

Outline

- BSG
- Basics
- Estimation
- Identification
- IdentificationCovariates
- NIH grant

Human or Cylon? Group testing on the Battlestar Galactica

Christopher R. Bilder
Department of Statistics
University of Nebraska-Lincoln
www.chrisbilder.com
chris@chrisbilder.com

Nebraska Lincoln Department of Statistics

Outline

- BSG
- Basics
- Estimation
- Identificat
- Covariate
- NIH grant

Battlestar Galactica

- Statistics and Battlestar Galactica
- The story so far...
 - <u>Video</u>

Slide 2 of 37 www.chrisbilder.

Nebraska Lincoln Department of Statistics

Outline

- BSG
- Basics
- Estimation
- Identification
- Covariates
- NIH grant

Battlestar Galactica

- Statistics and Battlestar Galactica
- The story so far...
 - Video
- Cylons
 - Centurion
 - Humanoid form (new)
- How can you distinguish a human from a Cylon?

Outlin

- ____
- Basics
- Estimation
- Identification
- Covariates
- NIH grant

Battlestar Galactica

- Dr. Gaius Baltar
 - Asked to develop a Cylon detector
 - Season 1's *Bastille*Day episode
 - # of Cylons in fleet is expected to be small
 - 47,905 individuals to test!

Slide 3 of 37

Slide 4 of 37 www.chrisbilder.com

Nebraska

Battlestar Galactica

- BSG
- Basics
- Estimation
- Covariates
- NIH grant
- Dr. Gaius Baltar (continued)
 - Season 1's Tigh me up and Tigh me down

Video

Nebraska

Outline

- BSG
- Basics
- Estimation
- Covariates
- NIH grant

Battlestar Galactica

- Dr. Gaius Baltar (continued)
 - Season 1's Tigh me up and Tigh me down

- Video
- (47,905 blood tests)*(11 hours each) = 21,956 days

Nebraska

Battlestar Galactica

- BSG
- Basics
- Identification
- Covariates
- NIH grant
- Individual testing

+ or -

+ or -

+ or -

+ or -

- Time
- Limited resources

Nebraska

- Basics
- Estimation
- NIH grant

Battlestar Galactica

Group testing

- If a GROUP is negative, then all 4 individuals are not Cylons
- If the GROUP is positive, then at least ONE of the 4 individuals is a Cylon
 - "Retesting" can be done to determine who is a Cylon

+ or -

Battlestar Galactica

- BSG Basics
- Estimation
- Covariates
- NIH grant

- Group testing (continued)
 - Time savings
 - Save resources
 - Strategy works well when prevalence of a "trait" is small
 - If prevalence is large, all groups may test positive

Nebraska

Other examples

- BSG
- Basics
- Estimation

- NIH grant
- Screening blood donations
 - American Red Cross uses groups of size 16
 - HIV, Hepatitis B, Hepatitis C, ...
 - Screen about 6 million a year
 - Source: Roger Dodd, Executive Director of Blood Services R & D at ARC
 - See Dodd et al. (Transfusion, 2002)
- Drug discovery experiments
 - Screen hundreds of thousands of chemical compounds to look for potentially good ones
 - Remlinger et al. (*Technometrics*, 2006)

Nebraska

Other examples

- BSG
- Basics

- NIH grant
- Multiple vector transfer design experiments - Estimate probability an insect vector
 - transfers a pathogen to a plant
 - Swallow (*Phytopathology*, 1985, 1987)
- Veterinary
 - Bovine viral diarrhea in cattle (Peck, *Beef*, 2006)
 - Avian pneumovirus (APV) in turkeys (Maherchandani et al., J. Veterinary Diagnostic Investigation, 2004)
- Public health studies
 - Prevalence of HCV (Liu et al., *Transfusion*, 1997)
 - Prevalence of HIV (Verstraeten et al., Trop. Med. & International Health, 2000)

- Basics

- NIH grant

Notation

Individual responses

- $-Y_{ik} = 1$ if the i^{th} item in the k^{th} group has the "trait" (positive) and
 - $Y_{ik} = 0$ otherwise (negative) for i=1, ..., I and k=1, ..., K
- $-Y_{ik}$ are independent Bernoulli(p) random variables
 - $p = P(Y_{ik} = 1)$
 - Homogenous population
 - p can be thought of as the "individual probability" or "prevalence in a population"
- $-Y_{ik}$'s are not directly observed (at least initially)

Notation

- BSG
- Basics
- Estimation
- Covariates
- NIH grant
- Group responses
 - $-Z_k = 1$ denotes a positive response
 - $Z_k = 0$ denotes a negative response for the k^{th} group
 - $-Z_k$ are independent Bernoulli(θ) random variables
 - $\theta = P(Z_k = 1)$
- Individual and group response relationship
 - $Z_k = 1$ if and only if $\sum_{i=1}^{I} Y_{ik} > 0$ $Z_k = 0$ if and only if $\sum_{i=1}^{I} Y_{ik} = 0$

