
Group Testing for Estimation

Group Testing for Estimation
By Christopher R. Bilder

Keywords: binary response, infectious disease, pooled testing, R, regression, screening, sensitivity,
specificity, testing

Abstract: Group (pooled) testing involves combining a set number of items together
and performing one test for a binary trait (e.g., positive or negative for a disease) on that
combination. While testing is performed on the group, the purpose is still to understand
this trait relative to each individual item. When compared to testing a large number of
items separately, testing instead via groups can result in a significant reduction in the
total number of tests, provided that the prevalence of a particular level of the trait (e.g.,
positive for a disease) is small. Furthermore, group testing can lead to more efficient
estimators than individual testing if testing error is possible. The purpose of this article is
to introduce how estimation can be performed with data arising through group testing.
Focus is on estimating the probability an item has a particular level of the trait rather than
determining the trait status of individual items.

1 Introduction

Estimating a probability associated with a binary trait, such as the probability an individual is positive or
negative for a disease, is of interest in a wide variety of applications. Unfortunately, there are many situa-
tions when estimation is difficult, and perhaps even impossible, due to the cost and time associated with
testing for the trait. When the overall prevalence for the binary level of interest is small, a process known as
group testing (also known as pooled testing or simply as pooling) can make the impossible possible. One of
the largest applications of group testing in the world is the screening of blood donations by the American
Red Cross (ARC). The ARC receives millions of donations per year and each donation needs to be declared
disease free to prevent the spread of disease from donor to recipient. To handle its high volume of clinical
specimens, the ARC pools portions of specimens from 16 donors and performs one test upon this pooled
specimen[1, 2].1 If the test is negative for a disease, the corresponding donations represented within the
group can be considered free of that particular disease. If the test is positive for a disease, the remaining
portions of each specimen are retested separately to determine who is positive and who is negative for
that disease. By applying this process across all blood donations, the ARC significantly reduces its testing
load because most groups will test negatively due to the low disease prevalence. Testing items in groups
rather than separately is used in a diverse set of other applications, including infectious disease detection
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in animals[3], determining virus transmission from an insect to a plant[4], bacteria screening for food[5],
discovery of new pharmaceuticals[6], and verification of computer network security[7]. Due to this diver-
sity, we will use “positive” or “negative” in this article as the outcomes associated with testing for a binary
trait, where the positive outcome has a small overall prevalence. For example, this would coincide with
HIV testing to determine which individuals are positive or negative for that infection.

The group testing research problem is divided into two separate areas: identification and estimation.
The identification area involves determining what items are positive or negative. Items are first tested
within groups and retests are performed in an algorithmic manner as needed to decode the positives from
the negatives. The algorithm described for the ARC example is often referred to as Dorfman’s algorithm
in honor of Robert Dorfman who was one of the originators of the group testing idea[8–10]. Other algo-
rithms exist and can result in a smaller number of tests. Please see our companion article of Bilder[11] for
more information.

We focus in this article on the estimation area. The goal for estimation is to estimate an overall prevalence
of positivity or, equivalently, the probability a randomly selected item from a homogeneous population
is positive. More generally, regression models can be used to estimate this probability when informa-
tion on factors that may affect this probability are available. By using the group outcomes alone, esti-
mation and associated inference procedures can be performed. Frequently, retests involving members
of positive groups are available as well because identification is a simultaneous interest. When testing
error (false positives or false negatives) is possible and the identification of positive/negative individuals
is performed, group testing can result in estimators with similar or even smaller variances than if every
item was tested separately at the start. In other words, a smaller sample size (fewer tests) can lead to more
efficient parameter estimators than would be obtained from individual testing.

The order of our article is as follows. Section 2 introduces the estimation area for when only the overall
prevalence is of interest. This involves observing group outcomes alone without any retesting. Section 3
presents estimation in the context of regression models. For this situation, a much more general setting is
described with regard to retesting items within positive groups and the possibility of testing error. Section 4
provides examples of how to implement the methods described in Sections 2 and 3. Finally, Section 5
summarizes and introduces readers to additional topics involving group testing.

