least as large as itself
· See also BMA’s more precise reasoning.
· Often, you will see people use
[image: image16.wmf]{

}

r

#tt

R

*

³

 instead for the p-value. As long as R is large, there will be not much difference between the two calculations.
Example 4.5: Separate families test (ex4.5.R)
The purpose of this problem is to use a likelihood ratio like test to decide between two different distributions for the AC data. For this example,

H0: Y~Gamma((, ()

Ha: Y~LogNormal((, ()
Equation 4.14 gives BMA’s version of a LRT statistic:

[image: image17.wmf]1

1

0

n

1j

1

j1

0j

n

1

1j0j

j1

ˆ

ˆ

L(,)

Tnlog

ˆ

L(,ˆ)

ˆ

ˆ

f(y|,)

nlog

ˆ

f(y|,ˆ)

ˆ

ˆˆ

nlog[f(y|,)]log[f(y|,ˆ)]

-

-

=

-

=

æö

ab

=

ç÷

km

èø

æö

ab

=

å

ç÷

km

èø

=ab-km

å

Notice this is similar to the usual statistic of

[image: image18.wmf](

)

(

)

0

01

1

n

0j1j

j1

ˆ

ˆ

L(,)

ˆ

ˆˆ

2log2logL(,ˆ)logL(,)

ˆ

L(,ˆ)

ˆ

ˆˆ

2log[f(y|,ˆ)]log[f(y|,)]

=

æö

ab

éù

-=-km-ab

ç÷

ëû

km

èø

=-km-ab

å

BMA has moved the usual negative sign through the log part so that L1 is in the numerator and L0 is in the denominator. Also, “n” is included in BMA’s version.

Why can’t we use the usual (2 approximation here?

In order to resample under F0, the MLEs need to be found for the gamma model and then used in the parametric bootstrap procedure to find the resamples. We saw in Chapter 2 how to find the MLEs (example 2.9). This time, I used a little bit different function that forces the numerical iterative estimation method to find positive parameter estimates (as needed for a gamma). MLEs are found for log(() and log(()and then exponentiated back to give estimates for (and (.
The part of the program dealing with the asymptotic normality of the MLEs is just presented for illustrative purposes. This uses

[image: image19.wmf]d

1

ˆ

log()log()

n

log(ˆ)log()

0

N,(log(),log())

0

-

æö

kk

éùéù

-

ç÷

êúêú

mm

ëûëû

èø

æö

éù

¾¾®km

ç÷

êú

ëû

èø

F

where
[image: image20.wmf](log(),log())

km

F

 is the Fisher information matrix. The multivariate (-method then finds the covariance matrix for
[image: image21.wmf]ˆ

ˆ

k

éù

êú

m

ëû

.
The boot() function could be used to take the resamples. I just decided to program it myself using the simple rgamma() and apply() functions.

> library(boot)

> aircondit #Could also simply type in the data

 hours

1 3

2 5

3 7

4 18

5 43

6 85

7 91

8 98

9 100

10 130

11 230

12 487

> n<-nrow(aircondit)

> #MLEs for lognormal – need later

> alpha.hat<-mean(log(aircondit$hours))

> beta.hat<-sqrt((n-1)*var(log(aircondit$hours))/n)

> data.frame(alpha.hat, beta.hat)

 alpha.hat beta.hat
1 3.828588 1.529225

#MOM estimators for gamma parameters - used as starting
 points

> par.gam<-c(mean(aircondit$hours)^2/var(aircondit$hours),

 mean(aircondit$hours))

> ###

> # Take resamples and find mle* under H_o
> # I got the gammaLoglik() function code from

> # http://finzi.psych.upenn.edu/R/Rhelp02a/
> # archive/23795.html. When I tried to use my own
> # function (see example2.5_2.6... .R), I was having
> # problems with obtaining negative estimates of kappa > # for the resamples. The gammaLoglik code solves the
> # problem! As you can see, the key was to work with
> # the log parameters and use exp() to get them back
> # on the correct scale.

> gammaLoglik <- function(par.gam, data, negative=TRUE){

 logkappa <- par.gam[1]

 logmu <- par.gam[2]

 lglk <- sum(dgamma(data, shape=exp(logkappa),

 scale=exp(logmu-logkappa), log=TRUE))

 if(negative) return(-lglk) else return(lglk)

 }

> #Test evaluations of the gammaLoglik function

> tst <- rgamma(n = 10, shape = 1)

> gammaLoglik(par.gam = c(1, 1), data = tst)

[1] 26.52867

> gammaLoglik(par.gam = log(par.gam), data =

 aircondit$hours)

[1] 67.69876

> #Test it out on the observed data

> save.it<-optim(par = log(par.gam), fn = gammaLoglik,

 data = aircondit$hours, control=list(trace = 0, maxit

 = 10000), method = "BFGS", hessian = TRUE)

> save.it

$par

[1] -0.3474417 4.6829026

$value

[1] 67.64542

$counts

function gradient

 13 4

$convergence

[1] 0

$message

NULL

$hessian

 [,1] [,2]

[1,] 8.249843e+00 -7.656098e-07

[2,] -7.656098e-07 8.477920e+00

> exp(save.it$par)

[1] 0.7064932 108.0833416

> kappa.hat<-exp(save.it$par)[1]

> mu.hat<-exp(save.it$par)[2]

> data.frame(kappa.hat, mu.hat)

 kappa.hat mu.hat

1 0.7064932 108.0833

> #Get estimated covariance matrix for parameter
 estimates using MLE theory

> # In other words, find the inverse of the estimated
 Fisher information matrix. Don't divide by n since
 already in there - see p. 128 of Ferguson (1996)
 since Fisher_n(theta) = n*Fisher_1(theta).
 save.it$hessian is a numerical evaluation of
 Fisher_n(theta).

> cov.log.est.par<-solve(save.it$hessian)

> cov.log.est.par

 [,1] [,2]

[1,] 1.212144e-01 1.094643e-08

[2,] 1.094643e-08 1.179535e-01

> #This is using multivariate delta-method

> g.dot<-matrix(c(exp(save.it$par[1]),0,0,

 exp(save.it$par[2])), nrow = 2, ncol = 2)

> cov.mat<-g.dot %*% cov.log.est.par %*% g.dot

> sqrt(cov.mat[1,1]) #Estimated s.d. of kappa.hat

[1] 0.2459711

> sqrt(cov.mat[2,2]) #Estimated s.d. of mu.hat

1] 37.12052
> #Take resamples under H_o
> R<-999

> set.seed(6716)

> y0.star<-matrix(data = rgamma(n = n*R, shape =
 kappa.hat, scale = mu.hat), nrow = R, ncol = n)

> y0.star[1,] #r = 1

 [1] 86.6707993 96.8318696 42.8891901 45.5851344
 1.6222831 46.0030323

 [7] 0.1127945 140.7759297 34.8161875 28.7737619
 5.6224938 182.3312387

> #Function used when trying to find all of the mle*
 values

> find.est<-function(data, maxiter = 10000) {

 kappa.mom<-mean(data)^2/var(data)

 mu.mom<-mean(data)

 par.gam<-c(kappa.mom, mu.mom)

 save<-optim(par = log(par.gam), fn = gammaLoglik,
 data = data, control=list(trace = 0, maxit =
 maxiter), method = "BFGS", hessian = FALSE)

 alpha.hat.1<-mean(log(data))

 beta.hat.1<-sqrt((n-1)*var(log(data))/n)

 c(exp(save$par), save$convergence, alpha.hat.1,
 beta.hat.1)

 }

> #Find the mle* values

> par.est.star<-apply(X = y0.star, FUN = find.est,
 MARGIN = 1)

> par.est.star[,1:5] #check first few - notice how row
 #1 is kappa.hat*, row #2 is
 mu.hat*, ...

 [,1] [,2] [,3] [,4] [,5]

[1,] 0.6405601 0.6137408 0.9981741 1.056489 1.4411774

[2,] 59.338262 143.961809 106.1449588 143.787113 88.0710207
[3,] 0.0000000 0.0000000 0.0000000 0.000000 0.0000000

[4,] 3.1277471 3.9661530 4.0863883 4.425444 4.0929739

[5,] 2.0462644 1.7552971 1.0086471 1.138758 0.8983137

> sum(par.est.star[1,]<0) #check for negative estimates
 from iterative procedure

[1] 0

> sum(par.est.star[2,]<0) #check for negative estimates
 from iterative procedure

[1] 0

> sum(par.est.star[3,]) #check for nonconvergence in
 iterative procedure

[1] 0

> par(mfrow = c(1,2))

> hist(par.est.star[1,], main = "Histogram for
 kappa.mle*", freq=FALSE, xlab = "kappa.mle*")
> curve(expr = dnorm(x, mean = kappa.hat, sd =
 sqrt(cov.mat[1,1])), col = 2, add = TRUE)

> #May be reasonable as well to use the mean and sd of
 all of the kappa.mle* for the normal approximation;
 I am just using results from the asymptotic
 normality of MLEs
> hist(par.est.star[2,], main = "Histogram for mu.mle*",
 freq=FALSE, xlab = "mu.mle*")

> curve(expr = dnorm(x, mean = mu.hat, sd =
 sqrt(cov.mat[2,2])), col = 2, add = TRUE)

[image: image22.emf]Histogram for kappa.mle*

kappa.mle*

Density

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Histogram for mu.mle*

mu.mle*

Density

50 100 150 200 250 300

0.000

0.004

0.008

> #Normal approximation put on plots just for fun :)

> # Why are the normal approximations not good?
 Remember that I am using the asymptotic
 distribution for MLEs here. My sample size is only
 12 for each parameter estimate* calculated

> par(mfrow = c(1,2))

> hist(par.est.star[4,], main = "Histogram for
 alpha1.mle*", freq=FALSE, xlab = "alpha1.mle*")

> hist(par.est.star[5,], main = "Histogram for
 beta1.mle*", freq=FALSE, xlab = "beta1.mle*")

[image: image23.emf]Histogram for alpha.mle*

alpha.mle*

Density

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.0

0.2

0.4

0.6

0.8

Histogram for beta.mle*

beta.mle*

Density

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

Now, the test statistic needs to be calculated for each resample. In my code, take note how easily I was able to calculate the test statistic using the dlnorm() and dgamma() functions with the log = TRUE options. Make sure you understand why LARGE
values for the test statistic indicate evidence against Ho. I have also included the “usual” test statistic as well.

