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A Posterior sampling algorithm
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(0)
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(0)
i for i = 1, . . . , N . If estimating assay
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(0)
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(0)
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If not estimating assay accuracies, set S(s)
e = Se and S

(s)
p = Sp for all s.
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ω
(s)
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to obtain ηi =
∑K

k=1 g(xi;T
(s)
k ,M

(s)
k ) for i = 1, . . . , N .

4. If estimating assay accuracy probabilities, then for l = 1, . . . , L, sample S(s)
e(l) ∼ Beta(a∗e(l), b

∗
e(l))

and S
(s)
p(l) ∼ Beta(a∗p(l), b

∗
p(l)), where a∗e(l), b∗e(l), a∗p(l), and b∗p(l) are evaluated at Ỹ (s−1). Ag-

gregate S
(s)
e =

(
S
(s)
e(1), . . . , S

(s)
e(L)

)′
and S

(s)
p =

(
S
(s)
p(1), . . . , S

(s)
p(L)

)′
.

5. For i = 1, . . . , N , sample

Ỹ
(s)
i ∼ Bernoulli

(
p∗i1

p∗i0 + p∗i1

)
,

where p∗i0 and p∗i1 are evaluated at Ỹ (s)
−i =

(
Ỹ

(s)
1 , . . . , Ỹ

(s)
i−1, Ỹ
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i+1 , . . . , Ỹ
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N

)′
, S(s)

e , S(s)
p ,

and ηi =
∑K

k=1 g(xi;T
(s)
k ,M

(s)
k ).

6. Increment s = s+ 1 and return to Step 2.
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B BART backfitting algorithm details

In this section, we describe the details of the Bayesian backfitting MCMC algorithm, outlined

in Chipman et al. (2010), to sample from the posterior distribution of the regression trees

(T1,M1), (T2,M2), . . . , (TK ,MK). The algorithm iteratively fits the kth tree using the residuals

based on a fit excluding the kth tree. In general, the algorithm is simply a Gibbs sampler

that employs a modified version of Bayesian backfitting MCMC introduced by Hastie and

Tibshirani (2000).

An iteration of the backfitting algorithm first requires N successive draws of the latent random

variables ωi that were introduced in the second stage of our data augmentation procedure:

ωi ∼

TN [ηi, 1, (0,∞)] , if Ỹi = 1

TN [ηi, 1, (−∞, 0)] , if Ỹi = 0,

where TN [µ, σ2, (a, b)] denotes a truncated normal distribution with mean µ and variance σ2,

and support over the interval (a, b). Then, we can treat the latent variables ωi as continuous

outcomes and recast our BART model as

ωi = η(xi) + ϵi, (1)

for i = 1, . . . , N , where ϵi
iid∼ N(0, 1) because we’ve employed the probit link. Following this,

the algorithm then requires K successive draws of the individual trees (Tk,Mk) conditioning

on the remaining K − 1 trees:

π
(
(Tk,Mk)

∣∣ T−k,M−k,ω)
)
, (2)

where T−k is the set ofK−1 tree structures excluding Tk, andM−k are the associated terminal

node parameters. To obtain a draw from (2), note that π
(
(Tk,Mk)

∣∣ T−k,M−k,ω)
)
depends

on (T−k, M−k, ω) through the kth vector set of partial residuals Rk = (Rk1, . . . , RkN)
′,

where the ith element of Rk is given by

Rki = ωi −
K∑

u ̸=k

g(xi;Tu,Mu),
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for i = 1, . . . , N . Thus, our recasted model (1) can be temporarily reparameterized in terms

of these partial residuals. That is,

Rki ∼ N (g(xi;Tk,Mk), 1) ,

and a posterior draw from (2) is equivalent to a posterior draw from a single regression tree

Rki = g(xi;Tk,Mk) + ϵi; i.e., a posterior draw from

π
(
(Tk,Mk)

∣∣ Rk

)
. (3)

We can obtain a draw from (3) in two successive steps. Since a conjugate normal prior on µkt

was employed, for t = 1, . . . , bk, we can first integrate out Mk and sample from π (Tk | Rk).

Then, we can obtain a draw from π (Mk | Tk,Rk).