2 Prevalence Estimation

The simplest application of group testing involves testing items in nonoverlapping groups without any
subsequent retesting. We will focus on how plant pathologists use this type of application to estimate
the probability that a randomly selected insect vector infects a plant with a disease (or the pathogen that
leads to a disease). Because the disease transmission rate can be small, a one insect per plant experimen-
tal design is most often not a feasible way to estimate this probability. Instead, multiple vectors can be
transferred to each plant to increase the probability of disease acquisition per plant. Figure 1 illustrates
how this type of design can be implemented inside a greenhouse. In the context of group testing, the
plant is the group and the individual items are the insects. After observing the plants for a period of time,
the positive or negative disease status can be determined for each plant, often without the possibility of
testing error.2 Using the probability of infection relationship between plants and individual vectors (to be
discussed shortly), one can estimate the probability of interest.

Define Z̃k as a binary random variable representing the true disease status for the kth plant, where
k = 1, … K . We will always denote binary response values as a 1 to represent positive and a 0 to represent
negative. The probability that the kth plant is positive is P(Z̃k = 1) = 𝜃k . Each plant status is a function
of whether or not an individual insect vector infects the plant. Therefore, define Ỹi(k) as a binary random
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Figure 1. A greenhouse configuration for a multiple vector transfer design experiment. Source: Repro-
duced by permission of Christopher R. Bilder.

variable for the true positive (disease transmitted) and negative (disease not transmitted) status for insect
i on the kth plant, where i = 1, … , Ik . The probability that insect i on the kth plant infects a plant is
P(Ỹi(k) = 1) = 𝜋̃. We assume that the insect vector statuses are independent and identically distributed.

The relationship between the group and individual statuses is given by Z̃k = I
(∑Ik

i=1 Ỹi(k) ≥ 1
)

, where
I(⋅) is the indicator function. Similarly, the relationship between the corresponding probabilities is

𝜃k = 1 − P(Z̃k = 0)
= 1 − P(Y1(k) = 0, … ,YIk (k) = 0)
= 1 − (1 − 𝜋̃)Ik (1)

The likelihood function for 𝜋̃ is the product of Bernoulli distributions

L(𝜋̃|z̃1, … , z̃K ) =
K∏

k=1
[1 − (1 − 𝜋̃)Ik ]z̃k (1 − 𝜋̃)Ik (1−z̃k )

where z̃1, … , z̃K are the observed plant responses. The maximum likelihood estimator (MLE) for 𝜋̃, ̂̃𝜋,
is obtained through using numerical iterative methods. When each plant has the same number of insect
vectors (equal group sizes), say I, so that 𝜃 = 1 − (1 − 𝜋̃)I , the closed-form expression for the MLE is

̂̃𝜋 = 1 − (1 − ̂̃𝜃)1∕I (2)

where ̂̃𝜃 =
∑K

k=1 Zk∕K is the observed proportion of positive plants.
Unfortunately, the MLE for 𝜋̃ is biased for a fixed sample size. There have been a number of other esti-

mators proposed to reduce this bias. For the equal group size case, a frequently used alternative was given
by Burrows[12] as

̂̃𝜋B = 1 −

[
1 −

∑K
k=1 Zk

K + b

]1∕I

where b = (I − 1)∕(2I). Others have approached estimation through a Bayesian formulation. For example,
Bilder and Tebbs[13] proposed an empirical Bayesian motivated estimator of

̂̃𝜋EB = 1 −

[
1 −

1 +
∑K

k=1 Zk

K + 1 + 𝛿∕I

]1∕I
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where 𝛿 is the marginal maximum likelihood estimator for the distribution of
∑K

k=1 Zk when using a
beta(1, 𝛿) prior for 𝜋̃. Both ̂̃𝜋B and ̂̃𝜋EB can have substantially less bias than ̂̃𝜋. For the unequal group size
case, Hepworth and Biggerstaff[14] proposed a numerical iterative method based on the work of Firth[15]

for general maximum likelihood estimation problems. In summary, the expression of

S(𝜋̃) − F(𝜋̃)b(𝜋̃) = 0

is solved for 𝜋̃, where S(𝜋̃) is the score function, F(𝜋̃) is the Fisher information matrix, and b(𝜋̃) is an
approximate bias of the MLE.

