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Abstract

Group testing is an indispensable tool for laboratories when testing high volumes of
clinical specimens for infectious diseases. An important decision that needs to be
made prior to implementation is determiningwhat group sizes to use. In best practice,
an objective function is chosen and then minimized to determine an optimal set of
these group sizes, known as the optimal testing configuration (OTC). There are a few
options for objective functions, and they differ based on how the expected number
of tests, assay characteristics, and testing constraints are taken into account. These
varied options have led to a recent controversy in the literature regarding which of
two different objective functions is better. In our paper, we examine these objective
functions over a number of realistic situations for infectious disease testing. We show
that this controversy may be much ado about nothing because the OTCs and corre-
sponding results (e.g., number of tests, accuracy) are largely the same for standard
testing algorithms in a wide variety of situations.
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1. Introduction

Laboratories throughout the world test high volumes of clinical specimens for infectious diseases, including HIV, hepatitis C,
and West Nile virus. In such situations, it has become standard practice to test amalgamations of specimens as a “group” or
“pool” rather than to test individual specimens. The reason is simple: members of a negative testing group can be declared
negative all at once. Thus, for a group of size I, say, just one test is needed to declare all members negative, rather than the
I separate tests that would be needed with individual testing. Fortunately, when disease prevalence is small, the majority of
groups will test negatively when sensibly chosen group sizes are used. For members of a positive testing group, there are many
algorithmic retesting procedures available to determine which specific individuals are positive. The first retesting procedure was
proposed by Dorfman1 and simply involved individually retesting each member of a positive group. Since this seminal work,
group testing has been used to efficiently test for infectious diseases in a vast number of human applications, including blood
donation screening,2 antiretroviral treatment failure detection for HIV-positive individuals,3,4 chlamydia and gonorrhea testing,5
and influenza outbreak surveillance.6 Outside of infectious disease testing in humans, group testing is used in an extensive
number of applications, including cowmilk surveillance,7 disease detection in cattle and buffaloes,8 West Nile virus monitoring
in mosquitoes,9 food contamination detection,10 drug discovery,11 and diagnosis of faulty network sensors.12
For all group testing applications, the choice of group sizes is extremely important for success. Choosing group sizes too

large will lead to exceedingly many groups testing positively. This will subsequently lead to a large number of retests, perhaps
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even a larger number of tests overall than what would be needed for individual testing. Similarly, choosing group sizes too small
will lead to a larger number of tests than would be needed if the group sizes were chosen better. In best practice, laboratories
choose group sizes by minimizing an objective function that takes into account the group testing algorithm to be implemented.
There are a number of different algorithms in use, and they are best characterized as being either hierarchical or non-hierarchical
in nature. Hierarchical algorithms begin by testing individuals in non-overlapping groups. For a group that tests positively,
subsequent retesting stages occur in smaller, non-overlapping groups. The previously described Dorfman algorithm is a two-
stage algorithm. Three- and four-stage algorithms are commonly used in practice13,14 because they are often more efficient (i.e.,
fewer tests). Non-hierarchical algorithms involve testing each individual in overlapping groups to reduce the number of retests.
The most common type of non-hierarchical algorithm is known as array testing.15,16 For this algorithm, individual specimens
are arranged in a two-dimensional grid. These specimens are amalgamated by row and by column and then tested. Intersecting
positive rows and columns indicate where retesting should be performed to determine which individuals are positive. For a
thorough review of hierarchical and array testing algorithms, see Hughes-Oliver17 and Bilder.18
While there are many different types of group testing algorithms, all laboratories are interested in minimizing the number of

tests needed to assay their specimens. For this reason, objective functions are based on the expected number of tests, so that a set
of group sizes for a testing algorithm, known as the optimal testing configuration (OTC), can be found by minimizing this func-
tion. Traditionally, group testing research has focused on objective functions expressed solely as the expected number of tests
per individual. This is due to a close correspondence between the number of tests and testing costs. However, using an objective
function that contains only the expected number of tests leaves out an important component of infectious disease testing: accu-
racy. Infectious disease testing is rarely perfect. Errors can occur for reasons such as improper laboratory implementation or a
specimen being collected during the window period between disease contraction and the ability to detect it. Fortunately, known
mathematical expressions are available for the accuracy of most group testing algorithms. This enables laboratories to calculate
the expected accuracy of a chosen testing configuration prior to implementation.
Malinovsky et al19 recently proposed a new objective function that includes the expected number of tests and a measurement