We obtain a draw from π (Tk | Rk) using the Metropolis-Hastings (MH) algorithm of Chipman

et al. (1998), where we first generate a candidate tree T ∗
k with probability distribution q(Tk, T

∗
k )

and accept T ∗
k with probability

α(Tk, T
∗
k ) = min

{
1,

q(T ∗
k , Tk)

q(Tk, T ∗
k )

p(Rk | T ∗
k ,Mk)

p(Rk | Tk,Mk)

π(T ∗
k )

π(Tk)

}
, (4)

where q(T ∗
k ,Tk)

q(Tk,T
∗
k )

is the transition ratio, p(Rk|T ∗
k ,Mk)

p(Rk|Tk,Mk)
is the likelihood ratio, and π(T ∗

k )

π(Tk)
is the tree

structure ratio. A new tree T ∗
k can be proposed given the current tree Tk using one of four

moves: growing a terminal node; pruning a pair of terminal nodes; swapping the splitting

criteria of two non-terminal nodes; and changing the splitting criteria of a non-terminal node.

For further details, see Chipman et al. (1998, 2010).

Once we have the draw from π (Tk | Rk), the posterior draw from π (Mk | Tk,Rk) is a set of

independent draws of the terminal node parameters µkt from a normal distribution. Refer to

Web Appendix C for its derivation and complete expression.
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C Posterior distribution for µkt

Let Rk(t) be the nt-dimensional subset vector of Rk, where nt is the number of elements of

Rk allocated to the terminal node parameter µkt. Note that Rk(t)h

∣∣ Tk,Mk ∼ N(µkt, 1), for

h = 1, . . . , nt, and µkt | Tk ∼ N(0, σ2
µ). Then, we derive the posterior distribution of µkt as

follows:

π(µkt | Tk,Rk) ∝ π
(
Rk(t)

∣∣ Tk, µkt

)
π(µkt | Tk)

∝ exp

{
−
∑

h(Rk(t)h − µkt)
2

2

}
exp

{
− µ2

kt

2σ2
µ

}
∝ exp

{
−
(ntσ

2
µ + 1)µ2

kt − 2(σ2
µ

∑
h Rk(t)h)µkt

2σ2
µ

}

∝ exp

−

(
µkt −

σ2
µ

∑
h Rk(t)h

ntσ2
µ+1

)2

2
σ2
µ

ntσ2
µ+1

 .

Therefore, the posterior distribution of µkt is given by

µkt | Tk,Rk ∼ N

(
σ2
µ

∑
h Rk(t)h

ntσ2
µ + 1

,
σ2
µ

ntσ2
µ + 1

)
.
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D Additional simulation results

This section provides additional simulation results from the numerical studies of Section 4.

Web Table 1: Simulation results for the three model configurations when assay accuracy prob-

abilities are known: Average estimated AUC and sample standard deviation (in parentheses).

Model GT Protocol BART(K = 20) BART(K = 200) GLM

M1

IT
In-Sample 0.80 (0.01) 0.81 (0.01) 0.54 (0.01)

Out-of-Sample 0.77 (0.02) 0.78 (0.02) 0.53 (0.02)

MPT
In-Sample 0.76 (0.01) 0.77 (0.01) 0.54 (0.01)

Out-of-Sample 0.74 (0.02) 0.75 (0.02) 0.52 (0.02)

DT
In-Sample 0.80 (0.01) 0.81 (0.01) 0.54 (0.01)

Out-of-Sample 0.77 (0.02) 0.78 (0.02) 0.53 (0.02)

M2

IT
In-Sample 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)

Out-of-Sample 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)

MPT
In-Sample 0.98 (0.00) 0.99 (0.00) 0.98 (0.00)

Out-of-Sample 0.97 (0.00) 0.98 (0.00) 0.98 (0.00)

DT
In-Sample 0.99 (0.00) 0.99 (0.00) 0.98 (0.00)

Out-of-Sample 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
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Web Figure 1: Simulation results for population models M1 (left column) and M2 (right

column) when assay accuracy probabilities are known: Variable inclusion proportions (VIPs),

averaged over the 500 simulations, for BART with K = 20 trees (orange) and K = 200 trees

(blue) under the IT (top row), MPT (middle row), and DT (bottom row) protocols.
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Web Figure 2: In-sample simulation results for the three model configurations when assay

accuracy probabilities are unknown: BART K = 20 (left), BART K = 200 (middle), and

GLM (right) under the DT protocol. The black solid curve in each subfigure is the true

function f(·) in population model M1. The following are displayed as red curves: the average

of the 500 posterior mean estimates (solid curves) and the .025 and .975 posterior mean

quantiles (dashed curves).