> calc.t<-function(all, n) {

 data<-all[1:n]

 kappa<-all[n+1]

 mu<-all[n+2]

 alpha<-all[n+3]

 beta<-all[n+4]

 t<-1/n * (sum(dlnorm(x = data, meanlog = alpha, sdlog

 = beta, log = TRUE)) -

 sum(dgamma(x = data, shape = kappa, scale =

 mu/kappa, log = TRUE)))

 lrt.usual.form<--2*(sum(dgamma(x = data, shape =

 kappa, scale = mu/kappa, log = TRUE)) -

 sum(dlnorm(x = data, meanlog = alpha, sdlog =

 beta, log = TRUE)))

 c(t, lrt.usual.form)

 }

> #Need to put resamples and parameter estimates into one
 data set for function

> each0<-cbind(y0.star, t(par.est.star[-3,]))

> head(each0)

 [,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 86.67080 96.83187 42.889190 45.58513 1.622283 46.003032 0.1127945

[2,] 160.36652 139.69645 87.043211 317.48591 5.940358 1.258051 600.5436349

[3,] 51.32922 200.60330 38.427416 57.38299 545.913959 9.109502 54.8079307

[4,] 74.26670 15.93779 67.263385 493.12274 20.641006 97.718854 315.3575343

[5,] 70.41870 353.66861 13.868346 53.66879 75.283938 11.771939 135.5075620

[6,] 117.10639 61.37478 3.840951 47.69541 46.446787 5.444279 167.0862619

 [,8] [,9] [,10] [,11] [,12] [,13] [,14]

[1,] 140.77593 34.81619 28.773762 5.622494 182.331239 0.6405601 59.33826
[2,] 11.72793 14.05627 265.371367 60.774325 63.279222 0.6137408 143.96181
[3,] 31.40408 28.68835 42.950755 50.959123 162.135097 0.9981741 106.14496
[4,] 68.45947 255.39050 11.869611 184.272407 121.156511 1.0564894 143.78711
[5,] 63.32642 49.14317 103.937682 31.215568 95.265266 1.4411774 88.07102
[6,] 26.06966 75.03223 1.337073 135.319670 2.120866 0.7017227 57.40474
 [,15] [,16]

[1,] 3.127747 2.0462644

[2,] 3.966153 1.7552971

[3,] 4.086388 1.0086471

[4,] 4.425444 1.1387583

[5,] 4.092974 0.8983137

[6,] 3.189221 1.6367105

> #Find t and t.star

> t.star<-apply(X = each0, FUN = calc.t, MARGIN = 1, n =
 n)

> t<-calc.t(all = c(aircondit$hours, kappa.hat, mu.hat,
 alpha.hat, beta.hat), n = n)

> #Histogram in Figure 4.2

> par(mfrow = c(1,1))

> hist(x = t.star[1,], main = "Histogram for t*, R=999",
 xlab = "t*", freq = FALSE)

> abline(v = t[1], col = "red", lwd = 5)

> text(x = t[1]+0.01, y = -0.05, labels = "t")

[image: image24.emf]Histogram for t*, R=999

t*

Density

-0.6 -0.4 -0.2 0.0 0.2

0

1

2

3

4

t

> #P-value

> (1 + sum(t.star[1,]>=t[1]))/(R + 1)

[1] 0.381

> #P-value

> (1 + sum(t.star[2,]>=t[2]))/(R + 1)

[1] 0.381

BMA get a p-value of 0.62; I get a p-value of 0.38 = 1 – 0.62. Who is correct?
· I can not find anything wrong with my program here.
· Notice that when BMA uses a studentized test statistic, z, they get a p-value of 0.34 and mention how much different this is from their 0.62 p-value through just using t.

· Perhaps their calculated p-value using t was incorrect to begin with!
BMA mention a studentized statistic is difficult to derive and present no information about how it is done, but they provide a p-value of 0.34. I am not sure how one can be derived! The form of the statistic is

[image: image25.wmf]T

Z

V

-q

=

.

What is (in this case? If you have any thoughts, please let me know.
BMA end the example with

It should perhaps be mentioned that significance tests of this kind are not always helpful in distinguishing between models, in the sense that we could find evidence against either both or neither of them. This is especially true with small samples such as we have here. In this case the reverse test (change distributions for Ho and Ha) shows no evidence against the lognormal model.
Why did we examine this example then? It provides an interesting way to use the bootstrap in problems that one typically would think can not be investigated. Also, this will show you how a regular LRT in general can be performed using the bootstrap

Section 4.2.4: Graphical tests
This section provides some interesting graphical methods to examine hypothesis tests, especially those for normality. Due to time considerations, I will not cover this section.
Section 4.2.5: Choice of R

This section provides more information on how to choose the number of resamples.
Section 4.3: Nonparametric permutation tests
I will refer to these types of tests simply as “permutation tests”. Others may call them “randomization tests”. This is a fully nonparametric procedure. An introductory book on permutation tests is Higgins’ (2004) book called “Introduction to Modern Nonparametric Statistics” which would be used for a class like KSU STAT 716 and

UNL STAT 874.
Some of you have already seen a few permutation tests in a categorical data analysis class. For example, in UNL STAT 875, I discuss the permutation test version of the Pearson test to test for independence in a I(J contingency table.
A sufficient statistic under Ho is conditioned upon for these permutation tests. The EDF often plays the role of the sufficient statistic. One can think of this equivalently as conditioning on the order statistics. P-values are calculated conditional on the sufficient statistic’s observed value (see equation 4.4 or p. 399 of Casella and Berger (2002)). Note that you need to be careful here because these sufficient statistics are found under the null hypothesis. A two-sample test for means is an excellent example of this (see upcoming discussion).
A permutation test is a special type of bootstrap procedure where the resampling is done WITHOUT REPLACEMENT. The reason for the “without replacement” part is the sufficient statistics are being conditioned upon. These sufficient statistics can NOT change from resample to resample. This type of resampling also limits its applicability.
[image: image1.wmf]0

ˆ

F

A p-value is taken to be P(T ≥ t | S = s, Ho) where S is the sufficient statistic with observed value s
.

Note that I am using LARGE values to indicate evidence against Ho. There may be problems where one can think of SMALL values or both SMALL AND LARGE values as evidence against Ho. In those cases, the corresponding adjustments would need to be made to the p-values as shown earlier.
Example: Two-sample test for means (similar to Example 4.11)
H0: (1 ((2 = 0 vs. Ha: (1 ((2 (0
Let’s take
[image: image26.wmf]12

tyy

=-

 (0 =
[image: image27.wmf]12

yy

-

 to be the statistic of interest since it provides a measure of evidence against Ho.

Our data consists of y11, …,
[image: image28.wmf]1

1n

y

, y21, …,
[image: image29.wmf]2

2n

y

 where the first index in the subscripts differentiates “population #1” and “population #2”. If Ho was true, these subscripts came out being this way completely due to chance. One particular set of data is no more likely than another set. Thus, the data would come from one single population, say F0, and would have one common mean. Therefore, the EDF under Ho,
[image: image30.wmf]0

ˆ

F

, simply consists of the y11, …,
[image: image31.wmf]1

1n

y

, y21, …,
[image: image32.wmf]2

2n

y

 without differentiating whether the observed y came from population #1 or #2.

A resample from
[image: image33.wmf]0

ˆ

F

 can be performed by resampling WITHOUT REPLACEMENT from these observed y’s and randomly assigning the 1 or 2 first subscript. Since this resampling is done WITHOUT REPLACEMENT, this is called a “permutation” of the data. In essence here, one is just reordering the 1 and 2 subscripts on the y’s.

There are a total of
[image: image34.wmf]12

1

nn

n

+

æö

ç÷

èø

 different permutations (resamples) of these observed values. The exact permutation distribution for T is found by calculating t, tsay, for each possible permutation. Since
[image: image35.wmf]12

1

nn

n

+

æö

ç÷

èø

 is most often large, we can randomly select R of these permutations (resamples) and find a p-value by

[image: image36.wmf]{

}

r

1#tt

p

R1

*

+³

=

+

The absolute value is used here since evidence against Ho can occur in both the negative and positive direction away from 0 for t. Note that another way to calculate the p-value is

[image: image37.wmf]{

}

{

}

rr

1#tt1#tt

p2min,

R1R1

**

ìü

éù

+³+£

=

íý

êú

++

ëû

îþ

These two methods do not necessarily result in the same p-values.

Notation: BMA do not use a  on the p when defining p-values in this section. I think it would be reasonable to call these p values or maybe even pperm, especially because p = P(T ≥ t | S = s, Ho) is defined in BMA as well. BMA may be doing this because the “exact” probability distribution of T is being used if all permutations are found. Be careful with this notation and please ask questions if something is not clear.
Example: Higgins (2004, p. 23); there is no program for this exmaple
There are test scores from seven new employees of a company where two methods of instruction are used:

1. New method: y11 = 37, y12 = 49, y13 = 55, y14 = 57
2. Traditional method: y21 = 23, y22 = 31, y23 = 46

Is there a difference in population means?
There are
[image: image38.wmf]12

1

nn437

35

n44

++

æöæöæö

===

ç÷ç÷ç÷

èøèøèø

 different permutations (resamples) of the data, which are all equally likely to occur if there was no difference. For example,

1.
[image: image39.wmf]11

y

*

 = 46,
[image: image40.wmf]12

y

*

 = 49,
[image: image41.wmf]13

y

*

 = 55,
[image: image42.wmf]14

y

*

 = 57,

2.
[image: image43.wmf]21

y

*

 = 23,
[image: image44.wmf]22

y

*

 = 31,
[image: image45.wmf]23

y

*

 = 37

has the same likelihood of occurring under Ho as

1.
[image: image46.wmf]11

y

*

 = 37,
[image: image47.wmf]12

y

*

 = 49,
[image: image48.wmf]13

y

*

 = 55,
[image: image49.wmf]14

y

*

 = 57,

2.
[image: image50.wmf]21

y

*

 = 23,
[image: image51.wmf]22

y

*

 = 31,
[image: image52.wmf]23

y

*

 = 46
Notice how the order statistics (equivalently, the EDF) will remain the same under these resamples. Here are all possible resamples where the * in the table denotes the observed.
[image: image53.jpg]TABLE 2.1.2
All Possible Assignments of meNewandTndiuoualMuhods