of accuracy. This allows laboratories to evaluate accuracy at the same time as the number of tests when choosing an OTC. As
may be expected when breaking with tradition, the proposal generated controversy in the group testing research literature. Both
Hudgens20 and McMahan et al21 offered rejoinders to Malinovsky et al19 that disagreed with this new objective function. All
three of these works focused only on the Dorfman algorithm in their limited evaluations. The purpose of our paper is to examine
a significant number of other group testing algorithms with respect to objective functions. This is important because other
algorithms are widely used and known to result in a smaller number of tests and/or higher accuracy than the Dorfman algorithm.
We present findings in our paper that interestingly show both the traditional and the new objective function are actually quite
similar and very often lead to the same OTC in realistic infectious disease testing situations.
The order of this paper follows. Section 2 explicitly defines the objective functions and provides a mathematical comparison

between them. Section 3 calculates the OTC for each objective function along with their operating characteristics (expected
number of tests and accuracy measures) in a wide variety of settings. These calculations are performed for both hierarchical and
array testing algorithms. We show under what conditions these operating characteristics will be the same and when they will be
different. Section 4 examines the objective function controversy in the context of actual assays used for infectious disease detec-
tion. To conclude, Section 5 summarizes our findings, discusses alternative objective functions, and provides recommendations
for practice. We also discuss R functions that we provide with our paper to find the OTCs and to reproduce our work.

2. Objective Functions

Define T as a random variable representing the total number of tests for an overall group of size I with a hierarchical algorithm.
When using the traditional objective function, the OTC is found by minimizing the expected number of tests per individual:

OET = E(T )∕I.

For example, the expected number of tests for three-stage hierarchical testing is given by

E(T ) = 1 + m11P (G11 = 1) +
c2
∑

j=1
m2jP (G11 = 1, G2j = 1),

whereGsj is the binary random variable (values of 1 and 0 indicate a positive and a negative test result, respectively) representing
the outcome for group j at stage s, msj is the number of subgroups that would be created if group j at stage s tests positively,
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and cs is the number of groups at stage s (see Black et al22; an example diagram is given in the Supporting Information available
online to further explain the notation). The probabilities P (G11 = 1) and P (G11 = 1, G2j = 1) are both functions of the number
of groups and their respective sizes, the probability of being positive for each individual, and the sensitivity Se and specificity
Sp of the assay each time it is applied. We do not provide further detailed expressions forE(T ) here to avoid distraction from the
main points of our paper and because expressions are already provided elsewhere. For example, Kim et al16 provides expressions
for the case of each individual having the same true probability of being positive, say p, and Black et al22 provides expressions
for the case of each individual potentially having a different probability of being truly positive, say pi for i = 1,… , I . The latter
case is known as informative group testing,23,24,25 because pi can be estimated with the help of disease-risk information that may
be available for each individual tested. We will refer to the former case then as non-informative group testing in our work here.
Expressions for the expected number of tests are known for array testing algorithms16,26 as well, where OET is still defined as
the expected number of tests per individual.
While OET is the most commonly utilized objective function, it does not directly take into account the accuracy of the

algorithm. However, one will still examine separately the accuracy of the OTC to judge if it is satisfactory. As an alternative
approach, Malinovsky et al19 proposed an objective function that simultaneously takes into account accuracy and the expected
number of tests. To examine the accuracy aspect, define Yi as the final positive/negative (1/0) outcome based on the group testing
algorithm, and define Ỹi as the true positive/negative (1/0) status of individual i, for i = 1,… , I . Commonly used accuracy
measures for a group testing algorithm as a whole are the pooling sensitivity PSe,i = P (Yi = 1|Ỹi = 1) and the pooling
specificity PSp,i = P (Yi = 0|Ỹi = 0) for individual i. As an overall measure of accuracy, define C as the number of correct
classifications for a group of size I . The expected number of correct classifications is

E(C) =
I
∑

i=1

{

P (Yi = 0, Ỹi = 0) + P (Yi = 1, Ỹi = 1)
}

=
I
∑

i=1

{

PSp,i(1 − pi) + PSe,ipi
}

, (1)

where P (Ỹi = 1) = pi is the probability that individual i is truly positive.
Malinovsky et al19 proposed to find the OTC by maximizing the expected number of correct classifications per individual

divided by the expected number of tests per individual. Equivalently, this results in minimizing
OMAR = E(T )∕E(C).

