
• Notice that the largest for Random corre-
sponds to the smallest for Different! 

• Pearson correlation between values on the 
same data sets 

 
 
 
 
 

• Summary of values with β1 = -0.024 
� Alike grouping strategy results in only a 

little more variability compared to indi-
vidual testing 

� Random and different grouping strategies 
result in much more variability compared 
to individual testing 
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      Grouping 
    Individual Alike Random 
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Grouping 
Alike 0.85     

Random 0.33 0.24   
Different -0.05 -0.09 -0.13 
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Group testing has long been used to estimate a trait prevalence, p, in situa-
tions where the prevalence is small in order to reduce time and cost or to 
make infeasible individual experiments feasible by grouping. Most of the sta-
tistical research in group testing has focused on estimating a single preva-
lence p for a homogenous population. Recently, Vansteelandt et al. (2000) and 
Xie (2001) have proposed models to incorporate covariates to estimate p for a 
heterogeneous population. The purpose here is to further examine these mod-
eling methods through a set of comparisons between individual and group 
testing models. First, the relative efficiency of model parameter estimates is 
investigated under a number of grouping strategies. Second, agreement be-
tween model parameter estimates is examined to determine how well esti-
mates coincide. Third, the effect of group size on model estimation is exam-
ined. Overall recommendations are given in order to show the benefits and 
sacrifices to using group testing models. 
 
 
 
 

• Used when testing an item for a trait 
• Example: Testing blood for the presence or absence of a disease 

� Individual testing 
 
 
 
 
 
 

− Problems: Cost and time 
� Group testing 

− If the GROUP sample is negative, then all I people in the group do not 
have the disease 

− If the GROUP sample is positive, then at least ONE of the I people in 
the group have the disease 

− Cost and time savings! 
− Strategy works well when prevalence of the trait is small 

• Many other examples of group testing 
� Disease transmission by an insect vector to a plant (Swallow, 1985) 
� Drug-discovery experiments (Xie et al. 2001; Zhu, Hughes-Oliver, and 

Young, 2001) 
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• Until recently, no one had used covariates in a regression setting to help esti-

mate the probability an individual item is positive for a trait 
• Vansteelandt et al. (2000) 

� Use maximum likelihood estimation to estimate parameters for a model in 
the form of a generalized linear model 

� Estimation done directly on the group responses 
� Shows smallest variance estimators occur when covariates are most alike 

within a group 
• Xie (2001) 

� Use maximum likelihood estimation to estimate parameters for a model in 
the form of a generalized linear model 

� Estimation done on the unobservable individual responses through using 
the EM algorithm 

• Since maximum likelihood estimation is used for both, the Vansteelandt et al. 
(2000) fitting method will be used here only 

• Purpose: 
�Compare individual and group testing models 
�Examine bias and efficiency of model parameter estimates 
�Assess agreement between model parameter estimates 
�Investigate the effect of group size 
�Analyze the effects of three grouping strategies 
 
 
 
 

• Individual responses 
� Yik = 1 if the ith item in the kth group has the trait (positive)  

Yik = 0 otherwise (negative) for i = 1, …, Ik and k = 1, …, K 
� pik = P(Yik = 1) 
� Yik are independent Bernoulli(pik) random variables 

• Group responses 
� Zk = 1 denotes a positive response and 

Zk = 0 denotes a negative response for the kth group 
� θk = P(Zk = 1) = 

� Zk are independent Bernoulli(θk) random variables 

•  Individual and group relationship 
� Zk = 1 if and only if   

Zk = 0 if and only if  
� Yik’s are “observed” when Zk = 0 and there are no measurement errors; Yik’s 

are unobservable otherwise 
• Model 

� xik = (xik1, xik2, …, xikp)′ is a vector of covariates for the ith subject in the kth 
group 

� β  = is the corresponding vector of model parameters 

� log[pik/(1−pik)] = β′xik 

� Other link functions could be used as well 
 
 
 

• Simplifications for rest of presentation 
� One covariate, xik 
� No measurement errors (sensitivity = specificity = 1) 
� Equal group sizes (I1 = I2 = … = IK = I) 

• Maximum likelihood estimation 

� Likelihood function:  
�Maximizing L with respect to β yields the maximum likelihood estimator,     

• Asymptotic variance of  

 
• For individual testing, the standard asymptotic variance for  
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• Motivated from example in Vansteelandt et al. (2000) 

� Examines the covariate specific prevalence of HIV among pregnant 
women in an area of Kenya 