Combined Data: 23 31 37 46 49 55 57

Diffe
Permuted Between
Samples New Method Traditional Method Means
1 46 49 55 57 23 31 37 214
2% 37 49 55 57 23 31 43 :ﬁ
3 37 46 55 57 23 31 4 x
4 37 46 49 57 23 31 55 109
5 37 46 49 55 23 31 57 98
6 31 49 55 57 23 37 46 127
7 31 46 55 57 23 37 49 109
8 31 46 49 57 23 37 55 74
9 31 46 49 55 23 37 57 63
10 31 37 55 57 23 46 49 57
11 31 37 49 57 23 46 55 22
12 31 37 49 55 23 46 57 1.0
13 31 37 46 57 23 49 55 04
14 31 37 46 55 23 49 57 08
15 31 37 46 49 23 55 57 43
16 23 49 55 57 31 37 46 8.0
17 23 46 55 57 31 37 49 63
18 23 46 49 57 31 37 55 28
;g 23 46 49 55 31 37 57 1.6
2 22; g; Zs 57 31 46 49 1.0
5 9 57 31 46 55 25
23 37 49 55 31 46 57
37
23 23 37 46 57 3137 55
2 43
23 37 46 55 31 49 57
25 23 37 46 49 -54
% 31 55 57 89
23 31 55 57 37 46 49 .
2l 23 31 49 57 37 46 55 ol
z8 23 -6.0
31 49 55 37 46 57
§9 23 31 46 57 it <7
3? . 23 31 46 55 37 49 57 8
23 31 46 49 -89
3 » 37 55 57 2
i 31 37 57 it 124
23 31 37 55 593 -13.0
24 23 31 37 49 46 49 57 142
2 233 46 55 57 oA

el o 2255157 104

Notice the observed
[image: image54.wmf]12

tyy

=-

 = 16.2 which is the 4th most extreme from 0. This means the p-value is (1+4)/(1+35) = 0.1389.

Using a hypothesis test of H0: (1 - (2 ≤ 0 vs. Ha: (1 - (2 > 0 (new method has higher mean), the p-value would be (1+2)/(1+35) = 0.0833.
Higgins (2004, p. 27) uses
[image: image55.wmf]{

}

r

#tt/R

*

³

 = 2/35 = 0.0571.

Here are the results from a regular t-test:

> t.test(x = c(37, 49, 55, 57), y = c(23, 31, 46),
 var.equal = TRUE, conf.level = 0.95)

 Two Sample t-test

data: c(37, 49, 55, 57) and c(23, 31, 46)

t = 2.0843, df = 5, p-value = 0.09156

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -3.77169 36.10502

sample estimates:

mean of x mean of y

 49.50000 33.33333

> t.test(x = c(37, 49, 55, 57), y = c(23, 31, 46),
 var.equal = FALSE, conf.level = 0.95)

 Welch Two Sample t-test

data: c(37, 49, 55, 57) and c(23, 31, 46)

t = 1.9946, df = 3.691, p-value = 0.1227

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -7.100006 39.433340

sample estimates:

mean of x mean of y

 49.50000 33.33333

Notes:

· Using a hypothesis test of H0: (1 - (2 ≤ 0 vs. Ha: (1 - (2 > 0 (new method has higher mean), the p-value would be 0.04578 (different variances) and 0.06136 (equal variances). One can use the alternative = “greater” option in t.test() to produce this test. Notice how simple the idea behind permutation tests is and how it provides similar results to the usual t-test based on normality for this example.
· Again, the sufficient statistic that is being condition upon is the combined ordering of the data values (order statistics or equivalently the common EDF for both samples). Notice the order statistics do not change from resample to resample. In a similar bootstrap setting, resampling would be done with replacement. The order statistics from a bootstrap resample would not necessarily be the same as those observed because one may get the same observed value to appear >1 or 0 times in a resample.
· Normally, the sample sizes will be large enough that it will be impractical to show every single resample of the data.

· More robust versions of the test statistic can also be used. For example, one could use the difference of the medians or the trimmed means. Also, one could replace the observations with their ranks (ranked as coming from one population) and examine the difference in mean ranks. This is what the Wilcoxon rank-sum test does.

POSSIBLE PROBLEM: The hypotheses are actually more restrictive than what I stated above. Suppose F1 = H(y) and F2 = H(y - (). The hypotheses are:

H0: (= 0 (Distributions are the same)
Ha: ((0 (Distributions are the same, but the second
 one is shifted by ()

Thus, we are assuming equal variances for both hypotheses. This is why I performed the usual t-test above using this assumption. The reason for these stronger hypotheses is that we need to assume a common F0 in order to justify putting all of the y’s together into one sample. This is one reason why some people do not like these tests (I still like them (). The bootstrap version of this type of test does not make this strong of an assumption.
Question: Suppose you had one sample from a single population. With this sample, you would like to test H0: (= (0 vs. Ha: (0 (0 for some constant (0. How could you do this with a permutation test?

Example: Larry Bird (bird.R; data source: Wardrop, American Statistician, 1995)
Free throws are typically shot in pairs. Below is a contingency table summarizing Larry Bird’s first and second free throw attempts during the 1980-1 and 1981-2 NBA seasons. Let X=First attempt and Y=Second attempt.

	
	
	Second
	

	
	
	Made
	Missed
	Total

	First
	Made
	251
	34
	285

	
	Missed
	48
	5
	53

	
	Total
	299
	39
	338

Are the first free throw and the second throw outcomes independent? Test the following hypotheses:

H0: P(X=i, Y=j) = P(X=i)(P(Y=j) for i = 1, 2 and j = 1, 2
Ha: Not all equal
In different notation, H0:(ij = (i+(+j vs. Ha:(ij ((i+(+j where (ij = P(X = i, Y = j)
Prepare the data in R:

> #Create contingency table - notice the data is entered
 by columns

> n.table<-array(data = c(251, 48, 34, 5), dim=c(2,2),
 dimnames=list(First = c("made", "missed"), Second =
 c("made", "missed")))

> n.table

 Second

First made missed

 made 251 34

 missed 48 5

> ###

> # Row and column number format (raw data)

> all.data<-matrix(NA, 0, 2)

> #Put data in "raw" form

> for (i in 1:nrow(n.table)) {

 for (j in 1:ncol(n.table)) {

 all.data<-rbind(all.data, matrix(data = c(i, j),

 nrow = n.table[i,j], ncol = 2, byrow=T))

 }

 }
> xtabs(~all.data[,1]+ all.data[,2])

 all.data[, 2]

all.data[, 1] 1 2

 1 251 34

2 48 5

Pearson chi-square test for independence
The statistic is:

[image: image56.wmf]22

IJIJ

ijijijij

2

i1j1i1j1

ijij

(nˆ)(nnn/n)

X

ˆnn/n

++

====

++

-m-

==

åååå

m

where

· nij is the row i and column j cell count
·
[image: image57.wmf]ij

ˆ

m

 is the estimated expected cell count under independence
· ni+ is the row i total
· n+j is the column j total
· n is the overall sample size (n++)

· I is the number of rows

· J is the number of columns

Normally for this test, we use a
[image: image58.wmf]2

(I1)(J1)

--

c

 approximation for X2 because
[image: image59.wmf]d

22

(I1)(J1)

XA

--

¾¾®c

:

 UNDER Ho. The critical value for the test is
[image: image60.wmf]2

(I1)(J1),1

---a

c

 and the p-value is p =
P(A > x2) where A ~
[image: image61.wmf]2

(I1)(J1)

--

c

 and x2 is the observed value of the test statistic.
Question: Is n large enough for X2 to be approximated by a
[image: image62.wmf]2

1

c

 sufficiently well? Instead of looking at n itself, rules of thumb for the approximation are typically given as nij or
[image: image63.wmf]ij

ˆ

m

 are > 1 or 5.
Below is the R code for applying the test.
> x.sq<-chisq.test(n.table, correct=F)

> x.sq

 Pearson's Chi-squared test

data: n.table

X-squared = 0.2727, df = 1, p-value = 0.6015

> chisq.test(x = all.data[,1], y = all.data[,2],
 correct=F)

 Pearson's Chi-squared test

data: all.data[, 1] and all.data[, 2]

X-squared = 0.2727, df = 1, p-value = 0.6015

The observed value of the test statistic is x2 = 0.2727 and the p-value is 0.6015. We do not reject Ho since the p-value is large. Thus, there is not sufficient evidence against the independence of Larry Bird’s first and second free throw attempt outcomes.
How should the resamples be taken for the permutation test?

The marginal distributions are the sufficient statistics under Ho because this is all one would need in order to recreate the contingency table. Therefore, ni+ and n+j need to remain fixed for the resamples.

Suppose each observation is assigned a row number and column number pair. This means decomposing the contingency table into the “raw” data. Thus, the Larry Bird data has 251 out of the 338 observations with (row #, col. #) = (1,1). Under the independence assumption, the observed row #’s and column #’s should be equally likely to occur with each other. Therefore, permute the column #’s and permute the row #’s. Recombine these values to form a resampled data set.

Outline for how to perform the permutation test:
1. Put the data into its “raw” format
2. Permute the row numbers and the column numbers INDEPENDENTLY of each other (We will modify this procedure soon)
3. Put these permuted row and column numbers back together into one data set to form one permutation (resample) of the data
4. Calculate
[image: image64.wmf]2

x

*

5. Repeat this process R times

6. Calculate
[image: image65.wmf]{

}

22

r

1#xx

p

R1

*

*

+³

=

+

Question: Why are the ni+ and n+j the same for each resample?

We can perform the test actually more simply by permuting only the column numbers and putting them back together with the row numbers. This serves the same purpose as permuting both. Why?