Because C is never larger than the number of individuals I , E(C) ≤ I . By comparing OMAR and OET , we see that
OET =

E(T )
I

≤ E(T )
E(C)

= OMAR

for the same initial group size I . In fact, OMAR and OET will be quite close in value. This is because infectious disease assays
will only be put into use if they have high accuracy. Thus, E(C) will be quite close to I in practice.
To examine this closeness more precisely, consider minimizing the logarithm of each objective function:

log(OET ) = log {E (T )} − log(I)

and
log(OMAR) = log {E (T )} − log {E (C)} . (2)

For hierarchical testing, the pooling sensitivity is always the same for every individual tested in the same number of stages.16,22
The pooling specificity is the same for every individual as well, but only for non-informative group testing with equal group sizes
within a stage. Under this scenario then, we can simplify the expression for the expected number of correct classifications to be

E(C) = I
{

PSp(1 − p) + PSep
}

, (3)
where PSp and PSe are the pooling specificity and sensitivity, respectively, but now equal for each individual. For array testing,
the same simplification forE(C) from Equation (1) to Equation (3) occurs when the number of rows and the number of columns
are the same (i.e., a square array), which is how array testing is usually applied.
By substituting Equation (3) into Equation (2), we obtain

log(OMAR) = log {E(T )} − log
[

I
{

PSp(1 − p) + PSep
}]

= log(OET ) − log
{

PSp(1 − p) + PSep
}

.
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Thus, any difference between the OTCs for the two objective functions is due to the “penalty” of
log

{

PSp(1 − p) + PSep
}

. (4)
Unfortunately, further definitive statements cannot be made regarding Equation (4), and we are left with making general state-
ments regarding what will happen most often. In particular, we see that the penalty places a large weight on PSp in comparison
to PSe because p is small for realistic group testing applications. Also, because PSp and PSe tend to be close to 1 for realistic
applications, the penalty tends to be close to 0. Thus, log(OMAR) will most often be close to log(OET ).

3. Comparisons

Because definitive statements are not possible for Equation (4) or for the more general cases of unequal group sizes and infor-
mative group testing, we provide in this section a thorough investigation of the OTCs when using the objective functions over
a very large number of situations. For each of these situations, we calculate the OTCs along with corresponding operating
characteristics. Our results for both non-informative and informative group testing algorithms are described next.

3.1. Non-informative group testing
We include in this investigation the following group testing algorithms: two-stage hierarchical, three-stage hierarchical, array
testing without a master pool (row and column groups are tested first, as described in Section 1), and array testing with a master
pool (all specimens in the array are tested together in one group before any row or column groups are formed). For the first three
algorithms, we allow the initial group sizes to range from I = 3, ..., 40, but allow higher initial group sizes when the overall
prevalence is very small (e.g., p = 0.005) so that the OTC does not include our arbitrary upper bound for I . For array testing
with a master pool, we use the same range of group sizes for the row and column groups, leading to a maximummaster pool size
of I2. All array testing algorithms use square arrays, and we account for potential testing ambiguities that can occur in arrays
(e.g., a row tests positively without any columns testing positively) by the methods described in Kim et al.16 We apply these
group testing algorithms over thirty different values of p ranging from 0.005 to 0.150 by 0.005 and over five separate sets of
accuracy levels (Se and Sp values range from 0.90 to 0.99). These values of p, Se, and Sp are chosen because they correspond to
when group testing is used for infectious disease testing. The assay accuracies are assumed to not change based on group size,
meaning that the assays have been properly tested and calibrated for group testing.
Table 1 displays the results for p = 0.01. The OTCs are the same for both objective functions when using the hierarchical