� One covariate of interest is age 
• Model: log[pik/(1−pik)] = β0 + β1xik 
• Simulate data from model fitted to the individual observations in paper 

� β0 = -1.97 and β1 = -0.024  
� Generate xik from Gamma(20.95, 1.16) since it provides a good fit to the 

observed age distribution  
� I = 7 subjects per group 
� K = 100 groups 
� Overall sample size is I∗K = 700 

• Generate the Yik individual responses from Bernoulli distribution with parame-
ter  pik = exp(β0 + β1xik)/[1 + exp(β0 + β1xik)] 
� Groups are formed from these individual responses 
� Thus, both individual and group responses are available! 
� Example simulated data 
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• Alike - Subjects with similar covariates are put into groups (sort by covariate, 
then assign to successive groups) 

• Random - Subjects are randomly put into groups (emulates chronological if 
there is no response dependence over time) 

• Different - Subjects with covariates as different as possible are put into groups 
(emulates worse case scenario) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Summary 

 
 
 
 
 
 
 
� True values: β0 = -1.97 and β1 = -0.024  
� Relative efficiency =  (Individual Var.) / (Group Var.)  
� Remember that 7 times more tests are done using individual testing!  

• Percent bias = ∗ 100% ( )500
1, 1 11
ˆ 500bb β β β=

⎡ ⎤−∑⎣ ⎦

Background Example Simulations 
Purpose 

Notation 

Estimation 

What is group testing? 

Abstract 
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True
Individual estimated
Group estimated (alike)
Group estimated (random)
Group estimated (different)

k i Yik Zk xik 

Group Item Individual response Group response Covariate 
1 1 0 1 11.55 
1 2 0 1 12.14 
1 3 1 1 12.56 
1 4 0 1 12.79 
1 5 0 1 12.88 
1 6 0 1 13.28 
1 7 0 1 13.88 

#         

100 1 0 0 39.65 
100 2 0 0 39.77 
100 3 0 0 39.91 
100 4 0 0 39.92 
100 5 0 0 40.55 
100 6 0 0 40.71 
100 7 0 0 43.62 

One simulated data set 

    Grouping 

  Individual Alike Random Different 

 
0̂β -1.4452 -1.2423 0.5431 0.5357 

 
1̂β -0.0415 -0.0493 -0.1301 -0.1275 

 
1̂( )AsVar β

∧ 0.00079 0.00114 0.00676 0.02925 

Relative efficiency   0.70 0.12 0.03 

Conclusions 

Fixed sample size (I∗K) comparisons Fixed number of tests (K) comparisons 

100 simulated data sets 

 

 I 
 K = 100 1 2 5 10 20 30 40 

Grouping 
Alike   10.8% 5.5% 5.8% 6.5% 5.7% 6.5% 
Random   9.8% 2.8% 5.5% 6.3% 12.0% 22.0% 
Different   7.9% 7.8% 9.3% 11.9% 26.0% 102.9% 

 Individual 29.4%       

 
        

 K = 200        

Grouping 
Alike   5.1% 2.5% 2.2%    

Random   4.2% 3.5% 4.4%    

Different   4.0% 3.0% 4.4%    

 Individual 9.9%       

 
        

 K = 500        

Grouping 
Alike   1.4% 1.0% 0.4%    

Random   1.5% 1.3% 0.3%    

Different   0.7% 4.0% 3.6%    

 Individual 3.4%       

 

 I 
 K = 100 2 5 10 20 30 40 

Grouping 
Alike 8.04 17.10 25.23 27.61 25.89 24.47 
Random 5.84 6.45 5.39 3.55 2.40 1.63 
Different 4.19 1.83 0.81 0.30 0.15 0.08 

        

 K = 200       

Grouping 
Alike 2.79 5.87 8.58    

Random 2.02 2.26 1.89    

Different 1.46 0.64 0.28    

 
       

 K = 500       

Grouping 
Alike 2.20 4.62 6.72    

Random 1.61 1.79 1.50    

Different 1.16 0.51 0.22    

Settings 
• Model 

�β0 = -2 and β1 = 0.6931 for log[pik/(1−pik)] = β0 + β1xik 
�xik sampled from Uniform(-7.079, 1.663) 
�Thus, 0.001 < pik < 0.3 
�Average value of pik is 0.02 

• b = 1, …, 500 simulated data sets for each setting of I and K 
• R’s glm() function used to fit model to individual responses 
• R’s optim() function used to fit models to group responses 
• Additional simulations for different β0, β1, I, K, and xik distribution settings 

were performed with similar results 

 