R calculations using the boot() function:
> library(boot)

> #Perform the test

> calc.t<-function(data, i, row.numb) {

 perm.data<-data[i]

 chisq.test(row.numb, perm.data, correct=F)$statistic

 }

> set.seed(6488)

> R<-999

> perm.res<-boot(data = all.data[,2], statistic = calc.t,
 R = R, sim = "permutation", row.numb = all.data[,1])

> perm.res

DATA PERMUTATION

Call:

boot(data = all.data[, 2], statistic = calc.t, R = R, sim = "permutation", row.numb = all.data[, 1])

Bootstrap Statistics :

 original bias std. error

t1* 0.2727363 0.7394324 1.493488

> plot(perm.res, qdist = "chisq", df = (nrow(n.table)-
 1)*(ncol(n.table)-1))
[image: image66.emf]Histogram of t

t*

Density

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2 4 6 8 10

0

2

4

6

8

10

Quantiles of Chi-squared(1)

t*

> #P-value

> (1 + sum(perm.res$t>=perm.res$t0))/(R + 1)

[1] 0.629
> #P-value calculated in UNL STAT 875

> sum(perm.res$t>=perm.res$t0)/R

[1] 0.6286286

> #Show the number of unique values of the test statistic
> xtabs(~perm.res$t)

perm.res$t

0.002918699538 0.17155467285 0.27273625683 0.77864417675

207 164 163 104

0.9810073447 1.8241872112 2.1277319632 3.3081837764

128 71 62 38

3.7129101123 5.2306338720 5.7365417920 7.5915374984

19 20 9 10

10.390894655

4

Notes:

· See the use of the qdist and df options in the plot() function used with the object created by boot()
· Notice how the resamples have the same margins as the observed data:

> #Show the margins are the same as observed

> save.index<-boot.array(boot.out = perm.res, indices =
 TRUE)

> i<-save.index[1,]

> d<-all.data[i,2]

> xtabs(~all.data[,1]+d)

 d

 1 2

 1 249 36

 2 50 3

From the resampled table above:
[image: image67.wmf]1

n

*

+

 = 285,
[image: image68.wmf]2

n

*

+

= 53,
[image: image69.wmf]1

n

*

+

 = 299, and
[image: image70.wmf]2

n

*

+

 = 39. From the observed table: n1+ = 285, n2+ = 53, n+1 = 299, and n+2 = 39.

Examine the permutation (resampling) distribution and how it again compares to a
[image: image71.wmf]2

1

c

:
> par(mfrow = c(1,2), pty = "s", xaxs = "i")

> #Histogram

> hist(perm.res$t, main = "Histogram of perm. dist.",

 xlab=expression(X^{"2*"}), freq = FALSE)

> abline(v = perm.res$t0[1], col = "darkgreen", lwd = 5)

> curve(dchisq(x, df = (nrow(n.table)-1)*(ncol(n.table)-

 1)), col = "red", add = TRUE)

> plot.ecdf(perm.res$t, verticals = TRUE, do.p = FALSE,

 main = expression(paste("EDF for ", X^{"2*"})), lwd =

 2, panel.first = grid(nx = NULL, ny = NULL,

 col="gray", lty="dotted"), ylab = expression(hat(G)),

 xlab = expression(X^{"2*"}))

> curve(expr = pchisq(q = x, df = (nrow(n.table)-

 1)*(ncol(n.table)-1)), col = "red", add = TRUE)
[image: image72.emf]Histogram of perm. dist.

X

2*

Density

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

EDF for X

2*

X

2*

G

^

G

^

chi-square

> chisq.quant<-qchisq(p = seq(from = 1/(R+1), to = 1-
 1/(R+1), by = 1/(R+1)), df = (nrow(n.table)-1)*

 (ncol(n.table)-1))

> plot(y = sort(perm.res$t), x = chisq.quant, main =
 expression(paste("QQ-Plot for ", X^{"2*"})), ylab =
 expression(X^{"2*"}), xlab = expression(paste(

 chi[1]^{2}, " quantiles")), panel.first = grid(nx =
 NULL, ny = NULL, col="gray", lty="dotted"))

> abline(a = 0, b = 1, col = "red")

[image: image73.emf]2 4 6 8 10

0

2

4

6

8

10

QQ-Plot for X

2*



1

2

 quantiles

X

2*

The above QQ-plot is probably not necessary since the plot() function with an object of class boot can produce one as well.

Obviously, the permutation distribution is VERY discrete here. Still, the
[image: image74.wmf]2

1

c

 seems to be doing about the best job possible that a continuous distribution could do for approximating a discrete distribution. Notice how one can use this bootstrap procedure to VALIDATE a distributional approximation!
Question: How could you perform the test with a likelihood ratio test statistic?
A simpler implementation of this test using the Pearson statistic:

> ###

> # Simpler implementation

> # In the chisq.test() code, it uses the same formula

 as BMA for the p-value

> set.seed(8912)

> chisq.test(n.table, correct = FALSE, simulate.p.value =
 TRUE, B = 999)

 Pearson's Chi-squared test with simulated p-value (based on 999 replicates)

data: n.table

X-squared = 0.2727, df = NA, p-value = 0.66

Example: Table 2.10 of Agresti (1996)
This is an example of when the
[image: image75.wmf]2

(I1)(J1)

--

c

 approximation does not work well for a Pearson chi-square test for independence
> n.table<-array(data = c(0, 1, 0,

 7, 1, 8,

 0, 1, 0,

 0, 1, 0,

 0, 1, 0,

 0, 1, 0,

 0, 1, 0,

 1, 0, 0,

 1, 0, 0), dim=c(3,9))

> n.table

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0 7 0 0 0 0 0 1 1

[2,] 1 1 1 1 1 1 1 0 0

[3,] 0 8 0 0 0 0 0 0 0

> chisq.test(n.table, correct=F)

 Pearson's Chi-squared test

data: n.table

X-squared = 22.2857, df = 16, p-value = 0.1342

Warning message:

Chi-squared approximation may be incorrect in: chisq.test(n.table, correct = F)

> ###

> # Row and column number format (raw data)

> all.data<-matrix(NA, 0, 2)

>

> #Put data in "raw" form

> for (i in 1:nrow(n.table)) {

 for (j in 1:ncol(n.table)) {

 all.data<-rbind(all.data, matrix(data = c(i, j),
 nrow = n.table[i,j], ncol = 2, byrow=T))
 }

 }

There were 16 warnings (use warnings() to see them)

> #Don't worry about the warnings. They are due to n_ij
 = 0

> xtabs(~all.data[,1]+ all.data[,2])

 all.data[, 2]

all.data[, 1] 1 2 3 4 5 6 7 8 9

 1 0 7 0 0 0 0 0 1 1

 2 1 1 1 1 1 1 1 0 0

 3 0 8 0 0 0 0 0 0 0

> ##

> # Permutation test - see tab2.10-v2.R in Chapter 2 of
 STAT 875 as well
> library(boot)

> #Perform the test

> calc.t<-function(data, i, row.numb) {

 perm.data<-data[i]

 chisq.test(row.numb, perm.data, correct=F)$statistic

 }

> set.seed(6488)

> R<-999

> perm.res<-boot(data = all.data[,2], statistic = calc.t,
 R = R, sim = "permutation", row.numb = all.data[,1])

 There were 50 or more warnings (use warnings() to see

 the first 50)

> #Warnings mentioned in output are the "Chi-squared
 approximation may be incorrect" warnings from having
 low cell counts in the contingency tables
> perm.res

DATA PERMUTATION

Call:

boot(data = all.data[, 2], statistic = calc.t, R = R, sim = "permutation", row.numb = all.data[, 1])

Bootstrap Statistics :

 original bias std. error

t1* 22.28571 -5.553851 0.9964322

> plot(perm.res, qdist="chisq", df = (nrow(n.table)-
 1)*(ncol(n.table)-1))

[image: image76.emf]Histogram of t

t*

Density

16 17 18 19 20 21 22

0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25 30 35

16

17

18

19

20

21

22

Quantiles of Chi-squared(16)

t*

> #P-value

> (1 + sum(perm.res$t>=perm.res$t0))/(R + 1)

[1] 0.002
> par(mfrow = c(1,2), pty = "s", xaxs = "i")

> #Histogram

> hist(perm.res$t, main = "Histogram of perm. dist.",
 xlab=expression(X^{"2*"}), freq = FALSE)

> abline(v = perm.res$t0[1], col = "darkgreen", lwd = 5)

> curve(dchisq(x, df = (nrow(n.table)-1)*(ncol(n.table)-
 1)), col = "red", add = TRUE)

> plot.ecdf(perm.res$t, verticals = TRUE, do.p = FALSE,
 main = expression(paste("EDF for ", X^{"2*"})), lwd =
 2, panel.first = grid(nx = NULL, ny = NULL,
 col="gray", lty="dotted"), ylab = expression(hat(G)),
 xlab = expression(X^{"2*"}))

> curve(expr = pchisq(q = x, df = (nrow(n.table)-
 1)*(ncol(n.table)-1)), col = "red", add = TRUE)

[image: image77.emf]Histogram of perm. dist.

X

2*

Density

16 17 18 19 20 21 22

0.0

0.1

0.2

0.3

0.4

0.5

0.6

16 17 18 19 20 21 22

0.0

0.2

0.4

0.6

0.8

1.0

EDF for X

2*

X

2*

G

^

G^chi-square

The permutation test indicates there is sufficient evidence against independence. The Pearson chi-square test with an asymptotic chi-square distribution approximation finds only marginal evidence. Given the results in the above plots, I would not trust the asymptotic chi-square distribution approximation for the Pearson statistic.
Section 4.4: Nonparametric bootstrap tests

Unlike permutation tests, there generally is no conditioning on the sufficient statistics which allows bootstrap tests to be performed in more general settings. The resampling still needs to be done under the null hypothesis where
[image: image78.wmf]0

ˆ

F

 is the EDF under Ho. Resampling under
[image: image79.wmf]0

ˆ

F

 can be the difficult part at times.
Example: Test for one mean
H0: (= (0 vs. Ha: (((0 for some constant (0
The resamples are taken using modified data values of

[image: image80.wmf]i

y

%

 = yi –
[image: image81.wmf]y

 + (0 for i = 1, …, n. The reason for these adjusted values is to resample under
[image: image82.wmf]0

ˆ

F

. In this case,
yi –
[image: image83.wmf]y

 adjusts the data to have a mean of 0. Adding (0 back to the data forces the data to have a mean of (0. Thus, the data now has been adjusted to reflect the null hypothesis and resampling can proceed as usual with these adjusted data values. For further clarification,
[image: image84.wmf]0

ˆ

F

 is the EDF of
[image: image85.wmf]1n

y,y

%%

K

.
Example: Test for difference of two means
H0: (1 – (2 = 0 vs. Ha: (1 – (2 (0
Approach #1
Consider the following model of Yij = (i + (i(ij where (ij ~ i.i.d. (0,1), i = 1, 2, and j = 1, …, ni. This is similar to Section 3.3’s semiparametric model that we used. Thus, using this type of assumption would not be fully nonparametric, but it may be quite reasonable.