Nebraska

Outline

- BSG
- Basics
- Estimation
- Identification
- Covariates
- NIH grant

Notation

Example random variables

+ or -

Slide 13 of 37 ww.chrisbilder.co

Notation

Nebraska

- BSG
- Basics
- Identification
- Covariates
- NIH grant

- BSG Basics
- Estimation
- Identification
- Covariates NIH grant

Example observed values

 $y_{22} = 1$

Nebraska Lincol December of States
<u>Outline</u>
■ BSG
Basics
■ Estimation
 Identification
Covariates
■ NIH grant

Purpose

- Prevalence of a trait in a population (estimation problem)
- Which items are positive (identification problem)

Nebraska Lincoln
Department of Statistics

Estimate p

Outline

- BSG
- Basics
- Estimation
- Covariates
- NIH grant
- How can we estimate $p = P(Y_{ik} = 1)$?
 - We observe information about the groups, not individuals!

$$-\theta = 1 - P(Y_{ik} = 0, \forall i) = 1 - (1 - p)^{I}$$

- Then
$$p = 1 - (1 - \theta)^{1/I}$$

- MLE for
$$p: \hat{p} = 1 - (1 - \sum_{k=1}^{K} z_k / K)^{1/I}$$

- Unequal group sizes
 - Likelihood function

$$L(p) = \prod_{k=1}^{K} \theta_{k}^{n_{k}} (1 - \theta_{k})^{1 - n_{k}} = \prod_{k=1}^{K} \left[1 - (1 - p)^{k_{k}} \right]^{n_{k}} (1 - p)^{k_{k}(1 - n_{k})}$$

where

 θ_k = positive probability for group k

 I_{ν} = size of group k

Nebraska

- BSG
- Basics

- Covariates
- NIH grant

Testing error

- What if there is testing error?
 - Can incorporate sensitivity (η) and specificity (δ)
- $-\theta_k = \eta + (1 \delta \eta)(1 p)^{I_k}$

- BSG
- Estimation

- NIH grant

Identification

- Dorfman (Annals of Mathematical Statistics, 1943)
 - Retest all items in a positive group
 - Often credited for the very first use of group testing
- Sterrett (Annals of Mathematical Statistics, 1957)
 - Individually retest until first positive is found
 - Re-group remaining items
 - If group is negative, STOP
 - If group is positive, repeat

- Expected number retests is smaller than Dorfman

Gupta and Malina (Statistics in Medicine, 1999) provides a summary

- Basics

Infertility Prevention Program

U.S. national program funded by Centers for Disease

- Assess and reduce prevalence of chlamydia and

Outline

■ BSG

- Basics
- Estimation
- T.J. ... (16) . . (1 ...
- C----i-t-
- NIH grant
- Nebraska
 - Swab or urine specimens are sent to the Nebraska Public Health Laboratory at U. of Nebraska Medical Center
 - NATs

Control and Prevention

gonorrhea

- About 30,000 individual tests done per year
- Group testing!

www.chrisbilder.com

Nebraska Lincoln Department of Statistics

Infertility Prevention Program

Outline

- BSG
- Basics
- Estimation
- Idontificatio
- Covariate
- NIH grant

- Lindan et al. (J. Clinical Microbiology, 2005)
 - Estimates that 12% of the laboratories in the U.S. are already using group testing
 - Group testing has allowed "laboratories to achieve a significant increase in specimen loads."
- Quarter #1 of 2006, chlamydia testing
 - Urine specimens 1,384 total
 - Ignore sensitivity and specificity here
 - Individual data: $\hat{p} = 111/1,384 = 0.0802$
 - Group testing:
 - Randomly put known individual responses into groups of size *I* = 2
 - $\hat{p} = 1 (1 \sum_{k=1}^{K} z_k / K)^{1/I} = 1 (1 105 / 692)^{1/2} = 0.0790$

Infertility Prevention Program

Outline

- BSG
- Basics
- Estimation
- Identificati
- Covariate
- NIH grant
- Quarter #1 of 2006 (continued)
 - Individual data: 111/1,384 = 0.0802
 - Group testing:

	Group size				
	1	2	3	5	10
\hat{p}	0.0802	0.0790	0.0791	0.0776	0.0843
Dorfman		902	765	737	949
Sterrett		902	728	653	744

- Approximate cost per test
 - \$16 for urine
 - \$11 for swab

BSG

Basics

CovariatesNIH grant

1. . 1 1

- Individual responses
 - $-Y_{ik}$ are independent Bernoulli(p_{ik}) random variables

Heterogonous populations

- $-p_{ik} = P(Y_{ik} = 1)$ for item *i* in group *k*
- Group responses
 - $-Z_k$ are independent Bernoulli(θ_k) random variables
 - $-\theta_k = P(Z_k = 1)$ for group k
- Covariates
 - $-x_{ik1}, x_{ik2}, ..., x_{ikp}$ for the i^{th} item in the k^{th} group
 - Incorporate factors which influence trait status
 - Not really done until recently in group testing!