 I 
 I∗K = 200 1 2 5 10 20 

Grouping 
Alike   10.8% 20.3% 30.7% 9.1% 
Random   9.8% 14.0% 34.1% 69.2% 
Different   7.9% 9.6% 20.6% 121.3% 

 Individual 9.9%     

 
      

 I∗K = 500      

Grouping 
Alike   3.5% 5.5% 13.9% 29.7% 
Random   3.6% 2.8% 8.3% 38.9% 
Different   2.8% 7.8% 20.4% 42.4% 

 Individual 3.4%     

       

 I∗K = 1000      

Grouping 
Alike   1.4% 2.5% 5.8% 15.7% 
Random   1.5% 3.5% 5.5% 17.6% 
Different   0.7% 3.0% 9.3% 37.7% 

 Individual 1.1%     

  Relative efficiency  Correlation  
 

 I  I 
 I∗K = 200 2 5 10 20  2 5 10 20 

Grouping 
Alike 0.87 0.76 0.57 0.27  0.97 0.79 0.56 0.30 
Random 0.64 0.29 0.12 0.04  0.85 0.56 0.32 0.15 
Different 0.46 0.08 0.02 0.01  0.71 0.30 0.09 0.08 

      

 

    

 I∗K = 500     

 

    

Grouping 
Alike 0.93 0.78 0.59 0.33  0.97 0.89 0.65 0.47 
Random 0.68 0.30 0.12 0.04  0.85 0.60 0.35 0.21 
Different 0.49 0.08 0.02 0.00  0.73 0.37 0.12 0.00 

           

 I∗K = 1000     

 

    

Grouping 
Alike 0.94 0.79 0.59 0.33  0.97 0.88 0.72 0.46 
Random 0.69 0.31 0.13 0.04  0.82 0.53 0.36 0.17 
Different 0.50 0.09 0.02 0.00  0.73 0.33 0.16 0.09 

• is biased for finite samples  
� Bias increases with group size for fixed I∗K here 
� Bias is smaller for group testing than individual testing with K fixed 

• Relative efficiency 
� For the same I∗K, individual testing is more efficient  

− Remember that less tests are done with group testing! 
� When K is fixed, group testing is more efficient (except for Different)  
� Alike is the most efficient of the grouping methods 

• Pearson correlation between individual and grouping methods 
� Correlation decreases as group size increases 
� Depending on the group size, Random and Different grouping can produce 

quite different values than found for individual testing!   
• Which is the more fair comparison - fixed I∗K or fixed K?  

� If tests are expensive and individual items are cheap to obtain, fixed K is 
better to compare 

� If individual items are expensive to obtain, fixed I∗K is better to compare 

1̂β

1̂β

Department of Statistics 

• Relative efficiency =  
• Pearson correlation between  
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• Is the Alike grouping strategy realistic? 
� Only if ALL individual samples are available at once since groups are 

formed by covariate 
− Example: All samples are available at the same time in Thorburn et al. 

(2001) when assessing hepatitis prevalence in Glasgow, Scotland 
− More than one covariate makes Alike grouping more difficult 

� Often, Alike is not realistic due to limited “shelf-life” for item samples 
� As a compromise, some individual items could be constructed in homoge-

nous groups by covariates as the samples are received 
• How should group size(s) be chosen?  

� Vansteelandt et al. (2000) suggests one way if all individual samples are 
available at once 

� Without this information, group size should be chosen based upon the pos-
sible range of θk  by avoiding values close to 0 or 1 

• Convergence of parameter estimates 
� Complete separation problems - this happens most often with Alike due to 

how the groups are formed 
� Low trait prevalence means small number of Yik = 1 for individual testing 

− This is a contributing factor to its large bias for smaller I∗K 

For example, Alike is biased by 10.8% when 
100 groups of size 2 are formed for I∗K=200 

   Grouping 
 Individual Alike Random Different 

Mean -0.0247 -0.0253 -0.0391 -0.0472 
Median -0.0217 -0.0224 -0.0298 -0.0550 
Variance 0.0007 0.0010 0.0071 0.0197 
95% C.I. (-0.0301, (-0.0316, (-0.0558, (-0.0750, 
for mean -0.0193) -0.0189) -0.0223) -0.0194) 

β̂

For example, Alike is biased by 10.8% when 
100 groups of size 2 are formed for I∗K=200 
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• Notice that the largest for Random corre-
sponds to the smallest for Different! 