Under Ho, Yij = (+ (i(ij. The estimated standardized residuals are

[image: image86.wmf]ij

ij

1/2

i

i

yˆ

e

1

ˆ1

n

-m

=

æö

s-

ç÷

èø

where
[image: image87.wmf]ˆ

m

 is the mean of the combined samples (a simple mean or a weighted mean based on sample size could be used). The
[image: image88.wmf]0

ˆ

F

 used is the EDF of e11, …, e2n.

Suppose
[image: image89.wmf]ij

*

e

 are the resampled eij’s. Through using these
[image: image90.wmf]ij

*

e

, REFORM the response variable as
[image: image91.wmf]ijiij

yˆˆ

**

=m+se

. Use these
[image: image92.wmf]ij

y

*

’s as your resampled y’s under the null hypothesis.

Question: Why can
[image: image93.wmf]ˆ

m

 be taken as 0 without loss of generality?

Approach #2

One can use some other form of the model as discussed in Section 3.3. For example, use a multiplicative model structure.
Approach #3
Combine both samples into one just like was done with a permutation test. Resample n1 observations with replacement to form “group #1”. Resample n2 more observations with replacement to form “group #2”. Again, this assumes the distributions for group #1 and #2 are the same (shifted if the means are different).
Approach #4 (Algorithm 16.2 of Efron and Tibshirani (1993, p. 224))
Let
[image: image94.wmf]1j1j1

yyyy

=-+

%

 and
[image: image95.wmf]2j2j2

yyyy

=-+

%

 where
[image: image96.wmf]y

 is the mean of all yij’s. Notice that this is very similar to how the one-sample test was approached. Use a stratified resampling approach for the
[image: image97.wmf]1j

y

%

, j = 1,…, n1, and
[image: image98.wmf]2j

y

%

, j = 1, …, n2.
Other approaches may be possible as well.
P-value calculation

[image: image99.wmf]boot0

ˆ

pP(Tt|F)P(Tt)

=³=³

 where
[image: image100.wmf]0

ˆ

F

 is the EDF under H0. We can approximate this probability through taking R resamples and calculating

[image: image101.wmf]{

}

r

1#tt

p

R1

*

+³

=

+

.

Note that BMA drop the  from the p here again even though it would be best for it to be there.

The above p-value is contingent on only LARGE values indicating evidence against Ho. If both small and large values indicate evidence against Ho, there is not necessarily one specific way to calculate the p-value. One common way is:

[image: image102.wmf]{

}

boot00

ˆˆ

p2minP(Tt|F),P(Tt|F)

**

éù

=³£

ëû

where this is typically estimated by

[image: image103.wmf]{

}

{

}

rr

1#tt1#tt

p2min,

R1R1

**

ìü

éù

+³+£

=

íý

êú

++

ëû

îþ

Again, there probably should be a  on pboot and p to be consistent with past notation. Also, why does BMA call the estimate of pboot just p???

Example: Larry Bird (bird.R)

Are the first free throw and the second throw outcomes independent?

Test the following hypotheses:

H0: P(X = i, Y=j) = P(X = i)(P(Y=j) for i = 1, 2 and j = 1, 2
Ha: Not all equal

There are two ways to perform the resampling (this was on my PhD comprehensive exam ().
1) Independently resample with replacement the row numbers and the column numbers. Put these numbers back together to form the data set.
Resampling this way is like saying the row variable, X, has its own marginal distribution, A, and the column variable, Y, has its own marginal distribution, B. We then resample from their corresponding EDFs,
[image: image104.wmf]ˆ

A

 and
[image: image105.wmf]ˆ

B

, independently.

Question: What named distribution would A and B represent?

To use the boot() function, one can rewrite the data set in the same format as in Section 3.2 where there was a variable called index which indicates the row or column number. Another variable called table.part, say, is used to indicate if index is a row or column number. Use the strata option in boot() to take the resamples within the table.part variable.
2) Find the expected counts under independence,
[image: image106.wmf]ijij

ˆnn/n

++

m=

 for i = 1, …, I and j = 1, …, J and use the
[image: image107.wmf]ijij

ˆˆ/n

p=m

 in a multinomial distribution in order to take the resamples. This method will not be illustrated here.
Be careful: With both of these approaches, one needs to perform a sort of “conditional” resampling approach. We need to make sure each contingency table resulting from a resample has the same size as the original I(J table.
Why? X2 is an asymptotically pivotal statistic with a distribution of
[image: image108.wmf]2

(I1)(J1)

--

c

. This distribution changes if the size of the contingency table changes!
For example, suppose there are I = 3 rows and row #1 has a small number of counts. Through the resampling process, there may be no observations from row #3 in a resample. The way to resolve this problem is to throw out resamples that do not have the same size as the original contingency table.

This is something to be careful about when working with contingency tables. In other problems, you should look out for problems like this too!

Getting the data in the correct format for boot():

> library(boot)

> #Construct form of data set needed

> set1<-rbind(data.frame(index = all.data[,1], table.part
 = "X"),
 data.frame(index = all.data[,2], table.part
 = "Y"))

> head(set1)

 index table.part

1 1 X

2 1 X

3 1 X

4 1 X

5 1 X

6 1 X

> tail(set1)

 index table.part
671 1 Y

672 2 Y

673 2 Y

674 2 Y

675 2 Y

676 2 Y
Next, create functions to calculate X2 and to check if the contingency table for a resample is the correct size.
> #NOTE this function requires a particular structure to
 the data - "X" and "Y"

> #Check table size

> check.table<-function(data) {

 x<-data[data$table.part == "X",] #Notice use of ==

 y<-data[data$table.part == "Y",]

 save.table<-xtabs(~x$index + y$index)
 numb.row<-nrow(save.table)

 numb.col<-ncol(save.table)

 c(numb.row, numb.col)

 }

> #Perform the test

> calc.t<-function(data, i) {

 d<-data[i,]

 x<-d[d$table.part == "X",] #Notice use of ==

 y<-d[d$table.part == "Y",]

 #Note: chisq.test() will return an error message if
 I<2 or J<2

 x.sq<-chisq.test(x = x$index, y = y$index,
 correct=F)$statistic

 c(x.sq, check.table(d))

 }

> #Test calc.t with observed data

> calc.t(data = set1, i = 1:nrow(set1))

X-squared

0.2727363 2.0000000 2.0000000

There was not a good way to get around the situation of having I<2 and J<2 for a general I(J contingency table being used with these functions. The chisq.test() will produce an error message and will not calculate a statistic that may cause boot() to stop. Thus, my check of table size in check.table() may not be needed here (table is already 2(2), but it can be helpful in larger contingency table problems.
Here is how I used the boot() function with the strata option. The warnings are due to small counts in a contingency table cell for a resample.
> set.seed(9180)

> R<-999

> boot.res<-boot(data = set1, statistic = calc.t, R = R,
 sim = "ordinary", strata = set1$table.part)

There were 50 or more warnings (use warnings() to see the first 50)

> boot.res

STRATIFIED BOOTSTRAP

Call:

boot(data = set1, statistic = calc.t, R = R, sim =

 "ordinary", strata = set1$table.part)

Bootstrap Statistics :

 original bias std. error

t1* 0.2727363 0.7952617 1.503981

t2* 2.0000000 0.0000000 0.000000

t3* 2.0000000 0.0000000 0.000000

> plot(boot.res, qdist="chisq", df = (nrow(n.table)-
 1)*(ncol(n.table)-1))

[image: image109.emf]Histogram of t

t*

Density

0 5 10 15

0.0

0.2

0.4

0.6

2 4 6 8 10

0

5

10

15

Quantiles of Chi-squared(1)

t*

> #p-value

> (1 + sum(boot.res$t[,1]>=boot.res$t0[1]))/(R + 1)

[1] 0.639

Notice the use of the qdist and df options in the plot() function used with the object created by boot(). The p-value is 0.639 indicating there is not sufficient evidence to reject independence.
A further examination of the resamples results in the following:
> #How many contingency table* do not have original size?

> sum(boot.res$t[,2] != check.table(set1)[1]) #Not same
 number of rows

[1] 0

> sum(boot.res$t[,3] != check.table(set1)[2]) #Not same
 number of columns

[1] 0

> #Reform a contingency table*

> save.index<-boot.array(boot.res, indices = TRUE)

> i<-save.index[3,]

> d<-set1[i,]

> x<-d[d$table.part == "X",]

> y<-d[d$table.part == "Y",]

> xtabs(~x$index+y$index)

 y$index

x$index 1 2

 1 253 35

 2 43 7

> check.table(d) != check.table(set1)

[1] FALSE FALSE

From the resampled table above:
[image: image110.wmf]1

n

*

+

 = 288,
[image: image111.wmf]2

n

*

+

= 50,
[image: image112.wmf]1

n

*

+

 =296, and
[image: image113.wmf]2

n

*

+

 = 42. From the observed table: n1+ = 285, n2+ = 53, n+1 = 299, and n+2 = 39.

Question: What should you do if the table is not the same size as the original?

More plots (see program for code):
[image: image114.emf]Histogram of resampling dist.

X

2*

Density

0 5 10 15

0.0

0.1

0.2

0.3

0.4

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

EDF for X

2*

boot

X

2*

G

^

G

^

chi-square

Example: Table 2.10 of Agresti (1996) (tab2.10Agresti1996.R)
This is a good example of where the bootstrap does not work!
> #Construct form of data set needed

> set1<-rbind(data.frame(index = all.data[,1], table.part
 = "X"),

 data.frame(index = all.data[,2], table.part
 = "Y"))

> head(set1)

 index table.part

1 1 X

2 1 X

3 1 X

4 1 X

5 1 X

6 1 X

> tail(set1)

 index table.part

191 2 Y

201 2 Y

211 2 Y

221 2 Y

231 2 Y

241 2 Y

> #Check table size

> check.table<-function(data) {

 x<-data[data$table.part == "X",] #Notice use of ==

 y<-data[data$table.part == "Y",]

 save.table<-table(x$index, y$index)

 numb.row<-nrow(save.table)

 numb.col<-ncol(save.table)

 c(numb.row, numb.col)

 }

> #Perform the test

> calc.t<-function(data, i) {

 d<-data[i,]

 x<-d[d$table.part == "X",] #Notice use of ==

 y<-d[d$table.part == "Y",]

 x.sq<-chisq.test(x$index, y$index,
 correct=F)$statistic

 c(x.sq, check.table(d))

 }

> #Test calc.t with observed data

> calc.t(data = set1, i = 1:nrow(set1))

X-squared

 22.28571 3.00000 9.00000

Warning message:

Chi-squared approximation may be incorrect in: chisq.test(x$index, y$index, correct = F)

> set.seed(8372)

> R<-999

> boot.res<-boot(data = set1, statistic = calc.t, R = R,
 sim = "ordinary", strata = set1$table.part)

There were 50 or more warnings (use warnings() to see the first 50)

> boot.res

STRATIFIED BOOTSTRAP

Call:

boot(data = set1, statistic = calc.t, R = R, sim = "ordinary, strata = set1$table.part)

Bootstrap Statistics :

 original bias std. error

t1* 22.28571 -11.781090978 3.7508966

t2* 3.00000 -0.001001001 0.0316386

t3* 9.00000 -2.891891892 1.2146089

> #How many contingency table* do not have original size?

