

What is group testing?	Netwaren it far Lingen Bewinnesin of Statemer	What is group testing?	Nebrasent Lincoln Lincoln
 Group testing Group testing If the GROUP sample is negative, then all 4 people do r the disease If the GROUP sample is positive, then at least ONE of t people have the disease "Retesting" can be done to determine which people a positive Cost and time savings! Strategy works well when prevalence of the trait is small 	not have he 4 nre	 Purpose Basic statistics ideas Show examples of where group testing is used 	
□ If prevalence is large, all groups may test positive www.chrisbilder.com	5 of 36 pages	www.chrisbilder.com	6 of 36 pages
Basic statistics	Nebraska Lingsh	Basic statistics	Nebraska Lincon
 Group testing research is split into two areas Statistical Combinatorial Combinatorial group testing research – see Du and Hwang (Deterministic model for the identification of positive ite Try to minimize the number of retests to find the positive a group Upper bound for the number of positive items often need assumed. Statistical group testing research Each item's binary response is treated as a random varia Probability distributions used then to help determine: Prevalence of a trait in a population (Estimation problem) 	(2000) ms re items in ds to be ble blem)	 Notation Individual responses Y_{ik} = 1 if the <i>ith</i> item in the <i>kth</i> group has the trait (pos Y_{ik} = 0 otherwise (negative) for <i>i</i> = 1,, I_k and <i>k</i> = 1 Y_{ik} are i.i.d. Bernoulli(<i>p</i>) random variables <i>p</i> = P(Y_{ik} = 1) <i>p</i> can be thought of as the "individual probability" "prevalence in a population" Assume equal group sizes, I₁ = I₂ = = I_K = I 	itive) ,, <i>K</i> ' or
www.chrisbilder.com	7 of 36 pages	www.chrisbilder.com	8 of 36 pages

Basic statistics

Basic statistics

□ Example observed values

- □ Notation (continued)
 - Group responses
 - \Box $Z_k = 1$ denotes a positive response
 - $Z_k = 0$ denotes a negative response for the k^{th} group
 - \Box Z_k are i.i.d. Bernoulli(θ) random variables

$$\theta = P(Z_k = 1)$$

- Individual and group relationship
 - $\Box \quad Z_k = 1 \text{ if and only if } \sum_{i=1}^{I} Y_{ik} > 0$ $Z_k = 0 \text{ if and only if } \sum_{i=1}^{I} Y_{ik} = 0$
 - \Box Y_{ik}'s are observable when Z_k = 0 and there are no testing errors

www.chrisbilder.com

...

 \Box Y_{ik} 's are unobservable when $Z_k = 1$

www.chrisbilder.com

Basic statistics	Basic statistics
■ What is the relationship between $p = P(Y_{ik} = 1)$ and $\theta = P(Z_k = 1)$? ■ Want to make inferences about p ! ■ $\theta = P(Z_k = 1)$ = $P(\text{group is positive})$ = $P(\sum_{i=1}^{l} Y_{ik} > 0)$ = $P(\text{at least one item is positive})$ = $1 - P(\sum_{i=1}^{l} Y_{ik} = 0)$ = $1 - P(\text{no items are positive})$ = $1 - P(Y_{ik} = 0, \forall i)$ = $1 - P(\text{all items are negative})$ = $1 - P(Y_{1k} = 0) * P(Y_{2k} = 0) * \cdots * P(Y_{lk} = 0)$ = $1 - (1 - p)^{l}$ ■ Then $p = 1 - (1 - \theta)^{1/l}$	 Choice of the group size, <i>I</i>, is critical! <i>p</i> = 1 - (1 - θ)^{1/I} and θ = 1 - (1 - p)^I If θ is close to 1, all groups are likely to test positive If θ is close to 0, all groups are likely to test negative Choose group size, <i>I</i>, so that this does not happen "Rule of thumb" is to choose <i>I</i> so that θ = 0.5 Other values of θ between 0.2 and 0.8 may be optimal Optimal means smallest MSE Table in Swallow (<i>Phytopathology</i>, 1985) Problem: Need to know <i>p</i>!
www.chrisbilder.com 13 of 36 pages Basic statistics	www.chrisbilder.com 14 of 36 pages Basic statistics Netrask
 What is an estimate of <i>p</i>? Let <i>T</i> be a random variable denoting the number of positive groups <i>T</i> = Σ_{k=1}^KZ_k <i>T</i> ~ Binomial(<i>K</i>, θ) MLE for θ is θ̂ = <i>T</i>/<i>K</i> Use invariance property of MLEs, to get the MLE for <i>p</i> to be p̂ = 1-(1-θ̂)^{1/1} Positively bias for finite samples Ways to correct bias are discussed in Colon, Patil, and Taillie (<i>Environ.& Ecological Stat.</i>, 2001) Tebbs, Bilder, and Moser (<i>Communications</i>, 2003) Bilder and Tebbs (<i>Biometrical Journal</i>, 2005) 	■ Using delta-method, one can show that $\sqrt{n} (\hat{p} - p) \xrightarrow{d} N(0, V(p))$ where $V(p) = I^{-2}[1 - (1 - p)^{I}](1 - p)^{2-I}$ ■ With individual testing $I = 1$, this simplifies the to $V(p) = p(1 - p)$ ■ (1 - α)100% Wald confidence interval (Bhattacharyya et al., <i>American Journal of Epidemiology</i> , 1979): $\hat{p} \pm z_{1-\alpha/2} \sqrt{V(\hat{p})/K}$ ■ Poor coverage! ■ Tebbs and Bilder (<i>JABES</i> , 2004) ■ Adaptation of Blaker's (2001) interval for a proportion under individual testing is the best ■ 95% C.I., $K = 40$, and $I = 10$
www.chrisbilder.com 15 of 36 pages	www.chrisbilder.com 16 of 36 pages