Web Table 2: Simulation results for the three model configurations when assay accuracy

probabilities are unknown: Average estimated AUC scores (and sample standard deviation

in parentheses).

Model BART(K = 20) BART(K = 200) GLM

M1
In-Sample 0.80 (0.01) 0.82 (0.01) 0.54 (0.01)

Out-of-Sample 0.77 (0.02) 0.78 (0.02) 0.53 (0.02)

M2
In-Sample 0.99 (0.00) 0.99 (0.00) 0.99 (0.00)

Out-of-Sample 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
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Web Figure 3: Simulation results for population models M1 (left) and M2 (right) when assay

accuracy probabilities are unknown: Variable inclusion proportions (VIPs), averaged over

the 500 simulations, for BART with K = 20 trees (orange) and K = 200 trees (blue).
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Web Table 3: Simulation results for population models M1 and M2 under DT protocol when

assay accuracy probabilities are unknown: Average bias of the 500 posterior mean estimates

(Bias), sample standard deviation of the 500 posterior mean estimates (SSD), average of the

500 estimated of the posterior standard deviation (ESE), and empirical coverage probability

(CP95) of nominal 95% equal-tail credible intervals are reported for each parameter.

Model Se(1) = 0.95 Sp(1) = 0.98 Se(2) = 0.98 Sp(2) = 0.99

M1/BART(K = 20)
Bias (CP95) -0.02 (0.97) -0.00 (0.99) -0.01 (1.00) -0.00 (0.98)

SSD (ESE) 0.03 (0.04) 0.01 (0.01) 0.01 (0.01) 0.00 (0.01)

M1/BART(K = 200)
Bias (CP95) -0.02 (0.97) -0.00 (0.99) -0.00 (0.99) 0.00 (0.99)

SSD (ESE) 0.03 (0.04) 0.01 (0.01) 0.01 (0.01) 0.00 (0.01)

M1/GLM
Bias (CP95) -0.03 (1.00) 0.00 (1.00) -0.01 (1.00) -0.00 (1.00)

SSD (ESE) 0.02 (0.05) 0.00 (0.01) 0.01 (0.02) 0.00 (0.01)

M2/BART(K = 20)
Bias (CP95) -0.01 (0.93) -0.00 (0.95) -0.00 (0.93) -0.00 (0.94)

SSD (ESE) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.00 (0.00)

M2/BART(K = 200)
Bias (CP95) -0.01 (0.85) -0.00 (0.93) -0.00 (0.93) -0.00 (0.93)

SSD (ESE) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.00 (0.00)

M2/GLM
Bias (CP95) -0.00 (0.95) -0.00 (0.97) -0.00 (0.95) -0.00 (0.95)

SSD (ESE) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.00 (0.00)
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E Aptima Combo 2 Assay (AC2A) accuracy

Here we summarize the AC2A accuracy based on data from a pilot study and describe how to

incorporate this information into our model used for the data application in Section 5, when

assay accuracy is unknown and to be estimated. This section is modified from Web Appendix

D of McMahan et al. (2017).

Web Table 4: AC2A pilot data.

Stratum TP FN TN FP Sensitivity Specificity

Female/Swab 195 12 1154 28 Se(1) = 0.942 Sp(1) = 0.976

Female/Urine 197 11 1170 13 Se(2) = 0.947 Sp(2) = 0.989

Male/Swab 260 11 774 20 Se(3) = 0.959 Sp(3) = 0.975

Male/Urine 276 6 801 12 Se(4) = 0.979 Sp(4) = 0.985

The notation used in Web Table 4 is defined below.

TP = number of true positive individual test results

FN = number of false negative individual test results

TN = number of true negative individual test results

FP = number of false positive individual test results

Recall from Section 2.1 that we place independent Beta priors on the assay accuracies, chosen

for computational convenience. To incorporate our prior belief about the assay sensitivity

and specificity based on the pilot data, we create informative Beta priors by specifying the

hyperparameter values as follows:

Se ∼ Beta(TP+ 1,FN+ 1)

Sp ∼ Beta(TN+ 1,FP+ 1).