algorithms. Some small differences between OTCs exist for the array testing algorithms, but the differences are not of practical
importance. For example, examine the results for array testing without master pooling and Se = Sp = 0.90. The expected
number of tests and the pooling sensitivities are the same to four decimal places. The pooling specificities are also quite close.
In practical terms, for a testing load of 100,000 individuals, there would be 98,267 correct negatives found when using the OTC
for OET and 98,307 correct negatives found when using the OTC for OMAR. While 40 additional false positives would result
from the OTC for OET , these false positives would most likely be discovered from follow-up confirmatory testing that normally
would occur. We also provide similar tables for p = 0.05 and p = 0.10 in the Supporting Information available on the publisher’s
website. These tables show only one case with differences between the OTCs.
Table 2 summarizes the largest differences among the operating characteristics across all thirty different values of p included

in our investigation. Most often, the OTCs found are the same for the two objective functions. When differences exist, these
differences occur more often for smaller values of Sp, but again are not of practical importance. Overall, these findings help
confirm what was strongly suspected in Section 2 through our mathematical analysis. Namely, the objective functions lead to
the same OTCs or OTCs with similar operating characteristics when differences exist.

3.2. Informative group testing
We include in this investigation the following group testing algorithms: two-stage hierarchical implemented via the pool-specific
optimal Dorfman (PSOD) method,27 three-stage hierarchical,22 and array testing without a master pool implemented via the
gradient method.26 For the PSOD method, we use a block size of 50 and replace its greedy optimization algorithm with exami-
nation of all possible testing configurations. Array testing with a master pool is not included in our investigations because there
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have been no informative group testing algorithms proposed for it. We continue to allow the initial group sizes to range from
I = 3, ..., 40 and allow for higher initial group sizes when the overall prevalence is very small.
To provide different levels of heterogeneity among the pi for i = 1,… , I , we use the expected value of order statistics from

Pi ∼ beta {�, �(1 − p)∕p} for i = 1,… , I in the same manner as in Black et al.22 This beta distribution has E(Pi) = p, and we
once again consider values of p ranging from 0.005 to 0.150 by 0.005. The amount of heterogeneity is controlled by �, where
lower levels indicate a larger amount of heterogeneity (see Black et al22 for further discussion regarding the choice of �).
Table 3 displays the results forE(Pi) = 0.01, and the Supporting Information available on the publisher’s website provides the

results forE(Pi) = 0.05 andE(Pi) = 0.10. The displayed pooling sensitivity, PSWe , and pooling specificity, PSWp , are weighted
averages of individual pooling sensitivities and pooling specificities, respectively, for all individuals within the initial group for
a hierarchical algorithm or within the entire array for an array testing algorithm. Expressions for these averages are provided
in the Supporting Information on the publisher’s website and are based on accuracy definitions given by Altman and Bland.28
The largest differences for each operating characteristic across all values of p are given in Table 4. Overall, while differences
exist more often for some algorithms than in the non-informative group testing setting, OET and OMAR still result in the same
or very similar OTCs the majority of the time, and, when differences exist, the vast majority of the differences likely would not
be of practical importance due to similar operating characteristic values.
For three-stage hierarchical, the maximum difference in PSe for some settings, such as Se = 0.90 and Sp = 0.99, may be

somewhat concerning at a first examination. Further investigation revealed that this occurred when the OTC forOMAR had more
sub-groups in the second stage of testing with a size of 1 than did the OTC for OET . This is important because 1) a third stage
of testing is unnecessary for those individuals with a sub-group size of 1 in the second stage of testing; 2) pooling sensitivity for
each individual is SLe , where L is the number of stages that the individual is tested within22; and 3) PSWe is a weighted average
of each individual’s pooling sensitivity. Especially when p is large for three-stage hierarchical testing, the initial group size can
be quite small, so each individual’s pooling sensitivity plays a larger role in the weighted average. Thus, while there are some
differences in the weighted averages of the pooling sensitivities, it is due to those few individuals who are not tested in the third
stage. The individuals tested in the same number of stages still have the same pooling sensitivity values.