Basic statistics

- □ Testing or measurement errors
 - False positive group tests positive when all items are really negative
 - False negative group tests negative when at least one item is really positive
 - What happens to *p*?
 - □ Let $\tilde{Z}_k = 1$ if the group is truly positive Let $\tilde{Z}_k = 0$ if the group is truly negative
 - □ Sensitivity = $\eta = P(Z_k = 1 | \tilde{Z}_k = 1)$ for all *k* Specificity = $\delta = P(Z_k = 0 | \tilde{Z}_k = 0)$ for all *k*
 - Want to be as close to 1 as possible (often are close)

www.chrisbilder.com

• Usually treated as fixed constants

$$P(Z_k = 1) = \theta = \eta + (1 - \delta - \eta)[1 - P(\tilde{Z}_k = 1)]$$

$$p = 1 - [1 - P(\tilde{Z}_k = 1)]^{1/I}$$

Basic statistics

- □ Identification problem
 - Dorfman (Annals of Mathematical Statistics, 1943)
 - □ Retest all items in a positive group
 - □ Often credited for the very first use of group testing
 - Sterrett (Annals of Mathematical Statistics, 1957)
 - Retest randomly selected individual items until first positive is found
 - □ Remaining items are tested in a smaller group
 - If this smaller group is negative, retesting is completed
 - If this smaller group is positive, the same retesting procedure as initially performed continues
 - Procedure ends when all individuals are exhausted or a group tests negative
 - Smaller number of expected retests than Dorfman

ebraska

17 of 36 pages

19 of 36 pages

Vebraska

- Testing or measurement errors (continued)
 - Does group testing result in a loss of accuracy (i.e. lower η and δ) when compared to individual testing?
 - □ ELISA tests for HIV screening Group size ≤ 15 have negligible loss (Kline et al., *Journal of Clinical Microbiology*, 1989)
 - □ Rapid HIV antibody assays Group size ≤ 20 no loss (Soroka et al., *Journal of Clinical Virology*, 2003)
 - □ NATs Group size ≤ 50 no loss (Bush et al., New England Journal of Medicine, 1991)
 - □ Behets et al. (*AIDS*, 1990) show that the specificity is actually higher with group testing
 - Less number of errors overall with group testing since there are less tests!

www.chrisbilder.com

Basic statistics

Nebraska Lingen

18 of 36 pages

- □ Identification problem (continued)
 - Sobel and Elashoff (*Biometrika*, 1975) use halving
 - Positive groups are divided into halves for retesting
 - Subsets that test positive are again halved and retested until all positive items have been identified
 - □ Litvak et al. (JASA, 1994) presents a variation
 - Positive groups are split into several subgroups
 - See Gupta and Malina (*Statistics in Medicine*, 1998) for a summary