A Wald confidence interval for 𝜋̃ is

̂̃𝜋 − Z1−𝛼∕2

√
V̂ar( ̂̃𝜋) < 𝜋̃ < ̂̃𝜋 + Z1−𝛼∕2

√
V̂ar( ̂̃𝜋)

where V̂ar( ̂̃𝜋) =
{∑K

k=1 I2
k (1 − ̂̃𝜋)Ik−2∕[1 − (1 − ̂̃𝜋)Ik ]

}−1
and Z1−𝛼∕2 is the 1 − 𝛼∕2 quantile from a standard

normal distribution. Unfortunately, this interval can have rather poor coverage properties[16, 17]. For equal
group sizes, Tebbs and Bilder[16] show that intervals formed for 𝜃 and then transformed to the 𝜋̃-scale
using the inverse of Equation (1) can greatly improve coverage. For example, a score-based interval
would be

1 − (1 − 𝜃L)1∕I < 𝜋̃ < 1 − (1 − 𝜃U )1∕I

where 𝜃L and 𝜃U are the lower and upper bounds, respectively, for a score interval (also known as a Wilson
interval) for 𝜃 (see Section 1.1 of Bilder and Loughin[18]). The unequal group size situation is a little more
complex because the relationship between 𝜃k and 𝜋̃ is not only one monotone transformation for all k.
Hepworth[19] proposed a score interval that also included a correction for the skewness 𝛾(𝜋̃). Thus, solve
for 𝜋̃ in

S(𝜋̃) − 1
6
𝛾(𝜋̃)(Z2

1−𝛼∕2 − 1) = ±Z1−𝛼∕2

once using +Z1−𝛼∕2 and once using −Z1−𝛼∕2 on the right side of the expression. Other intervals were also
examined by Hepworth[19] and Biggerstaff[17], but generally this interval performed at least similar to or
better than others.

3 Regression Models

The goal for this section is to estimate the probability an individual item is truly positive given a set of
covariates. For example, we may want to determine what factors (e.g., risky behavior, clinical observa-
tions) are related to the probability an individual has a sexually transmitted disease. In comparison to
the previous section, we generalize our discussion to allow for retesting items in positive-testing groups.
Because there are many retesting algorithms, we focus on the algorithm most often used–retest separately
those items within these groups (i.e., Dorfman’s algorithm). Also, we generalize to allow for testing error.
Thus, false-positive or false-negative test outcomes may occur.

Define Ỹi(k) again as a binary random variable representing the true positive/negative status for
item i in the kth group with i = 1, … , Ik and k = 1, … ,K . The associated probability of being truly
positive is now defined as P(Ỹi(k) = 1) = 𝜋̃i(k). We relate these probabilities to a function of covariates
𝐱i(k) = (1, xi(k)1, … , xi(k)p). The function class that we focus on here involves a monotone, differen-
tiable link function g(⋅), such as the logit link function, and set 𝜋̃i(k) = g−1(𝐱i(k)𝜷) for a vector of parameters
𝜷 = (𝛽0, … , 𝛽p)′. The likelihood function for 𝜷 is the product of Bernoulli probability mass functions:
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L(𝜷|𝐲̃) = K∏
k=1

Ik∏
i=1

𝜋̃
ỹi(k)
i(k) (1 − 𝜋̃i(k))1−ỹi(k) (3)

where 𝐲̃ = (ỹ1(1), … , ỹIK (K)). Because of potential testing error, we cannot observe 𝐲̃, which makes this a
nonstandard estimation and inference problem.

What we observe are the group test and individual retest outcomes. Define Zk as the binary outcome
for group k. Similarly, define Yi(k) as the binary retest outcome for item i within group k. Accuracy for
true positives is measured by the sensitivity Se,z = P(Zk = 1|Z̃k = 1) for a group test, where Z̃k denotes
the true binary status again for group k, and the sensitivity Se,y = P(Yi(k) = 1|Ỹi(k) = 1) for an individual
retest. Accuracy for true negatives is defined analogously as Sp,z = P(Zk = 0|Z̃k = 0) and Sp,y = P(Yi(k) =
0|Ỹi(k) = 0) to represent the specificity for the group tests and individual retests, respectively. For now,
we treat these accuracy measures as equal across all individual retests and across all group tests, despite
potentially different group sizes. Also, we assume values for these measures as being known. This latter
assumption can be reasonable for disease-testing applications by using the observed accuracy rates from
large clinical trials as the actual conditional probabilities. Alternatives to these assumptions are discussed
later in this section.