• Pearson correlation between values on the 
same data sets 

 
 
 
 
 

• Summary of values with β1 = -0.024 
� Alike grouping strategy results in only a 

little more variability compared to indi-
vidual testing 

� Random and different grouping strategies 
result in much more variability compared 
to individual testing 
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      Grouping 
    Individual Alike Random 
  Individual       

Grouping 
Alike 0.85     

Random 0.33 0.24   
Different -0.05 -0.09 -0.13 
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Group testing has long been used to estimate a trait prevalence, p, in situa-
tions where the prevalence is small in order to reduce time and cost or to 
make infeasible individual experiments feasible by grouping. Most of the sta-
tistical research in group testing has focused on estimating a single preva-
lence p for a homogenous population. Recently, Vansteelandt et al. (2000) and 
Xie (2001) have proposed models to incorporate covariates to estimate p for a 
heterogeneous population. The purpose here is to further examine these mod-
eling methods through a set of comparisons between individual and group 
testing models. First, the relative efficiency of model parameter estimates is 
investigated under a number of grouping strategies. Second, agreement be-
tween model parameter estimates is examined to determine how well esti-
mates coincide. Third, the effect of group size on model estimation is exam-
ined. Overall recommendations are given in order to show the benefits and 
sacrifices to using group testing models. 
 
 
 
 

• Used when testing an item for a trait 
• Example: Testing blood for the presence or absence of a disease 

� Individual testing 
 
 
 
 
 
 

− Problems: Cost and time 
� Group testing 

− If the GROUP sample is negative, then all I people in the group do not 
have the disease 

− If the GROUP sample is positive, then at least ONE of the I people in 
the group have the disease 

− Cost and time savings! 
− Strategy works well when prevalence of the trait is small 

• Many other examples of group testing 
� Disease transmission by an insect vector to a plant (Swallow, 1985) 
� Drug-discovery experiments (Xie et al. 2001; Zhu, Hughes-Oliver, and 

Young, 2001) 
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• Until recently, no one had used covariates in a regression setting to help esti-

mate the probability an individual item is positive for a trait 
• Vansteelandt et al. (2000) 

� Use maximum likelihood estimation to estimate parameters for a model in 
the form of a generalized linear model 

� Estimation done directly on the group responses 
� Shows smallest variance estimators occur when covariates are most alike 

within a group 
• Xie (2001) 

� Use maximum likelihood estimation to estimate parameters for a model in 
the form of a generalized linear model 

� Estimation done on the unobservable individual responses through using 
the EM algorithm 

• Since maximum likelihood estimation is used for both, the Vansteelandt et al. 
(2000) fitting method will be used here only 

• Purpose: 
�Compare individual and group testing models 
�Examine bias and efficiency of model parameter estimates 
�Assess agreement between model parameter estimates 
�Investigate the effect of group size 
�Analyze the effects of three grouping strategies 
 
 
 
 

• Individual responses 
� Yik = 1 if the ith item in the kth group has the trait (positive)  

Yik = 0 otherwise (negative) for i = 1, …, Ik and k = 1, …, K 
� pik = P(Yik = 1) 
� Yik are independent Bernoulli(pik) random variables 

• Group responses 
� Zk = 1 denotes a positive response and 

Zk = 0 denotes a negative response for the kth group 
� θk = P(Zk = 1) = 

� Zk are independent Bernoulli(θk) random variables 

•  Individual and group relationship 
� Zk = 1 if and only if   

Zk = 0 if and only if  
� Yik’s are “observed” when Zk = 0 and there are no measurement errors; Yik’s 

are unobservable otherwise 
• Model 

� xik = (xik1, xik2, …, xikp)′ is a vector of covariates for the ith subject in the kth 
group 

� β  = is the corresponding vector of model parameters 

� log[pik/(1−pik)] = β′xik 

� Other link functions could be used as well 
 
 
 

• Simplifications for rest of presentation 
� One covariate, xik 
� No measurement errors (sensitivity = specificity = 1) 
� Equal group sizes (I1 = I2 = … = IK = I) 

• Maximum likelihood estimation 

� Likelihood function:  
�Maximizing L with respect to β yields the maximum likelihood estimator,     

• Asymptotic variance of  

 
• For individual testing, the standard asymptotic variance for  
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• Motivated from example in Vansteelandt et al. (2000) 

� Examines the covariate specific prevalence of HIV among pregnant 
women in an area of Kenya 

� One covariate of interest is age 
• Model: log[pik/(1−pik)] = β0 + β1xik 
• Simulate data from model fitted to the individual observations in paper 