4. Applications

We present two different applications comparing the OTCs obtained from using OET or OMAR for infectious disease testing.
To find the OTC for these and other applications, the value of p or pi for i = 1,… , I is needed. Of course, these quantities
would most likely be unknown. Instead, some type of past experience would be used by laboratories to estimate these quantities
so that an “estimated” OTC could be chosen. Also to find the OTC, the values of Se and Sp are needed because E(T ) and the
pooling sensitivities/specificities depend upon them. Laboratories can obtain these values from a number of sources, including
internal validations, research articles, product inserts for assays, and summaries provided by organizations such as the Centers
for Disease Control and Prevention (CDC) and the Association of Public Health Laboratories. For each source, the sensitivity
and specificity are actually observed through taking a large sample. For instance, a set of known positive specimens may be
tested to evaluate the sensitivity of an assay. Alternatively, clinical-based evaluations may be performed by applying the assay
in practice and using other means to validate true positive/negative statuses. The observed sensitivities and specificities usually
are treated as constants and sometimes confidence intervals are stated along with them. Our purpose in this section is not to
evaluate these procedures but rather use the accuracy measures as they are in practice to determine OTCs.
Group testing is used widely for HIV testing in applications including blood donation screening2 and health surveillance via

public health clinics14. Branson et al.29 provided the CDC’s recommendations for HIV testing by laboratories. To make these
recommendations, the authors examined over 30 research articles and product inserts, and they included the sensitivities and
specificities associated with each assay examined. Observed sensitivities ranged from 96.3% to 100%, and observed specificities
ranged from 99.03% to 100%. For our investigation here, we use the lowest values in these ranges to find the OTC. Our reason
for using these particular values is because differences between OTCs would most likely occur with the lowest accuracies. Table
5 provides the OTCs from non-informative group testing algorithms. For these calculations, we use an overall HIV prevalence
of p = 0.004 based on CDC estimates of HIV30 and Census Bureau estimates of population31 in the United States from 2016.
Overall, the table shows that OET and OMAR lead to the same OTCs for all group testing algorithms considered. While the
OTCs for array testing with master pooling are the same forOET andOMAR, a master pool with a 44×44 array may be too large
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to use in practice (the largest group size that we have seen used for HIV testing is 12832). A laboratory may need to choose a
sub-optimal array size for such a situation.
Group testing is used widely for chlamydia testing as well. High volumes of clinical specimens are tested each year in this

manner by public health laboratories across the United States as part of statewide surveillance projects (e.g., see Lewis et al.24
and Bilder et al.33). Black et al.34 examined the testing performed by the Nebraska Public Health Laboratory (NPHL) with the
BD ProbeTec ET CT/GC Amplified DNA Assay. A main purpose of this paper was to evaluate how well an informative group
testing algorithm could perform in comparison to their current implementation of individual testing. For our purpose here, we
use the observed data from the urine specimen testing in 2009 to examine OTCs over a number of group testing algorithms. The
overall observed chlamydia prevalence was 0.080 for females and 0.081 for males. We use these observed prevalences as our
values for p when performing non-informative group testing by gender. To implement informative group testing, we used the
beta distribution fits given by Black et al.22 for the individual probabilities of being positive pi and implement methods similar to
those in Section 3.2. We limit our maximum group sizes to be 20 due to large group sizes not being used in chlamydia testing35.
The NPHL provided assay sensitivities of Se = 0.805 and Se = 0.93 and specificities of Sp = 0.96 and Sp = 0.95 for females
and males, respectively. This assay had an unusually low sensitivity for female urine specimens, and the laboratory eventually
switched after that year to the Aptima Combo 2 Assay which has a much higher sensitivity (Se = 0.947)36. However, to be
consistent with how the actual tests were performed, we use the accuracies for the BD assay. Table 6 provides the OTCs for
non-informative and informative group testing algorithms. Overall, the table shows that OET and OMAR lead to the same OTCs
for all non-informative group testing algorithms considered. While differences do exist for females when using informative
hierarchical testing algorithms, these small differences likely would not be of practical importance.