> sum(boot.res$t[,2] != check.table(set1)[1]) #Not same
 number of rows

[1] 1

> sum(boot.res$t[,3] != check.table(set1)[2]) #Not same
 number of columns

[1] 991

> #Reform a contingency table*

> save.index<-boot.array(boot.res, indices = TRUE)

> i<-save.index[1,]

> d<-set1[i,]

> x<-d[d$table.part == "X",]

> y<-d[d$table.part == "Y",]

> table(x$index, y$index)

 1 2 3 4 5 6 9

 1 1 7 1 0 0 1 0

 2 0 4 0 2 2 0 0

 3 1 2 0 0 0 2 1

> check.table(d) != check.table(set1)

[1] FALSE TRUE

Why does the bootstrap not work well?

Fully nonparametric null models (p. 165)
Remember that the bootstrap can be thought of in terms of resampling from a multinomial distribution with probability parameters equal to 1/n. These probability parameters can be adjusted to something other than 1/n in order to ensure the resample is being taken under Ho.
Suppose the null hypothesis can be written as
H0: t(F1,F2, …, Fk) = 0. Our goal is find the EDFs under this constraint. Remember that
[image: image115.wmf]i

ˆ

F

 (EDF for ith sample) assigns probabilities of
[image: image116.wmf]ij

ˆ

p

 = 1/ni for each yij for j = 1, …, ni. Now, we want to find different estimates for these probabilities, denoted by
[image: image117.wmf]ij,0

ˆ

p

, subject to the null hypothesis constraint.
Summary:
·
[image: image118.wmf]ij

ˆ

p

 are the estimates with no constraints (
[image: image119.wmf]i

ˆ

F

 are the EDFs)
· Let pij be the true probabilities under Ho
·
[image: image120.wmf]ij,0

ˆ

p

 are the estimates of pij with the Ho constraints
[image: image121.wmf]i,0

ˆ

(F

 are the EDFs)
· Note that it may have better to call these pij, pij,0 instead. I am following BMA’s notation here.

Let
[image: image122.wmf]ii

ˆ

d(,)

pp

 measure the “discrepancy” between the EDFs under Ho and no restriction. Notes:

·
[image: image123.wmf]i

ˆ

p

 is a vector of the
[image: image124.wmf]ij

ˆ

p

’s and pi is a vector of the pij’s
· The smaller the
[image: image125.wmf]ii

ˆ

d(,)

pp

, the closer
[image: image126.wmf]i

ˆ

p

 and pi are to each other
· If pi =
[image: image127.wmf]i

ˆ

p

, this is as small as
[image: image128.wmf]ii

ˆ

d(,)

pp

 can be
Estimates for pij subject to particular constraints can be found by minimizing the following Lagrange expression:

[image: image129.wmf](

)

i

kkn

ii1kiij

i1i1j1

ˆ

d(,)t(,...,)p1

===

éù

æö

-l-a-

ååå

ç÷

êú

èø

ëû

pppp

The resulting
[image: image130.wmf]ij,0

ˆ

p

’s can be used as the multinomial probabilities when resampling is performed (instead of using
[image: image131.wmf]ij

ˆ

p

 = 1/n).
Note that the name Lagrange comes in whenever one incorporates “0” constraints into an item that is being minimizing or maximized. In this case, the null hypothesis states
[image: image132.wmf]1k

t(,...,)0

=

pp

 when resampling is done. Also, the sample from population i gives us,

[image: image133.wmf]i

n

ij

j1

p10

=

éù

æö

-=

å

ç÷

êú

èø

ëû

Thus, (and the (i’s are multiplied by 0 and are often called “Lagrange multipliers”. This same type of Lagrange expression occurs when one finds the maximum likelihood estimates for the probability parameters of a multinomial where one needs to make sure the sum of these probabilities is 1. Here’s a quick (?) example of this:

Suppose the multinomial distribution is

[image: image134.wmf]i

k

n

i

k

i1

i

i1

n!

n!

=

=

p

Õ

Õ

where k is the number of categories, ni are random variables denoting number of observations in category i (
[image: image135.wmf]k

i

i1

nn

=

=

å

), and (i are the corresponding probability parameters. Using a sample of size n, the natural log of the likelihood function becomes

[image: image136.wmf]k

ii

i1

logLnlog()

=

µp

å

.

To find the MLEs of (i’s, one needs to incorporate the following constraint on the (i’s:

[image: image137.wmf]kk

ii

i1i1

110

==

p=Û-p=

åå

Thus, maximize

[image: image138.wmf](

)

(

)

kk

iii

i1i1

nlog()1

==

p-a-p

åå

Set
[image: image139.wmf]iii

n0

¶¶p=p-a=

 for i = 1, …, k and
[image: image140.wmf]k

i

i1

10

=

¶¶a=-p=

å

. This implies
[image: image141.wmf]ii

n

p=a

 and
[image: image142.wmf]k

i

i1

1

=

p=

å

 (notice how the constraint appears here). Solving these equations results in

[image: image143.wmf]kkk

iii

ii

i1i1i1

nnn

1n

===

=pÞ=pÞ=Þa=

ååå

aaa

Also,
[image: image144.wmf]iiiiii

nnnnn

p=aÞp=Þp=

. Thus, the MLE of (i is
[image: image145.wmf]ii

ˆnn

p=

.
What is
[image: image146.wmf]ii

ˆ

d(,)

pp

?
We can use a distance measure here that is very similar to the Kullback-Leiber information number (see p. 113 of Ferguson (1996)). For two continuous distributions f0(x) and f1(x), the Kullback-Leiber information number is defined as

[image: image147.wmf]0

00

f0

11

f(x)f(x)

Eloglogf(x)dx

f(x)f(x)

éù

æöæö

=

ò

êú

ç÷ç÷

èøèø

ëû

It can be thought of as a measure of the ability of the likelihood ratio to distinguish between f0(x) and f1(x) when f0(x) is true.
BMA use,

[image: image148.wmf]i

kn

iiijijij

i1j1

ˆˆ

d(,)plog(p/p)

==

=

åå

pp

and they call this a reverse information distance (reverse since they originally define it with
[image: image149.wmf]ij

ˆ

p

 and pij switched). Thus,

[image: image150.wmf]ii

knkn

ijijij1kiij

i1j1i1j1

ˆ

plog(p/p)t(,...,)p1

====

éù

æöæö

-l-a-

åååå

ç÷ç÷

êú

èøèø

ëû

pp

needs to be minimized to find pij’s. Remember that we are trying to find a set of pij’s such that they are as close to the
[image: image151.wmf]ij

ˆ

p

’s as possible AND Ho is true. The resulting pij’s will be called
[image: image152.wmf]ij,0

ˆ

p

’s.
Performing this type of procedure is called exponential tilting. Notice how the
[image: image153.wmf]ij,0

ˆ

p

’s are sort of “tilted” away from 1/ni to satisfy the null hypothesis. Also, the exponential function will play a large role in the estimates.

Minimizing the previous expression can be quite tricky. I tried to do this myself in my dissertation research by programming in a Newton-Raphson method, but was unable to consistently achieve convergence. BMA provides its own exp.tilt() function that calls the optim() function (using method = "BFGS") to help automate the procedure. I have not tried this function in general settings.
Example 4.16 and 4.20: Comparison of two means (ex4.16_4.20.R)
The hypotheses are H0: (1 ((2 ≤ 0 vs. Ha: (1 ((2 > 0. Note that this is a one-sided test!
Notice that

[image: image154.wmf]1

n

1j1j,0

i1

ˆ

yp

=

å

 (
[image: image155.wmf]2

n

2j2j,0

i1

ˆ

yp

=

å

 = 0
because we need to take our resamples with respect to the null hypothesis being true. If
[image: image156.wmf]ij

ˆ

p

 = 1/ni is used instead, notice that generally
[image: image157.wmf]12

yy0

-¹

 for any data set. This is the reason for needing to find pij‘s such that the null hypothesis would be true with the observed data.

The call to exp.tilt() is exp.tilt(data, strata). The data needs to be in a format so that we can get

[image: image158.wmf]1

n

1j1j,0

i1

ˆ

yp

=

å

 (
[image: image159.wmf]2

n

2j2j,0

i1

ˆ

yp

=

å

= 0

This means for this specific example, we will need to get a minus sign in front of the y2j’s. Thus, change the data values to be –y2j (see the upcoming code).