Xie[20] proposed to maximize Equation (3) by using the expectation-maximization (EM) algorithm. The
function that is maximized becomes

E[log(L(𝜷|𝐘̃))|] = K∑
k=1

Ik∑
i=1

𝜔i(k) log(𝜋̃i(k)) + (1 − 𝜔i(k)) log(1 − 𝜋̃i(k))

where  represents the information observed from the group tests and individual retests and 𝜔i(k) =
E(Ỹi(k)|). Closed-form expressions for 𝜔i(k) can be derived. For example, when group k tests negatively,
we have 𝜔i(k) = P(Ỹi(k) = 1|Zk = 0) = (1 − Se,z)𝜋̃i(k)∕(1 − 𝜃k), where

𝜃k = Se,z + (1 − Sp,z − Se,z)
Ik∏

i=1
(1 − 𝜋̃i(k))

Maximum likelihood estimates for 𝜷 , say 𝜷̂ , are achieved at convergence of the EM algorithm, and their
standard errors follow from the methods of Louis[21].

There has been a considerable amount of research in this area since Xie[20]. In particular, Zhang et al.[22]

derived 𝜔i(k) when retesting is performed by halving positive-testing groups over multiple retesting
stages. For array testing, closed-form expressions for 𝜔i(k) are not possible, so Zhang et al.[22] developed a
Gibbs sampling algorithm to estimate 𝜔i(k). McMahan et al.[23] generalized previously proposed Bayesian
approaches to allow for retests. One advantage of a Bayesian approach is that priors can be placed on the
sensitivity and specificity parameters so that specific values are not assumed. In particular, these priors
can be made informative by using data obtained during test calibration, such as when clinical trials are
performed by diagnostic testing companies.

Others have approached challenges caused by testing error through allowing for a potential dilution
effect (i.e., sensitivity may decrease as the number of group members increase). For example, Delaigle
and Hall[24] assumed that an underlying continuous response is observed for a test outcome, such as
an optical density reading for an enzyme-linked immunosorbent assay, and subsequently turned this
measurement into a positive/negative result by using a threshold. With this information, they estimate
densities for the continuous response given the true binary status of an individual/group and use these
densities within a nonparametric regression framework to estimate 𝜋̃i(k). This paper was awarded the
George W. Snedecor Award in 2017 for its important contribution to biometric research. In other
applications, the underlying continuous response may not be available. For this reason, Warasi et al.[25]
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proposed a submodel for the sensitivity that is included within the regression model for 𝜋̃i(k). This
submodel allows the sensitivity to change as a function of the number of items being pooled together.
The innovative aspect of this work was equating the sensitivity of a group with all positive items to having
essentially the same sensitivity as when testing an individual item.

Group composition and whether retests are performed play an important role in estimator precision
and agreement when compared to individual testing. When only group responses are observed, Vanstee-
landt et al.[26] showed that creating groups consisting of as alike covariate values as possible will lead to
the smallest variances for estimators. Bilder and Tebbs[27] showed the agreement of estimators is best in
the alike covariate situation as well, but also showed there are benefits from other group compositions.
This is important because groups most often cannot be constructed in this alike manner. When retests for
identification purposes are included with the data, Zhang et al.[22], McMahan et al.[23], and others have
shown that the variance of estimators can be approximately the same or even smaller than those from
individual testing. This result is quite remarkable because group testing will have fewer tests (i.e., smaller
sample size) than individual testing in appropriately applied settings. Thus, a smaller sample size can lead
to more efficient estimators.

4 Examples

Estimation is performed by a number of functions in the binGroup package of R[28]. In particular, the
pooledBin() function finds estimates of 𝜋̃ along with corresponding confidence intervals. To illustrate
this function, consider the multiple vector transfer design experiment performed by Gildow et al.[29].
The purpose of this experiment was to estimate the probability that particular species of aphids would
transfer the Cucumber Mosaic virus to snap bean plants. For the Aphis glycines species, there were
50 plants with 10 aphid vectors placed upon each plant for a 16-hour time period. The plants were
subsequently monitored over a four-week time period, and 30 plants were found to be infected.