5. Conclusion

We have shown that the choice between OET and OMAR most often does not change the OTC, and even when the OTC is
different, there are not practical differences in the operating characteristics. Therefore, our work helps to close the case on the
recent controversy regarding objective functions: both can be used in practice because they lead to very similar results. Some
individuals may prefer to state that they used OMAR because it directly takes into account accuracy at the beginning of the
process. However, we tend to favor the traditionally usedOET for one main reason. Simply, laboratories need to know the number
of tests to be expected and the corresponding costs involved. In many instances, the expected costs are directly proportional to
the expected number of tests. While the expected number of tests could also be stated when using OMAR, this seems to be an
unnecessary extra step, especially for laboratory directors and technicians who choose the OTC.
It is important to emphasize that laboratories would not use OET without still looking at accuracy. Rather than incorporating

accuracywithin the objective function, they would find the OTC and then examine the accuracy associated with it. If the accuracy
resulting from OET (or OMAR) was unsatisfactory, a new sub-optimal testing configuration would be chosen with accuracies
that are acceptable. To help laboratories and those performing research in this area, we make available a set of R functions in the
binGroup package that can be used to find the OTC or other suitable testing configurations by usingOET andOMAR. Examples
of how to use these functions are available on our research website at www.chrisbilder.com/grouptesting and in the Supporting
Information for this paper on the publisher’s website.
Our evaluations of OET and OMAR focus on realistic settings for infectious disease detection when group testing would be

used. Thus, we focus on values of Se and Sp close to 1 and small values of p. When smaller values of Se and Sp and/or larger
values of p are used, there can be differences in the OTCs and associated accuracy measures. For example, when Se = 0.75,
Sp = 0.80, and p = 0.10 for three-stage hierarchical testing, the OTC for OET has I = 15 and second-stage group sizes of 5
for each sub-group. For these same settings, the OTC for OMAR has I = 12 and second-stage group sizes of 4 for each sub-
group. However, the pooling sensitivity is only PSe = 0.42 for both testing configurations, which makes the use of group testing
unrealistic for this situation.
Laboratories may need to limit the particular values of I for which the OTC is searched over, similar to what we did in

Section 4 for the chlamydia testing example. This may be due to physical constraints, such as a maximum group size that can be
incorporated into an automated pooling platform. Also, this limit may be due to what is known as the “dilution effect” in group
testing. Because specimens are pooled together, each individual specimen becomes a smaller part of the whole as the group size
increases. This reduced portion can make it more difficult for an assay to identify its target, which in turn lowers its sensitivity.
Laboratories may need to place an upper limit on I in this type of situation. Properly calibrated tests are needed whenever group

www.chrisbilder.com/grouptesting


HITT ET AL 7

testing is used to make sure the dilution effect does not become a problem. Fortunately, the dilution effect is now much less
likely to occur due to modern nucleic acid amplification testing methods.
There are other objective functions that could be used. For example, Malinovsky et al19 considered maximizing E(C∕T ), but

concluded this to be inferior toOMAR. Therefore, we focused only on theirOMAR proposal in our paper. Objective functions can
include penalties for making classification errors. For example, Graff and Roeloffs37 proposed using an objective function that
is a linear combination of the expected number of tests, the number of misclassified negatives, and the number of misclassified
positives. Subjectively chosen weights are used with the misclassification measures to increase or decrease their importance.
As would be expected, there will be weights then that result in an OTC which is quite different than what would be obtained
from using OET and OMAR. We provide examples in the Supporting Information illustrating these differences. However, the
subjectiveness of these weights can depend on the infectious disease, the laboratory, or even particular individuals at a laboratory.
Therefore, for general applications and research settings, it is difficult to use this or similar types of objective functions. We say
this by no means to diminish the importance of taking into account the misclassification type. Because of its importance for
specific applications, we provide tools in our binGroup package to find the OTC in those situations when this type of control
is necessary. Examples are provided again on our research website and in the Supporting Information.
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TABLE 1 OTC summary for p = 0.01 under non-informative group testing. Equally sized groups are optimal at each stage;
thus, an OTC of “24-6-1” means that stage 1 has a group of size 24, stage 2 has four groups of size 6, and stage 3 has twenty-four
groups of size 1. Differences between OET and OMAR are highlighted.