Hepatitis C prevalence	Hepatitis C prevalence
 Worldwide prevalence is around 3% Liu et al. (<i>Transfusion</i>, 1997) First paper on Hepatitis C virus (HCV) and group testing HCV prevalence in Xuzhou City, China Show how well group testing does compared to individual testing BOTH individual and group testing data collected! ELISA test Blood samples Detect antibodies produced by the body when infected with HCV Testing errors were not accounted for in their final estimates Individual testing 1,875 blood samples screened There were 42 positives 	 Group testing K = 375 groups I = 5 individuals per group (samples pooled consecutively) t = ∑_{k=1}^K z_k = 37 positive groups Estimates of p, probability individual is positive Using individual data: p̂ = 42/1875 = 0.0224 Using group data: p̂ = 1−(1−θ̂)^{1/I} = 1−(1−37/375)^{1/5} = 0.0206 Which is easier and more cost effective? 1875 tests using individual testing 375 tests using group testing Only the estimation problem of interest here
www.chrisbilder.com 21 of 36 pages	www.chrisbilder.com 22 of 36 pages
Blood donation screening	Blood donation screening
 Screening for infectious diseases is needed to ensure safety of blood supply Group testing is used! Dodd et al. (<i>Transfusion</i>, 2002) American Red Cross blood donors HIV, Hepatitis B, Hepatitis C, and human T cell lymphotropic virus Estimation problem Identification problem How many donations need to be screened? For this study (1998 – 2001), there were 19,811,809 Prevalence very small Initial screening of people through a questionnaire also lowers prevalence 	 Dodd et al. (<i>Transfusion</i>, 2002) Specifically for HIV and Hepatitis C Starting in 1999, NATs for groups Actually look for HCV RNA and HIV RNA Groups of 128 samples from March to September 1999 Groups of 16 after September 1999 Each positive group has all of its items retested (Dorfman method) Stramer et al. (<i>Transfusion</i>, 2000) discusses the exact process of declaring negative or positive
- vww.chrisbilder.com 23 of 36 pages	www.chrisbilder.com 24 of 36 pages

Multiple vector transfer designs

- Plant pathologists often want to estimate the probability, p, an insect vector transfers a pathogen (virus, bacteria, etc.) to a plant
 - Swallow (*Phytopathology*, 1985, 1987)

Brown planthopper

Whitebacked planthopper

25 of 36 pages

British plant pathologists were first to use group testing (Watson, 1936) despite Dorfman (1943) usually receiving the credit

www.chrisbilder.com

Multiple vector transfer designs

□ Group testing (multiple vector transfer)

- Otherwise infeasible experiments are made feasible by using group testing!
- □ Tebbs and Bilder (*JABES*, 2004) discusses experiment in detail

Multiple vector transfer designs

- Low probability of transmission from an insect vector to a plant
- □ Individual testing (single vector transfer)

- □ Limited space in the greenhouse
 - Probably would need a LARGE number of plants to obtain a nonzero estimate

www.chrisbilder.com

• A non-zero estimate still probably would not be very good

Multiple vector transfer designs

- □ Ornaghi et al. (*Maydica*, 1999)
 - Location: Argentina
 - Plant: Corn
 - Planthopper: *Delphacodes kuscheli*
 - Virus: Mal Rio Cuarto
 - \$120 million in damages during the 1996–1997 agricultural season in Argentina
 - Most important corn virus (Lenardon et al., *Plant Disease*, 1998)
 - Goal: Estimate the probability of virus transmission by planthoppers that are known sources of the virus
 - Study done in stages examine just the fourth stage

26 of 36 pages

Current Research

ebraska

- □ Out of time!
- NIH grant proposal
 - Good scores for first submission
 - Preliminary research for grant proposal JSM 2005 poster

References

33 of 36 pages

- Ornaghi, J., March, G., Boito, G., Marinelli, A., Beviacqua, J., Giuggia, J., and Lenardon, S. (1999). Infectivity in Natural Populations of Delphacodes kuscheli Vector of 'Mal Rio Cuarto' Virus. Maydica 44, 219–223.
- Pfeiffer, R. M., Rutter, J. L., Gail, M. H., Stuewing, J. and Gastwirth, J. L. (2002). Efficiency of DNA pooling to estimate joint allele frequencies and measure linkage disequilibrium. Genetic Epidemiology 22, 94-102.
- Remlinger, K. (2004). Statistical design and analysis of high throughput screening data using pooling experiments and data mining techniques. Ph.D. Dissertation, Department of Statistics, North Carolina State University, Raleigh, NC.
- Sham, P., Bader, J. S., Craig, I., O'Donovan, M., and Owen, M. (2002). DNA pooling: a tool for large scale association studies. Genetics 3 862-871
- Sobel, M. and Elashoff, R. (1975). Group testing with a new goal, estimation. Biometrika 62, 181-193.
- Soroka, S., Granade, T., Phillips, S., and Parekh, B. (2003). The use of simple, rapid tests to detect antibodies to human immunodeficiency virus types 1 and 2 in pooled serum specimens. Journal of Clinical Virology 27, 90-96.
- Stramer, S. L., Caglioti, S., and Strong, D. M. (2000). NAT of the United States and Canadian blood supply. Transfusion 40, 1165-1168.
- Sterrett, A. (1957). On the detection of defective members of large populations. Annals of Mathematical Statistics 28, 1033-1036.
- Swallow, W. (1985). Group testing for estimating infection rates and probabilities of disease transmission. Phytopathology 75, 882-889.
- Swallow, W. (1987). Relative mean squared error and cost considerations in choosing group size for group testing to estimate infection rates and probabilities of disease transmission. Phytopathology 77, 1376-1381.
- Tebbs, J. M., Bilder, C. R., and Moser, B. K. (2003). An empirical Bayes group-testing approach to estimating small proportions. п Communications in Statistics: Theory and Methods 32, 983-995.
- Vansteelandt, S., Goetghebeur, E., and Verstraeten, T. (2000). Regression models for disease prevalence with diagnostic tests on pools of serum samples. Biometrics 56, 1126-1133.
- Watson, M. (1936). Factors affecting the amount of infection obtained by aphis transmission of the virus Hy. III. Philosophical Transactions of the Royal Society London, Series B 226, 457-489.
- Xie, M. (2001). Regression analysis of group testing samples. Statistics in Medicine 20, 1957-1969.
- Xie, M., Tatsuoka, K., Sacks, J., and Young, S. S. (2001). Group testing with blockers and synergism. Journal of the American Statistical Association 96, 92-102.
- Zhu, L., Hughes-Oliver, J. M., and Young, S. S. (2001). Statistical decoding of potent pools based on chemical structure. Biometrics 57, 922-930