> # MLE
> 1 - (1 - 30/50)∧(1/10)
[1] 0.08755646

> library(package = binGroup)

> # Estimates and confidence intervals
> pooledBin(x = 30, m = 10, n = 50, alpha = 0.05, pt.method = "mle",

ci.method = "wald")
PointEst Lower Upper

0.0876 0.0566 0.1185
> pooledBin(x = 30, m = 10, n = 50, alpha = 0.05, pt.method = "firth",

ci.method = "skew-score")
PointEst Lower Upper

0.0863 0.0599 0.1220

The maximum likelihood estimate for the probability of infection is ̂̃𝜋 = 0.0876. The pooledBin()
function allows for other estimation approaches, including the bias reduction method of Firth[15] that
results in an estimate of 0.0863. The 95% score interval with a skewness correction is 0.0599 < 𝜋̃ < 0.1220.
When unequal group sizes are used, vectors containing the number of positive groups, the group
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sizes, and the number of groups for each unique group size can be included in the x, m, and n
arguments of pooledBin(), respectively. For example, pooledBin(x = c(4,7,4,8,7), m
= rep(10, times = 5), n = rep(10, times = 5), alpha = 0.05, pt.method =
"firth", ci.method = "skew-score") will result in the same estimate and interval as provided
in the last example within the output.

The gtreg() function in binGroup is used to estimate a regression model with the group tests
only or with the group tests and subsequent retests. We demonstrate its use by fitting a model to the
hivsurv data in binGroup to estimate the probability of HIV infection among pregnant women from
a region of Kenya[26, 30]. The purpose of the associated study was to compare estimates obtained by both
group and individual testing. The HIV variable in hivsurv gives the individual test outcomes. Unfor-
tunately, group outcomes were not available, so the data set provides outcomes from artificially created
groups. The variable groupres contains these outcomes with the values repeated over individuals
within the same group. Also, retests were not performed in the study, so we also artificially create them
here for demonstration purposes. We estimate a model of the form logit(𝜋̃i(k)) = 𝛽0 + 𝛽1xi(k), where xi(k)
represents the education level of an individual (EDUC.; coded as 1, 2, 3, and 4 to represent more education
as having higher values).

> # Artificially create retests
> sens.ind <- 0.99 # Sensitivity of retest
> spec.ind <- 0.99 # Specificity of retest
> set.seed(7342)
> hivsurv$retest <- rep(x = NA, times = nrow(hivsurv))
> for(a in 1:nrow(hivsurv)) {

# Simulate retest by conditioning on observed individual outcome
if(hivsurv$groupres[a] == 1 & hivsurv$HIV[a] == 1)
hivsurv$retest[a] <- rbinom(n = 1, size = 1, prob = sens.ind)

if(hivsurv$groupres[a] == 1 & hivsurv$HIV[a] == 0)
hivsurv$retest[a] <- rbinom(n = 1, size = 1, prob = 1 - spec.ind)

}

> # A negative group (group #1)
> hivsurv[hivsurv$gnum == 1, c("HIV", "EDUC.", "gnum", "groupres",

"retest")]
HIV EDUC. gnum groupres retest

1 0 4 1 0 NA
2 0 2 1 0 NA
3 0 1 1 0 NA
4 0 2 1 0 NA
5 0 1 1 0 NA

> # A positive group (group #3)
> hivsurv[hivsurv$gnum == 3, c("HIV", "EDUC.", "gnum", "groupres",

"retest")]
HIV EDUC. gnum groupres retest

11 0 3 3 1 0
12 1 3 3 1 1
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13 0 3 3 1 0
14 1 2 3 1 1
15 0 3 3 1 0

> # Estimate model with group tests
> fit.group <- gtreg(formula = groupres ∼ EDUC., data = hivsurv, groupn =

gnum, sens = 0.99, spec = 0.99, linkf = "logit", method = "Xie")
> round(summary(fit.group)$coefficients, 4)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.7368 0.9812 -3.8085 0.0001
EDUC. 0.5857 0.3838 1.5259 0.1270