Objective
Algorithm Se Sp function OTC E(T )∕I PSe PSp

0.99 0.99 OET 11-1 0.2035 0.9801 0.9990
OMAR 11-1 0.2035 0.9801 0.9990

0.95 0.95 OET 11-1 0.2351 0.9025 0.9932
OMAR 11-1 0.2351 0.9025 0.9932

Two-stage 0.90 0.90 OET 12-1 0.2742 0.8100 0.9816
hierarchical OMAR 12-1 0.2742 0.8100 0.9816

0.99 0.90 OET 11-1 0.2841 0.9801 0.9815
OMAR 11-1 0.2841 0.9801 0.9815

0.90 0.99 OET 11-1 0.1941 0.8100 0.9990
OMAR 11-1 0.1941 0.8100 0.9990

0.99 0.99 OET 25-5-1 0.1354 0.9703 0.9996
OMAR 25-5-1 0.1354 0.9703 0.9996

0.95 0.95 OET 24-6-1 0.1443 0.8574 0.9973
OMAR 24-6-1 0.1443 0.8574 0.9973

Three-stage 0.90 0.90 OET 24-6-1 0.1562 0.7290 0.9938
hierarchical OMAR 24-6-1 0.1562 0.7290 0.9938

0.99 0.90 OET 24-6-1 0.1708 0.9703 0.9928
OMAR 24-6-1 0.1708 0.9703 0.9928

0.90 0.99 OET 25-5-1 0.1229 0.7290 0.9997
OMAR 25-5-1 0.1229 0.7290 0.9997

0.99 0.99 OET 25-1 0.1378 0.9703 0.9995
OMAR 25-1 0.1378 0.9703 0.9995

0.95 0.95 OET 25-1 0.1475 0.8575 0.9970
OMAR 24-1 0.1475 0.8575 0.9972

Array w/o 0.90 0.90 OET 25-1 0.1611 0.7291 0.9926
master pooling OMAR 24-1 0.1611 0.7291 0.9930

0.99 0.90 OET 23-1 0.1726 0.9703 0.9923
OMAR 23-1 0.1726 0.9703 0.9923

0.90 0.99 OET 27-1 0.1279 0.7292 0.9995
OMAR 27-1 0.1279 0.7292 0.9995

0.99 0.99 OET 625-25-1 0.1364 0.9606 0.9995
OMAR 625-25-1 0.1364 0.9606 0.9995

0.95 0.95 OET 625-25-1 0.1402 0.8146 0.9972
OMAR 576-24-1 0.1402 0.8146 0.9974

Array w/ 0.90 0.90 OET 625-25-1 0.1450 0.6562 0.9934
master pooling OMAR 576-24-1 0.1450 0.6562 0.9937

0.99 0.90 OET 529-23-1 0.1708 0.9606 0.9924
OMAR 529-23-1 0.1708 0.9606 0.9924

0.90 0.99 OET 729-27-1 0.1151 0.6563 0.9996
OMAR 729-27-1 0.1151 0.6563 0.9996
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TABLE 2 Largest differences between operating characteristics for OTCs under non-informative group testing. Values of p
range from 0.005 to 0.150 by 0.005. The frequency column denotes the number of times a different OTC was found forOET and
OMAR among these values of p. Differences between operating characteristics are rounded to four decimal places. Note that the
operating characteristic value for OET is always subtracted from the operating characteristic value for OMAR. Thus, a negative
value (indicated with parentheses) means that the value for OET was larger than the value for OMAR.

Largest difference
Algorithm Se Sp Frequency E(T )∕I PSe PSp

Two-stage
hierarchical

0.99 0.99 0 - - -
0.95 0.95 3 0.0018 0.0000 0.0049
0.90 0.90 4 0.0023 0.0000 0.0054
0.99 0.90 7 0.0056 0.0000 0.0096
0.90 0.99 0 - - -

Three-stage
hierarchical

0.99 0.99 0 - - -
0.95 0.95 1 0.0014 0.0000 0.0051
0.90 0.90 3 0.0015 0.0000 0.0049
0.99 0.90 7 0.0041 (0.0098) 0.0136
0.90 0.99 1 0.0000 0.0000 0.0002