References

- Behets, F., Bortozzi, S., Kasali, M., Kashamuka, M., Atikala, L., Brown, C., Rvder, R., and Ouinn, C. (1990), Successful use of pooled sera to determine HIV-1 seroprevalence in Zaire with development of cost efficiency models. AIDS 4, 737-41.
- Bhattacharyya, G., Karandinos, M., and DeFoliart, G. (1979). Point estimates and confidence intervals for infection rates using pooled organisms in epidemiological studies. *American Journal of Epidemiology* 109, 124–131.
- Bilder, C. R. and Tebbs, J. M. (2005). Empirical Bayesian estimation of the disease transmission probability in multiple-vector-transfer designs. Biometrical Journal 47, 502-516.
- Blaker, H. (2000). Confidence Curves and Improved Exact Confidence Intervals for Discrete Distributions. The Canadian Journal of Statistics 28, 783–798. Bush, M, Bernard, E., and Khayam-Hashi, H. (1991). Evaluation of screened blood donations for HIV Type I infection by culture and
- DNA amplification of pooled cells. New England Journal of Medicine 325, 1-5. Colon, S., Patil, G. P. and Taillie, C. (2001). Estimating prevalence using composites. Environmental and Ecological Statistics 8, 213-
- 236
- Dodd, R. Y., Notari, E. P., and Stramer, S. L. (2002). Current prevalence and incidence of infectious disease markers and estimated window-period risk in the American Red Cross donor population. Transfusion 42, 975-979.
- Dorfman, R. (1943). The detection of defective members of large populations. Annals of Mathematical Statistics 14, 436-440.
- Gupta, D. and Malina, R. (1999). Group testing in presence of classification errors. Statistics in Medicine 18, 1049-1068. Johnson, N. L., Kotz, S. and Wu, X. (1991). Inspection Errors for Attributes in Quality Control. New York: Chapman & Hall.
- Kendiziorski, C. M., Zhang, Y., Lan, H., and Attie, A. D. (2003). The efficiency of pooling mRNA in microarray experiments. Biostatistics 4, 465-477
- Kline, R., Brothers, T., Brookmeyer, R., Zeger, S., and Quinn, T. (1989). Evaluation of HIV seroprevalence in population surveys using pooled sera. *Journal of Clinical Microbiology* 27, 1449-52.
- Lenardon, S., March, G., Nome, S., and Ornaghi, J. (1998). Recent Outbreak of 'Mal de Rio Cuarto' Virus on
- Corn in Argentina. Plant Disease 82, 448.
- Litvak, E., Tu, X. M., and Pagano, M. (1994). Screening for the presence of a disease by pooling sera samples. Journal of the American Statistical Association 89, 424-434.
- Liu, P., Shi, Z., Zhang, Y., Xu, Z., Shu, H., Zhang, X. (1997). A prospective study of a serum-pooling strategy in screening blood donors for antibody to hepatitis C virus. *Transfusion* 37, 732–736.
- Munoz-Zanzi, C. A., Johnson, W. O., Thurmond, M. C., and Hietala, S. K. (2000). Pooled-sample testing as a herd-screening tool for detection of bovine viral diarrhea virus persistently infected cattle. Journal of Veterinary Diagnostic Investigation 12, 195-203.
- Maherchandani, S., Munoz-Zanzi, C. A., Patnayak, D. P., Malik, Y. S., and Goyal, S. M. (2004). The effect of pooling sera on the detection of avian pneumovirus antibodies using an ezyme-linked immunosorbent assay test. Journal of Veterinary Diagnostic Investigation 16, 497-502.

www.chrisbilder.com

34 of 36 pages

Just Group It!

Christopher R. Bilder **Department of Statistics** University of Nebraska-Lincoln www.chrisbilder.com chris@chrisbilder.com

Web page: www.chrisbilder.com/grouptesting