BMA provide some of the details about how the pij’s can be found, and they have to use numerical methods to find their values.
Consider the last two series in the gravity data set of Section 3.2 again for this test. I put data in the correct format and used exp.tilt() (modified code from p. 535-536).
> library(boot)

> #BMA call this "z". I changed the name to grav.z
 to avoid confusion with a studentized quantity

> grav.z<-grav$g #grav includes only series 7 and 8

> grav.z

 [1] 82 79 81 79 77 79 79 78 79 82 76 73 64 84 86 85 82
 77 76 77 80 83 81 78 78 78

> #Whereever you see series = 8, replace with its
 negative values

> #Reason: sum(y_1j * p_1j) - sum(y_2j * p_2j) = 0;
 notice the minus in there

> grav.z[grav$series==8]<--grav.z[grav$series==8]

> #The help for exp.tilt() says L is the empirical
 influence function values. BMA in their code on
 p. 535-6 simply use the data set for L. At the
 end of this program, I tried putting the
 empirical influence function values in for L,

 but the function did not produce the correct
 results.
> grav.z.tilt<-exp.tilt(L=grav.z, theta=0,
 strata=grav$series)

> grav.z.tilt

$p

 [1] 0.12113528 0.08212299 0.10641479 0.08212299
 0.06337639 0.08212299

 [7] 0.08212299 0.07214332 0.08212299 0.12113528
 0.05567482 0.03774444

[13] 0.01176076 0.04436834 0.03424017 0.03897665
 0.05749240 0.10988884

[19] 0.12508989 0.10988884 0.07449853 0.05050586
 0.06544539 0.09653503

[25] 0.09653503 0.09653503

$theta

[1] 0

$lambda

[1] 1.684323

> #Verify sum to one for each series

> sum(grav.z.tilt$p[grav$series==7])

[1] 1

> sum(grav.z.tilt$p[grav$series==8])

[1] 1

> #Verify that Ho is satisfied; add the two below to
 get 0 (remember that we already did the minus
 part for the series = 8)
> sum(grav.z.tilt$p[grav$series==7]

 *grav.z[grav$series==7])

[1] 79.17084

> sum(grav.z.tilt$p[grav$series==8]

 *grav.z[grav$series==8])

[1] -79.17084
The theta = 0 option in exp.tilt() corresponds to the null hypothesis of t(F1, F2) =
[image: image160.wmf]1

n

1j1j

i1

yp

=

å

 (
[image: image161.wmf]2

n

2j2j

i1

yp

=

å

 = 0.
Notice that grav.z.tilt$p contains the
[image: image162.wmf]ij,0

ˆ

p

’s. From examining the code in exp.tilt(), it does not appear to work exactly as BMA suggest (i.e., start with minimizing equation 4.22 directly) – see the code on your own if desired

Next, I reproduce Figure 4.11. Notice the use of the weights in density().
> # Figure 4.11 - left plot

> par(mfrow = c(1,2), pty = "s", xaxs = "r")

> plot(x = grav$g, y = grav.z.tilt$p, main =
 "Exponential tilt probabilities", ylab = "Null
 probabilities", xlab = "y", type = "n", ylim =
 c(0,0.2), xlim = c(60,90), panel.first = grid(nx
 = NULL, ny = NULL, col="gray", lty="dotted"))

> text(x = grav$g, y = grav.z.tilt$p, labels =
 as.numeric(grav$series) - 6, cex = 0.75)

> points(x = grav$g, y = rep(0, length(grav$g)), pch
 = 3)

> # Figure 4.11 - right plot - population #2 line is
 not quite the same as in BMA (they do not give
 information about the type of density
 estimation performed so I may be using a
 different method)

> plot(density(x = grav$g[grav$series==7], weights =

 grav.z.tilt$p[grav$series==7]), lty =
 "dotted", col = "red", main = "Kernel density
 estimates", xlim = c(60, 90), xlab = "y", ylab
 = "Null density")

> lines(density(x = grav$g[grav$series==8], weights =

 grav.z.tilt$p[grav$series==8]), lty =
 "dashed", col = "blue")

> lines(density(x = grav$g, weights =
 grav.z.tilt$p/2), lty = "solid", col =

 "darkgreen")

> legend(x = 60, y = 0.15, legend = c("pop 1", "pop
 2", "pooled"), lty = c("dotted", "dashed",
 "solid"), col = c("red", "blue", "darkgreen"),
 cex = 0.75)

[image: image163.emf]60 65 70 75 80 85 90

0.00

0.05

0.10

0.15

0.20

Exponential tilt probabilities

y

Null probabilities

1

1

1

1

1

11

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

222

60 65 70 75 80 85 90

0.00

0.05

0.10

0.15

0.20

Kernel density estimates

y

Null density pop 1

pop 2

pooled

Next is a function to calculate the statistics of interest. The diff(tapply()) part is directly from p. 535 of BMA.
> grav.test<-function(data, i, p.ij.0) {

 d<-data[i,]

 #BMA's code - Provides a good example of needing
 to figure out different types of coding (see
 below)

 t<-diff(tapply(dg,dseries,mean))[7]

 #My code to find variance and sample size for
 each group

 n<-tapply(X = d$g, INDEX = d$series, FUN =
 length)[7:8]

 var.ybar<-tapply(X = d$g, INDEX = d$series, FUN =
 var)[7:8]

 #Unbiased variance estimator - could have used
 npar delta method variance as well

 v<-var.ybar[1]/n[1] + var.ybar[2]/n[2]

 #Variance under Ho - remember that values of y1
 and y2 are chosen with respect to p.ij.0
 probabilities already so it may be appropriate
 to estimate each group mean by mean(y1, y2)
 and calculate the variances the usual way with
 these probabilities in mind

 y1<-d$g[d$series == 7]

 y2<-d$g[d$series == 8]

 v.o.1<-sum(1/n[1] * sum((y1 - mean(y1, y2))^2)/

 (n[1] - 1) +
 1/n[2] * sum((y2 - mean(y1, y2))^2)/

 (n[2] - 1))

 #Calculate Example 4.20 variance

 mu.hat1.0<-sum(y1*p.ij.0[d$series == 7])

 mu.hat2.0<-sum(y2*p.ij.0[d$series == 8])

 v.0.2<-sum(sum((y1 - mu.hat1.0)^2 *
 p.ij.0[d$series == 7])/n[1] +

 sum((y2 - mu.hat2.0)^2 *
 p.ij.0[d$series == 8])/n[2])

 c(t, v, v.o.1, v.0.2)

 }

> #Test part of the code

> grav.test(data = grav, i = 1:nrow(grav), p.ij.0 =
 grav.z.tilt$p)

 8 7

2.846154 2.591716 2.929487 1.194298

> tapply(grav$g, grav$series, mean) #Finds means
 for each group

 1 2 3 4 5 6 7 8

 NA NA NA NA NA NA 77.53846 80.38462

> t<-diff(tapply(grav$g, grav$series, mean))[7]
 #diff returns x_t - x_t-1 (first order
 differences) normally

> n<-tapply(X = grav$g, INDEX = grav$series, FUN =
 length)[7:8]

> var.t<-tapply(X = grav$g, INDEX = grav$series, FUN
 = var)[7:8]

> v<-var.t[1]/n[1] + var.t[2]/n[2] #could have used
 npar delta method as well

> z<-(t-0)/sqrt(v)

> z

 8

1.767928

Example 4.20 provides a variance estimate under Ho of

[image: image164.wmf](

)

i

2n

2

iji0ij,0

i1j1

i

1

ˆ

yˆp

n

==

-m

åå

where
[image: image165.wmf]i

n

i0ijij,0

j1

ˆ

ˆyp

=

m=

å

. It is interesting to see the differences among the variance estimators. The reason for the variance estimators is so that studentized quantities can be calculated later.
We can use grav.z.tilt$p with the boot() function to take the resamples. The weights option in boot() tells the function to take the resamples with respect to
[image: image166.wmf]ij,0

ˆ

p

. Notice that the strata option was used in boot().
> set.seed(7815)

> grav.boot<-boot(data=grav, statistic=grav.test,
 R=999, weights=grav.z.tilt$p, strata =

 grav$series)

> plot(grav.boot)

[image: image167.emf]Histogram of t

t*

Density

-2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Quantiles of Standard Normal

t*

P-values using t
> #P-value - remember this is a one-sided test

> (sum(grav.boot$t[,1]>=grav.boot$t0[1])+1)

 /(grav.boot$R+1)

[1] 0.01

This is close to the p-value given in Table 4.4 of BMA (see “exponential tilt” row labeled t).
One can use a studentized statistic of

[image: image168.wmf]0

0

t

z

v

-q

=

 and
[image: image169.wmf]0

0

t

z

v

*

*

*

-q

=

as well. Notice how the (0 remains in
[image: image170.wmf]*

0

z

 and is NOT replaced by t
. There will be more on the form of
[image: image171.wmf]0

z

*

 in the next subsection.
> #P-value - using different studentized methods –
 remember this is a one-sided test

> # This z.star method here is similar to equations
 16.6 and 16.7 in Efron and Tibshirani (1993, p.
 224)

> z.star<-(grav.boot$t[,1]-0)/sqrt(grav.boot$t[,2])

> z.star.0<-(grav.boot$t0[1]-0)/sqrt(grav.boot$t0[2])

> (sum(z.star>=z.star.0)+1)/(grav.boot$R+1)

[1] 0.025
> plot(grav.boot, t0=z.star.0, t=z.star) #Quick way to
 construct a plot

[image: image172.emf]Histogram of t

t*

Density

-6 -4 -2 0 2

0.0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

-4

-2

0

2

Quantiles of Standard Normal

t*

> z.star1.0<-(grav.boot$t[,1]-0)/

 sqrt(grav.boot$t[,3])

> z1.0<-(grav.boot$t0[1]-0)/sqrt(grav.boot$t0[3])

> (sum(z.star1.0>=z1.0)+1)/(grav.boot$R+1)

[1] 0.021
> z.star2.0<-(grav.boot$t[,1]-0)/

 sqrt(grav.boot$t[,4])

> z2.0<-(grav.boot$t0[1]-0)/sqrt(grav.boot$t0[4])

> (sum(z.star2.0>=z2.0)+1)/(grav.boot$R+1)

[1] 0.002
The last p-value corresponds to the 0.025 p-value given in the “exponential tilt z” row of Table 4.4 in BMA. I am somewhat surprised to see this large of a difference from what I got. My observed variance using the
[image: image173.wmf](

)

i

2n

2

iji0ij,0

i1j1

i

1

ˆ

yˆp

n

==

-m

åå

 was equal to what BMA received (see output from just using calc.t() and compare to BMA’s 1.195 on p. 173). It is interesting that my other two p-values are very similar to the BMA’s 0.025.