� β0 = -1.97 and β1 = -0.024  
� Generate xik from Gamma(20.95, 1.16) since it provides a good fit to the 

observed age distribution  
� I = 7 subjects per group 
� K = 100 groups 
� Overall sample size is I∗K = 700 

• Generate the Yik individual responses from Bernoulli distribution with parame-
ter  pik = exp(β0 + β1xik)/[1 + exp(β0 + β1xik)] 
� Groups are formed from these individual responses 
� Thus, both individual and group responses are available! 
� Example simulated data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1 (1 )

kI
ik

i
p

=
− −∏

1 0kI
iki Y= >∑

1 0kI
iki Y= =∑

 
 

• Alike - Subjects with similar covariates are put into groups (sort by covariate, 
then assign to successive groups) 

• Random - Subjects are randomly put into groups (emulates chronological if 
there is no response dependence over time) 

• Different - Subjects with covariates as different as possible are put into groups 
(emulates worse case scenario) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Summary 

 
 
 
 
 
 
 
� True values: β0 = -1.97 and β1 = -0.024  
� Relative efficiency =  (Individual Var.) / (Group Var.)  
� Remember that 7 times more tests are done using individual testing!  

• Percent bias = ∗ 100% ( )500
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ˆ 500bb β β β=
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True
Individual estimated
Group estimated (alike)
Group estimated (random)
Group estimated (different)

k i Yik Zk xik 

Group Item Individual response Group response Covariate 
1 1 0 1 11.55 
1 2 0 1 12.14 
1 3 1 1 12.56 
1 4 0 1 12.79 
1 5 0 1 12.88 
1 6 0 1 13.28 
1 7 0 1 13.88 

#         

100 1 0 0 39.65 
100 2 0 0 39.77 
100 3 0 0 39.91 
100 4 0 0 39.92 
100 5 0 0 40.55 
100 6 0 0 40.71 
100 7 0 0 43.62 

One simulated data set 

    Grouping 

  Individual Alike Random Different 

 
0̂β -1.4452 -1.2423 0.5431 0.5357 

 
1̂β -0.0415 -0.0493 -0.1301 -0.1275 

 
1̂( )AsVar β

∧ 0.00079 0.00114 0.00676 0.02925 

Relative efficiency   0.70 0.12 0.03 

Conclusions 

Fixed sample size (I∗K) comparisons Fixed number of tests (K) comparisons 

100 simulated data sets 

 

 I 
 K = 100 1 2 5 10 20 30 40 

Grouping 
Alike   10.8% 5.5% 5.8% 6.5% 5.7% 6.5% 
Random   9.8% 2.8% 5.5% 6.3% 12.0% 22.0% 
Different   7.9% 7.8% 9.3% 11.9% 26.0% 102.9% 

 Individual 29.4%       

 
        

 K = 200        

Grouping 
Alike   5.1% 2.5% 2.2%    

Random   4.2% 3.5% 4.4%    

Different   4.0% 3.0% 4.4%    

 Individual 9.9%       

 
        

 K = 500        

Grouping 
Alike   1.4% 1.0% 0.4%    

Random   1.5% 1.3% 0.3%    

Different   0.7% 4.0% 3.6%    

 Individual 3.4%       

 

 I 
 K = 100 2 5 10 20 30 40 

Grouping 
Alike 8.04 17.10 25.23 27.61 25.89 24.47 
Random 5.84 6.45 5.39 3.55 2.40 1.63 
Different 4.19 1.83 0.81 0.30 0.15 0.08 

        

 K = 200       

Grouping 
Alike 2.79 5.87 8.58    

Random 2.02 2.26 1.89    

Different 1.46 0.64 0.28    

 
       

 K = 500       

Grouping 
Alike 2.20 4.62 6.72    

Random 1.61 1.79 1.50    

Different 1.16 0.51 0.22    

Settings 
• Model 

�β0 = -2 and β1 = 0.6931 for log[pik/(1−pik)] = β0 + β1xik 
�xik sampled from Uniform(-7.079, 1.663) 
�Thus, 0.001 < pik < 0.3 
�Average value of pik is 0.02 

• b = 1, …, 500 simulated data sets for each setting of I and K 
• R’s glm() function used to fit model to individual responses 
• R’s optim() function used to fit models to group responses 
• Additional simulations for different β0, β1, I, K, and xik distribution settings 

were performed with similar results 

 