Slide 24 of 37 www.chrisbilder.com

Slide 23 of 37

Nebraska Lincoln Department of Statistics

Kenyan pregnant women study

Outline

- BSG
- Basics
- Estimation
- Identificat
- Covariates
- NIH grant

Covariates

Part of the data from Vansteelandt et al. (Biometrics, 2000)

Nebraska Lincoln Department of Statistics

Heterogonous populations

Outline

- BSG
- Basics
- Estimation
- Identification
- Covariates
- NIH grant

- Model
 - logit(p_{ik}) = $\beta_0 + \beta_1 x_{ik1} + ... + \beta_p x_{ikp}$
- Estimation of β_0 , β_1 , β_2 , ..., β_p
 - Note that Y_{ik} are not directly observed
 - Vansteelandt et al. (Biometrics, 2000)
 - Likelihood function is written in terms of the Z_k $L = \prod_{k=0}^{K} \theta_k^{z_k} (1 \theta_k)^{1-z_k}$

$$L = \prod_{k=1}^{K} \theta_{k}^{2k} (1 - \theta_{k})^{1-2k}$$

$$= \prod_{k=1}^{K} \left[1 - \prod_{i=1}^{I_{k}} (1 - p_{ik}) \right]^{2k} \left[\prod_{i=1}^{I_{k}} (1 - p_{ik}) \right]^{1-2k}$$
(3)

- Xie (Statistics in Medicine, 2001)
 - Likelihood function is written in terms of the Y_{ik}
 - EM algorithm used

Slide 25 of 37

Outline

- BSG
- SSC
- Estimation
- TJ---4:6:--4:---
- Covariates
- NIH grant

- Forming groups
- Alike
- Individuals with "similar" covariates are put into pools
- Smallest variability in parameter estimates
- How implement?
 - One covariate: Sort by covariate, then assign successive individuals to pools
 - Multiple covariates: ?
- Usually requires one to have all individual testing specimens up front and available for testing at the same time

Slide 26 of 37

Outlin

- BSG
- Basics
- Estimation
- ------
- Covariates
- NIH grant

Forming groups

- Random
 - Individuals are assigned to pools at random
 - Emulates chronological if no dependence over time
- Different
 - Pool individuals with covariates as different as possible
 - Emulates "worse case scenario" (?)

Slide 27 of 37 www.chrisbilder.c Slide 28 of 37

Forming groups

- BSG
- Basics
- Estimation
- Covariates
- NIH grant
- Simulate data from model fitted to the individual observations in Vansteelandt et al. (*Biometrics*, 2000)
 - $-\log it(p_{ik}) = \beta_0 + \beta_1 x_{ik} = -1.97 0.024 x_{ik}$
 - Simulate the individual and group responses
 - I = 7 subjects per group
 - K = 100 groups
 - Overall sample size is I*K = 700

Slide 29 of 37

Outline

- BSG
- Basics
- Estimation

- NIH grant

Forming groups

- One simulated data set
- Relative efficiency

$$\widehat{RE}(\hat{\beta}_{l}) = \frac{\widehat{AsVar}(\hat{\beta}_{l}^{Individual})}{\widehat{AsVar}(\hat{\beta}_{l}^{Group})}$$

	$\widehat{RE}(\hat{eta}_1)$
Alike	0.71
Random	0.12
Different	0.03

- BSG
- Basics
- Covariates
- NIH grant

Pearson

correlations:

Alike

Random

Different

0.85 0.33

-0.05

0.24

-0.09

-0.13

Nebraska

Slide 30 of 37

- BSG
- Basics
- Estimation
- NIH grant

Relative efficiency:

Forming groups

- Last slide examined a fixed *I*K*
- What if we fix the number of groups (tests), *K*, instead?
 - Settings
 - $logit(p_{ik}) = -2 + 0.6931x_{ik}$
 - x_{ik} ~ Uniform(-70.079, 1.663)
 - $0.001 < p_{ik} < 0.3$
 - Average value of p_{ik} is 0.02
 - 500 simulated data sets for each simulation
 - K = 5002 10 Alike 2.20 4.62 6.72 Random 1.61 1.79 1.50 0.51 0.22 Different 1.16

Outline

- BSG
- Basics
- Estimation
- Identification
- Covariates
- Proposed

Human or Cylon? Group testing on the Battlestar Galactica

Christopher R. Bilder Department of Statistics University of Nebraska-Lincoln www.chrisbilder.com chris@chrisbilder.com

Slide 37 of 37 www.chrisbilder.com