With this, the prior distributions for Se and Sp are concentrated around TP/(TP+ FN) and

TN/(TN+FP), respectively. In particular, for swab specimens, we specify Se ∼ Beta(196, 123)

and Sp ∼ Beta(1156, 29); for urine specimens, we specify Se ∼ Beta(198, 12) and Sp ∼

Beta(1171, 13).
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F Additional Iowa chlamydia testing data analysis results

This section provides additional estimation results from the Iowa chlamydia testing data

analysis of Section 5.
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Web Figure 4: Model-based estimates for the chlamydia testing data example. Posterior mean

estimates of the function f(·) (top row) and the probabilities Φ (f(·)) (bottom row) from the

BART configurations with K = 20 trees (left) and K = 200 trees (right), plotted against the

age covariate for each of the risk profiles (i.e., for all 32 combinations of the 5 binary risk

factors).
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Web Figure 5: Model-based estimates for the chlamydia testing data example. Posterior mean

estimates of the function f(·) (top row) and the probabilities Φ (f(·)) (bottom row) from the

BART configurations with K = 20 trees (left) and K = 200 trees (right), plotted against

the age covariate for three risk profiles: non-Caucasian patients that presented symptoms of

infection (black curve); Caucasian patients that reported a new sexual partner (orange curve);

Caucasian patients that reported having multiple sexual partners (blue curve).
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Web Figure 6: Model-based estimates for the chlamydia testing data example. Posterior mean

estimates of the function f(·) (top row) and the probabilities Φ (f(·)) (bottom row) from the

BART configurations with K = 20 trees (left) and K = 200 trees (right), plotted against

the age covariate for three risk profiles: non-Caucasian patients that reported having multiple

sexual partners and presented symptoms of infection (black curve); Caucasian patients that

reported having a new sexual partner and multiple sexual partners (orange curve); Caucasian

patients that reported having a new sexual partner and presented symptoms of infection (blue

curve).
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Web Figure 7: Model-based estimates for the chlamydia testing data example. Posterior mean

estimates of the function f(·) (top row) and the probabilities Φ (f(·)) (bottom row) from the

BART configurations with K = 20 trees (left) and K = 200 trees (right), plotted against

the age covariate for three risk profiles: Caucasian patients that reported sexual contact with

an STD-positive partner (black curve); non-Caucasian patients that reported sexual contact

with an STD-positive partner and presented symptoms of infection (orange curve); Caucasian

patients that reported a new sexual partner, sexual contact with an STD-positive partner,

and presented symptoms of infection (blue curve).
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Web Figure 8: Model-based estimates for the chlamydia testing data example. Variable

inclusion proportions for the BART models with 20 (orange) and 200 (blue) trees.
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Web Table 5: Model-based estimates for the chlamydia testing data example. Results from

estimating the assay accuracy probabilities Se(l) and Sp(l), for l = 1, 2, 3. Posterior mean

estimates (Est), estimated posterior standard deviations (ESE), and 95% equal-tail credible

intervals (CI95) are provided.

BART(K=20) BART(K=200) GLM

Param. Descrip. Est ESE CI95 Est ESE CI95 Est ESE CI95

Se(1) Swab Ind. 0.98 0.00 (0.97, 0.99) 0.98 0.00 (0.97, 0.99) 0.97 0.04 (0.83, 0.99)

Se(2) Urine Ind. 0.95 0.02 (0.91, 0.97) 0.95 0.02 (0.91, 0.97) 0.90 0.10 (0.56, 0.96)

Se(3) Swab Pool 0.94 0.02 (0.91, 0.97) 0.94 0.02 (0.91, 0.97) 0.90 0.10 (0.57, 0.97)

Sp(1) Swab Ind. 0.97 0.00 (0.97, 0.98) 0.97 0.00 (0.97, 0.98) 0.97 0.00 (0.96, 0.98)

Sp(2) Urine Ind. 0.99 0.00 (0.98, 0.99) 0.99 0.00 (0.98, 0.99) 0.99 0.00 (0.98, 0.99)

Sp(3) Swab Pool 0.99 0.00 (0.99, 0.99) 0.99 0.00 (0.99, 0.99) 0.99 0.00 (0.98, 0.99)
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