 I 
 I∗K = 200 1 2 5 10 20 

Grouping 
Alike   10.8% 20.3% 30.7% 9.1% 
Random   9.8% 14.0% 34.1% 69.2% 
Different   7.9% 9.6% 20.6% 121.3% 

 Individual 9.9%     

 
      

 I∗K = 500      

Grouping 
Alike   3.5% 5.5% 13.9% 29.7% 
Random   3.6% 2.8% 8.3% 38.9% 
Different   2.8% 7.8% 20.4% 42.4% 

 Individual 3.4%     

       

 I∗K = 1000      

Grouping 
Alike   1.4% 2.5% 5.8% 15.7% 
Random   1.5% 3.5% 5.5% 17.6% 
Different   0.7% 3.0% 9.3% 37.7% 

 Individual 1.1%     

  Relative efficiency  Correlation  
 

 I  I 
 I∗K = 200 2 5 10 20  2 5 10 20 

Grouping 
Alike 0.87 0.76 0.57 0.27  0.97 0.79 0.56 0.30 
Random 0.64 0.29 0.12 0.04  0.85 0.56 0.32 0.15 
Different 0.46 0.08 0.02 0.01  0.71 0.30 0.09 0.08 

      

 

    

 I∗K = 500     

 

    

Grouping 
Alike 0.93 0.78 0.59 0.33  0.97 0.89 0.65 0.47 
Random 0.68 0.30 0.12 0.04  0.85 0.60 0.35 0.21 
Different 0.49 0.08 0.02 0.00  0.73 0.37 0.12 0.00 

           

 I∗K = 1000     

 

    

Grouping 
Alike 0.94 0.79 0.59 0.33  0.97 0.88 0.72 0.46 
Random 0.69 0.31 0.13 0.04  0.82 0.53 0.36 0.17 
Different 0.50 0.09 0.02 0.00  0.73 0.33 0.16 0.09 

• is biased for finite samples  
� Bias increases with group size for fixed I∗K here 
� Bias is smaller for group testing than individual testing with K fixed 

• Relative efficiency 
� For the same I∗K, individual testing is more efficient  

− Remember that less tests are done with group testing! 
� When K is fixed, group testing is more efficient (except for Different)  
� Alike is the most efficient of the grouping methods 

• Pearson correlation between individual and grouping methods 
� Correlation decreases as group size increases 
� Depending on the group size, Random and Different grouping can produce 

quite different values than found for individual testing!   
• Which is the more fair comparison - fixed I∗K or fixed K?  

� If tests are expensive and individual items are cheap to obtain, fixed K is 
better to compare 

� If individual items are expensive to obtain, fixed I∗K is better to compare 

1̂β

1̂β

Department of Statistics 

• Relative efficiency =  
• Pearson correlation between  

( ) 1, 1,

500
1

ˆ ˆ1 500 ( ) ( )b b

Individual Group
b AsVar AsVarβ β

∧ ∧

=∑

1 1
ˆ ˆ and Individual Groupβ β

• Is the Alike grouping strategy realistic? 
� Only if ALL individual samples are available at once since groups are 

formed by covariate 
− Example: All samples are available at the same time in Thorburn et al. 

(2001) when assessing hepatitis prevalence in Glasgow, Scotland 
− More than one covariate makes Alike grouping more difficult 

� Often, Alike is not realistic due to limited “shelf-life” for item samples 
� As a compromise, some individual items could be constructed in homoge-

nous groups by covariates as the samples are received 
• How should group size(s) be chosen?  

� Vansteelandt et al. (2000) suggests one way if all individual samples are 
available at once 

� Without this information, group size should be chosen based upon the pos-
sible range of θk  by avoiding values close to 0 or 1 

• Convergence of parameter estimates 
� Complete separation problems - this happens most often with Alike due to 

how the groups are formed 
� Low trait prevalence means small number of Yik = 1 for individual testing 

− This is a contributing factor to its large bias for smaller I∗K 

For example, Alike is biased by 10.8% when 
100 groups of size 2 are formed for I∗K=200 

   Grouping 
 Individual Alike Random Different 

Mean -0.0247 -0.0253 -0.0391 -0.0472 
Median -0.0217 -0.0224 -0.0298 -0.0550 
Variance 0.0007 0.0010 0.0071 0.0197 
95% C.I. (-0.0301, (-0.0316, (-0.0558, (-0.0750, 
for mean -0.0193) -0.0189) -0.0223) -0.0194) 

β̂

For example, Alike is biased by 10.8% when 
100 groups of size 2 are formed for I∗K=200 
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