Array w/o
master pooling

0.99 0.99 0 - - -
0.95 0.95 5 0.0010 0.0018 0.0026
0.90 0.90 8 0.0028 0.0022 0.0054
0.99 0.90 5 0.0043 0.0005 0.0076
0.90 0.99 1 0.0000 0.0006 0.0001

Array w/ master
pooling

0.99 0.99 2 0.0005 0.0006 0.0008
0.95 0.95 4 0.0012 0.0017 0.0026
0.90 0.90 8 0.0015 0.0018 0.0051
0.99 0.90 5 0.0048 0.0005 0.0077
0.90 0.99 2 0.0003 0.0026 0.0005
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TABLE 4 Largest differences between operating characteristics for OTCs under informative group testing. Values of E(Pi) = p
range from 0.005 to 0.150 by 0.005. The frequency column denotes the number of times a different OTC was found among
these values of p. Differences between operating characteristics are rounded to four decimal places. Note that the operating
characteristic value for OET is always subtracted from the operating characteristic value for OMAR. Thus, a negative value
(indicated with parentheses) means that the value for OET was larger than the value for OMAR.

Largest difference
Algorithm � Se Sp Frequency E(T )∕I PSWe PSWp

2

0.99 0.99 0 - - -
0.95 0.95 7 0.0006 (0.0023) 0.0011
0.90 0.90 12 0.0010 (0.0052) 0.0023
0.99 0.90 12 0.0011 (0.0008) 0.0022

Two-stage 0.90 0.99 2 0.0003 0.0052 0.0000
hierarchical

0.5

0.99 0.99 0 - - -
0.95 0.95 3 0.0003 (0.0035) 0.0011
0.90 0.90 15 0.0008 (0.0103) 0.0022
0.99 0.90 16 0.0012 (0.0011) 0.0022
0.90 0.99 11 0.0006 0.0078 (0.0002)

2

0.99 0.99 1 0.0000 (0.0019) 0.0002
0.95 0.95 2 0.0035 0.0219 0.0033
0.90 0.90 6 0.0044 0.0152 0.0062
0.99 0.90 4 0.0035 0.0006 0.0066

Three-stage 0.90 0.99 14 0.0180 0.0500 0.0003
hierarchical

0.5

0.99 0.99 1 0.0000 0.0001 0.0001
0.95 0.95 0 - - -
0.90 0.90 3 0.0010 0.0250 0.0033
0.99 0.90 5 0.0022 0.0034 0.0070
0.90 0.99 9 0.0057 0.0355 0.0003

2

0.99 0.99 1 0.0003 0.0004 0.0005
0.95 0.95 2 0.0011 0.0012 0.0027
0.90 0.90 5 0.0016 0.0012 0.0040
0.99 0.90 4 0.0028 0.0003 0.0053

Array w/o 0.90 0.99 0 - - -
master pooling

0.5

0.99 0.99 0 - - -
0.95 0.95 4 0.0003 0.0004 0.0015
0.90 0.90 14 0.0015 0.0004 0.0032
0.99 0.90 8 0.0024 0.0001 0.0041
0.90 0.99 1 0.0003 0.0005 0.0003
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TABLE 5 OTC summary for HIV testing using p = 0.004, Se = 0.963, and Sp = 0.9903, with non-informative group testing.
Equally sized groups are optimal at each stage; thus, an OTC of “24-6-1” means that stage 1 has a group of size 24, stage 2 has
four groups of size 6, and stage 3 has twenty-four groups of size 1. There are no differences between the OTCs.

Objective
Algorithm function OTC E(T )∕I PSe PSp

Two-stage hierarchical OET 17-1 0.1313 0.9274 0.9993
OMAR 17-1 0.1313 0.9274 0.9993

Three-stage hierarchical OET 49-7-1 0.0732 0.8931 0.9998
OMAR 49-7-1 0.0732 0.8931 0.9998

Array w/o master pooling OET 44-1 0.0749 0.8931 0.9997
OMAR 44-1 0.0749 0.8931 0.9997

Array w/ master pooling OET 1936-44-1 0.0721 0.8600 0.9998
OMAR 1936-44-1 0.0721 0.8600 0.9998
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