> # Estimate model with group tests and individual retests
> fit.group.retest <- gtreg(formula = groupres ∼ EDUC., data = hivsurv,

groupn = gnum, sens = 0.99, spec = 0.99, linkf = "logit",
method = "Xie", retest = retest, sens.ind = sens.ind,
spec.ind = spec.ind)

> round(summary(fit.group.retest)$coefficients, 4)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7493 0.5731 -6.5420 0.0000
EDUC. 0.5556 0.2178 2.5508 0.0107

> # Estimate model with individual tests
> fit.ind <- glm(formula = HIV ∼ EDUC., data = hivsurv,

family = binomial(link = logit))
> round(summary(fit.ind)$coefficients, 4)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.8853 0.570 -6.8164 0.0000
EDUC. 0.6239 0.214 2.9149 0.0036

> nrow(hivsurv) # Number of individual tests
[1] 428
> max(hivsurv$gnum) # Number of group tests
[1] 86
> max(hivsurv$gnum) + sum(!is.na(hivsurv$retest))

# Number of group tests and retests
[1] 241

All three estimation approaches result in similar estimates of the regression parameters. The standard
errors increase by about 75% when using the group tests only as compared to when using the individual
tests. However, the estimation from the group tests used only 86∕428 = 20% of the tests that individual
testing required. When retests are included with group tests, the standard errors become quite close to
those from the individual tests despite using approximately half as many tests. Thus, essentially the same
amount of information for the study would be obtained by using only the group tests and retests but likely
at a significantly lower cost and with a reduction in testing time.

The binGroup package also provides functions to estimate regression models using the halving
(gtreg.halving) and the array testing (gtreg.mp) algorithms for group testing. Bayesian methods
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for estimation and methods to take into account a dilution effect are not available in binGroup, but R
code often can be found in the supplementary materials of their corresponding research articles.

5 Conclusion

In comparison to testing items individually, group testing produces similar estimates for probabilities
associated with a binary trait, while also significantly reducing the number of tests. Group testing can
also lead to a smaller variance for estimators when both identifying the positive/negative status for each
item is of interest and testing error is possible.

Because groups are chosen prior to implementation, group members and overall group sizes can be
chosen to be optimal in some manner. Section 3 discusses the work of Vansteelandt et al.[26] regarding
how to make estimator variances for regression as small as possible. With respect to estimating an overall
prevalence, Swallow[31] examined the optimal number of insect vectors per plant relative to minimizing
the mean square error of ̂̃𝜋 (method available in the estDesign() function of the binGroup pack-
age). When identification of positive/negative items is of interest as well, how to choose group sizes is not
necessarily as clear. Bilder[11] discusses how to choose groups relative to minimizing the expected number
of tests per individual for the identification problem alone. Whether these optimal groups are similar for
the estimation problem is unknown. And, if they are not similar, determining how to balance optimality
for estimation and identification could be an area for future research.

The outcome for group testing applications does not need to be of a Bernoulli response form. Xie
et al.[32] examine how to estimate probabilities associated with a three-category response. This type of
situation occurs in pharmaceutical drug discovery when finding a potent (positive) chemical compound
is of interest, but there are also negative compounds and blocker compounds (i.e., those compounds that
block a positive group outcome from being observed). Other researchers have examined estimation in
the context of testing for multiple diseases simultaneously, such as with a multiplex assay for infectious
disease testing. Hughes-Oliver and Rosenberger[33] found optimal group sizes based on the D-optimality
criteria when there are no retests and no testing error. Zhang et al.[34] developed an expectation-solution
algorithm to estimate regression models for the multiple disease situation when testing error was
possible. Finally, a number of researchers have used a negative binomial approach when groups are tested
until a fixed number of groups are observed to be positive. Similar to the Firth-based method given in
Section 2, Hepworth[35] proposed an estimator that greatly reduces the bias associated with estimating
the prevalence.
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End Notes

1. The ARC tests for HIV, hepatitis B, hepatitis C, and West Nile virus in groups. Testing for West Nile
virus is performed individually in areas when an outbreak occurs. Testing for other diseases, such as
syphilis, is performed on individual specimens.

2. Diagnostic tests, such as a nucleic acid amplification test, may not be necessary. After removal of insect
vectors, plants can be observed for a sufficient period of time to make an accurate determination of
disease status.
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