Additional plots summarizing the results:
> #Additional set of plots

> par(mfrow = c(1,2), pty = "s", xaxs = "i")

> #Histogram

> hist(z.star.0, main = expression(paste("Histogram of

 ", z[0]^{"*"})), xlab=expression(z[0]^{"*"}), freq

 = FALSE)

> abline(v = z.0, col = "darkgreen", lwd = 5)

> curve(dnorm(x, mean = mean(z.star), sd = sd(z.star)),

 col = "red", add = TRUE)

> #EDF

> plot.ecdf(z.star.0, verticals = TRUE, do.p = FALSE,

 main = expression(paste("EDF for ", z[0]^{"*"})),

 lwd = 2, panel.first = grid(nx = NULL, ny = NULL,

 col="gray", lty="dotted"), ylab = "Estimated CDF",

 xlab = expression(z[0]^{"*"}))

> curve(expr = pnorm(x, mean(z.star.0), sd =

 sd(z.star.0)), col = "red", add = TRUE)

[image: image174.emf]Histogram of z

0

*

z

0

*

Density

-6 -4 -2 0 2

0.00

0.10

0.20

0.30

-6 -4 -2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

EDF for z

0

*

z

0

*

Estimated CDF

I tried to write my own function for
[image: image175.wmf](

)

i

kkn

ii1kiij

i1i1j1

ˆ

d(,)t(,...,)p1

===

éù

æö

-l-a-

ååå

ç÷

êú

èø

ëû

pppp

 and use optim() to minimize it, but unfortunately I can not get it to work. The code for it is at the end of my program. Maybe there will be extra credit available for any student who can get it to work??? (
See Examples 4.17 and 4.18 on your own. BMA present an example of where the bootstrap can be used without an obvious non-bootstrap way.

Section 4.4.1: Studentized bootstrap method
Similar to what we have done in previous chapters, it is often best to work with an approximately pivotal quantity. We already did this with the exponential tilt (see z) and the testing for independence (X2 is asymptotically pivotal) examples. If there is no obvious way to find an approximately pivotal quantity, one should form a studentized statistic the usual way making sure that Ho is incorporated into the statistic.
Suppose we are testing H0: (= (0 vs. Ha: (((0. The studentized statistic is

[image: image176.wmf]0

0

0

t

z

v

-q

=

where v0 is an estimated variance calculated under Ho. If v0 is difficult to calculate, you may be able to use v instead (preferably, calculate it under Ho).
 The reason is because the resamples are taken under Ho so v should be close to v0. For the resamples, calculate

[image: image177.wmf]0

0

0

t

z

v

*

*

*

-q

=

and note that the resampling process needs to be done using
[image: image178.wmf]0

ˆ

F

. Notice that (0 is used instead of t where (0 is a known quantity under Ho. One can “kind of” think of replacing (0 by t but note that t = (0 because the resampling is done using
[image: image179.wmf]0

ˆ

F

.
BMA do not actually give
[image: image180.wmf]0

z

*

 on p. 172 and their notation overall is not always the best. For example, equation 4.30 should have a subscript 0 on z.
A large part of this section discusses a different thinking about bootstrap hypothesis testing (this is done by BMA in the first part of this section). Suppose again the following hypotheses are under consideration: H0: (= (0 vs. Ha: (((0. We can calculate

[image: image181.wmf]0

0

t

z

v

-q

=

The variance could be under Ho, but this is just how BMA present it. For each resample, calculate

[image: image182.wmf]r

r

r

tt

z

v

*

*

*

-

=

without restricting the resamples to be taken under Ho. Note that including t in there and not putting a subscript 0 on z is correct. The two-tail test p-value is
P(|Z| ≥ |zo| |
[image: image183.wmf]ˆ

F

) = P(|Z| ≥ |zo|) and this can be estimated by

[image: image184.wmf]{

}

r0

1#zz

R1

*

+³

+

Note that BMA represent the p-value as
P(|Z| ≥ |zo| |
[image: image185.wmf]ˆ

F

) for emphasis that
[image: image186.wmf]ˆ

F

, not
[image: image187.wmf]0

ˆ

F

, is being used. Of course, one could also use

[image: image188.wmf]{

}

{

}

r0r0

1#zz1#zz

2min,

R1R1

**

ìü

éù

+³+£

íý

êú

++

ëû

îþ

as the two-tail test p-value as well.

Discussion:

· Hall and Wilson (1991)
advocate this method of not needing to resample under the null hypothesis.
· Tibshirani (1992) later replies to the Hall and Wilson (1991) paper discussing how their approach is incorrect although it can result in the same answer for some problems (like testing one population mean). Also, Tibshirani says that resampling with respect to
[image: image189.wmf]ˆ

F

 may lead to tests that have the correct size, but these tests may have poor power. Tibshirani advocates resampling with respect to Ho.

· I agree with Tibshirani (1992).
Section 4.4.2: Conditional bootstrap tests

See the discussion about example 4.9.
You are not responsible for the adaptive tests section.
Section 4.4.3: Multiple testing
This section discusses how one can use the bootstrap to help control the familywise error rate when multiple comparison procedures are being performed. PROC MULTTEST is one of the few SAS procedures set up to allow one to perform the bootstrap easily and this procedure is meant to be used for the multiple comparison setting. One can also use PROC MULTTEST to take resamples for other types of problems because it can resample vectors of data. All of the bootstrap work done in my dissertation involves this procedure!

�Since the value of p changes from sample to sample to sample, one can think of this as a random variable as well. Under Ho, every subset (same size) of values of p are equally likely; seep. 54-5 of Casella and Berger (2002) for the probability integral transformation which gives more justification (remember that a p-value is just the CDF evaluated at particular value); Under Ha, this does not have a U(0,1) since different distrribution then for the test statistic

�Models not nested; notice BMA talk about a normal approximation - I have never seen this before!

�Look at the test statistic and that L_1 is in the denominator

�Notation: S=s allows us to get the F^ in the equation so I do not need the extra * in P^*().

�Think about what the permutations for one sample would look like ;)

�There is a different explanation in Higgins (2004) on p. 165 that results in the same resamples

�Row and column numbers are not changing at all - one will still have the same 1's, 2's, 3's, ... for each row and column

�The idea is to find a random combination of the row and column numbers. By doing just the rows or just the columns achieves this

�All it is doing is shifting the distribution - it will not change the ybar1 - ybar2 or the variances

�Each would have its own multinomial distribution with probability parameters equal to the estimate marginal probabilties of the table

�Write some R code that takes these tables out.

�The number of columns is changing too much with the resamples. The permutation test fixed the column totals so we did not have to worry about this problem then.

�Think of statistical functionals and finding the means

�They are minimizing a different distance quantity? We will still use the results here. See my discussion later about trying to write my own code

�Remember that theta_0 =0 under Ho. Also t = 0 under Ho as well due to the form of F^_0!

�Did BMA not use the Example 4.20 variance? :)

�In the non-bootstrap setting, this is often not done. For example, Wald statistics for testing beta1 = 0 in a logistic regression model. The reason why this is often not done (in addition to making it more complex) is that if Ho is true the non-adjusted variance will be asymptotically equivalent to the adjusted variance under Ho

�See Efron and Tibshirani (1993) p. 226 (bottom) for a discussion of this as well

(2012 Christopher R. Bilder

_1254728597.unknown

_1254730194.unknown

_1254737281.unknown

_1255281721.unknown

_1255336958.unknown

_1255373770.unknown

_1255413355.unknown

_1320149218.unknown

_1255796860.unknown

_1255412060.unknown

_1255353264.unknown

_1255373762.unknown

_1255337373.unknown

_1255331982.unknown

_1255332029.unknown

_1255332119.unknown

_1255332153.unknown

_1255335747.unknown

_1255332042.unknown

_1255332015.unknown

_1255282192.unknown

_1255282201.unknown

_1255282086.unknown

_1255282111.unknown

_1255281725.unknown

_1255176380.unknown

_1255176402.unknown

_1255176423.unknown

_1255176986.unknown

_1255179265.unknown

_1255176414.unknown

_1255176390.unknown

_1255176346.unknown

_1255176370.unknown

_1254737302.unknown

_1254730323.unknown

_1254730422.unknown

_1254730501.unknown

_1254734574.unknown

_1254737217.unknown

_1254734099.unknown

_1254730507.unknown

_1254730461.unknown

_1254730477.unknown

_1254730490.unknown

_1254730427.unknown

_1254730374.unknown

_1254730410.unknown

_1254730416.unknown

_1254730384.unknown

_1254730353.unknown

_1254730362.unknown

_1254730329.unknown

_1254730239.unknown

_1254730311.unknown

_1254730318.unknown

_1254730300.unknown

_1254730224.unknown

_1254730233.unknown

_1254730208.unknown

_1254728656.unknown

_1254728694.unknown

_1254728724.unknown

_1254728741.unknown

_1254728751.unknown

_1254728771.unknown

_1254728777.unknown

_1254728783.unknown

_1254728788.unknown

_1254728779.unknown

_1254728773.unknown

_1254728758.unknown

_1254728768.unknown

_1254728754.unknown

_1254728746.unknown

_1254728749.unknown

_1254728743.unknown

_1254728732.unknown

_1254728737.unknown

_1254728739.unknown

_1254728735.unknown

_1254728728.unknown

_1254728730.unknown

_1254728726.unknown

_1254728715.unknown

_1254728720.unknown

_1254728722.unknown

_1254728718.unknown

_1254728698.unknown

_1254728709.unknown

_1254728696.unknown

_1254728673.unknown

_1254728681.unknown

_1254728686.unknown

_1254728688.unknown

_1254728683.unknown

_1254728677.unknown

_1254728679.unknown

_1254728675.unknown

_1254728664.unknown

_1254728671.unknown

_1254728666.unknown

_1254728669.unknown

_1254728660.unknown

_1254728662.unknown

_1254728658.unknown

_1254728630.unknown

_1254728638.unknown

_1254728652.unknown

_1254728654.unknown

_1254728649.unknown

_1254728634.unknown

_1254728636.unknown

_1254728632.unknown

_1254728616.unknown

_1254728621.unknown

_1254728625.unknown

_1254728618.unknown

_1254728610.unknown

_1254728614.unknown

_1254728599.unknown

_1254728537.unknown

_1254728554.unknown

_1254728582.unknown

_1254728593.unknown

_1254728595.unknown

_1254728591.unknown

_1254728572.unknown

_1254728580.unknown

_1254728574.unknown

_1254728578.unknown

_1254728568.unknown

_1254728546.unknown

_1254728550.unknown

_1254728552.unknown

_1254728548.unknown

_1254728542.unknown

_1254728544.unknown

_1254728539.unknown

_1254728515.unknown

_1254728526.unknown

_1254728531.unknown

_1254728535.unknown

_1254728528.unknown

_1254728522.unknown

_1254728524.unknown

_1254728520.unknown

_1254728482.unknown

_1254728486.unknown

_1254728488.unknown

_1254728484.unknown

_1254728478.unknown

_1254728480.unknown

_1254728475.unknown

