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Testing means

Inference procedures for one mean vector

Univariate case

The univariate test for a mean taught in an introductory statistics class involves the hypotheses: 

H0: = 0 
Ha:  0 

for some constant 0. The test statistic is 





where  is the sample mean, s is the sample standard deviation, and N is the sample size. If a random sample comes from a normal distribution with mean 0 (H0 is then true) and a variance 2, T has a t-distribution with N – 1 degrees of freedom (T ~ tN-1). If the observed value of T is unusual in size (i.e., |T| > tN-1,1-/2), we reject the null hypothesis.  

Multivariate case

The multivariate extension of the univariate test involves testing 

H0: = 0
Ha:  0 

for some constant p1 vector 0. The statistic used to perform the test involves the Hotelling’s T2 statistic: 




When p = 1, 




which is the square of test statistic used for the univariate test.  

To find the distribution of T2, let x1, …, xN be i.i.d. Np(,) where  and  are unknown. One can show that 


 ~ Fp, N-p

if the null hypothesis is true. Using this result, hypothesis tests and confidence regions for  can be constructed. Thus, we can reject the null hypothesis if   


 > F1-, p, N-p 

where F1-,p, N-p is the 1- quantile of a F-distribution. Also, a (1-)100% confidence region for  is the set of  such that 


T2  F1-,p, N-p

Example: Bivariate normal distribution (HotellingSim.R)


Suppose x ~  and 20 observations are simulated from a population characterized by this distribution. Below is the R code for the test of H0: = [15, 20] vs. Ha:  [15, 20]. Note that H0 would really be true here!

> library(mvtnorm)
   
> p <- 2
> mu <- c(15, 20)
> sigma <- matrix(data = c(1, 0.5, 0.5, 1.25), nrow = 2, ncol = 2, byrow = TRUE)
> cov2cor(sigma)
          [,1]      [,2]
[1,] 1.0000000 0.4472136
[2,] 0.4472136 1.0000000
> N <- 20
 
> set.seed(7812) 
> x <- rmvnorm(n = N, mean = mu, sigma = sigma)
> head(x)
         [,1]     [,2]
[1,] 15.98996 20.40392
[2,] 15.49028 18.35249
[3,] 15.38903 21.06337
[4,] 16.03633 20.03042
[5,] 14.70052 18.29860
[6,] 14.40092 20.51145

> mu.hat <- colMeans(x)
> sigma.hat <- cov(x)
> R <- cor(x)
> mu.hat
[1] 15.28776 20.02926
> sigma.hat
          [,1]      [,2]
[1,] 0.9288198 0.5473159
[2,] 0.5473159 1.1268952
> R
          [,1]      [,2]
[1,] 1.0000000 0.5349714
[2,] 0.5349714 1.0000000

> #Hypothesis test: Ho:mu=[15,20], Ha:mu<>[15,20]
> mu.Ho <- c(15,20)
> T.sq <- N*t(mu.hat-mu.Ho)%*%solve(sigma.hat)%*%(mu.hat-
    mu.Ho)
> test.stat <- (N-p)/(p*(N-1))*T.sq
> crit.val <- qf(0.95, p, N-p)
> p.value <- 1-pf((N-p)/(p*(N-1))*T.sq, p, N-p)

> round(data.frame(T.sq, test.stat, crit.val, p.value), 2)
  T.sq test.stat crit.val p.value
1 2.27      1.08     3.55    0.36

Because the p-value is large, the null hypothesis is not rejected. There is not sufficient evidence that the mean vector is different from [15, 20]. Of course, this result is to be expected because we simulated the data with settings that made the null hypothesis true! 

Below is a plot showing why the results of the test make sense (see program for code):

[image: ] 
The estimated mean vector is relatively close to the hypothesized mean vector, so this is why the null hypothesis was not rejected. 

Examine what happens when you run the code several times with different seed numbers. How often would you expect to reject H0? Examine the plot each time after you run the code and compare it to the hypothesis test result.

Below is an example where I essentially re-run the same code 20 times: 

> set.seed(7812) 
 
> #Save results here
> save.results <- matrix(data = NA, nrow = 20, ncol = 4)

> dev.new(width = 10)
> par(mfrow = c(4,5), mar = c(2,2,2,2)) #mar controls the 
    margins in each plot

> for(i in 1:20) {
   
    x <- rmvnorm(n = N, mean = mu, sigma = sigma)
    mu.hat <- colMeans(x)
    sigma.hat <- cov(x)

    T.sq <- N*t(mu.hat-mu.Ho)%*%solve(sigma.hat)%*%(mu.hat-
      mu.Ho)
    test.stat <- (N-p)/(p*(N-1))*T.sq
    crit.val <- qf(0.95, p, N-p)
    p.value <- 1-pf((N-p)/(p*(N-1))*T.sq, p, N-p)

    save.results[i,] <- c(T.sq, test.stat, crit.val, p.value)

    eval.fx <- dmvnorm(x = all.x, mean = mu, sigma = sigma)
    fx <- matrix(data = eval.fx, nrow = length(x1), ncol = 
      length(x2), byrow = FALSE)
 
    contour(x = x1, y = x2, z = fx,
     xlab = expression(x[1]), ylab = expression(x[2]), xlim 
     = c(10,20), ylim = c(15, 25), levels = c(0.001, 0.02))
    points(x = x[,1], y = x[,2], col = "red")
    points(x = mu.hat[1], mu.hat[2], pch = 3, col = 
      "black", lwd = 2)
    points(x = mu[1], mu[2], pch = 4, col = "blue", lwd = 
      2)
  }

> round(save.results,4)
         [,1]   [,2]   [,3]   [,4]
 [1,]  2.2724 1.0764 3.5546 0.3618
 [2,]  3.2248 1.5275 3.5546 0.2439
 [3,]  4.3798 2.0746 3.5546 0.1546
 [4,]  0.0817 0.0387 3.5546 0.9621
 [5,]  0.5704 0.2702 3.5546 0.7663
 [6,]  3.2307 1.5303 3.5546 0.2433
 [7,]  1.8530 0.8777 3.5546 0.4328
 [8,]  0.2077 0.0984 3.5546 0.9068
 [9,]  2.6390 1.2500 3.5546 0.3102
[10,]  1.2316 0.5834 3.5546 0.5682
[11,]  1.4495 0.6866 3.5546 0.5160
[12,]  0.2764 0.1309 3.5546 0.8781
[13,] 10.6583 5.0487 3.5546 0.0182
[14,]  3.6146 1.7122 3.5546 0.2086
[15,]  0.2824 0.1338 3.5546 0.8757
[16,]  1.5912 0.7537 3.5546 0.4849
[17,]  0.7932 0.3757 3.5546 0.6921
[18,]  0.5071 0.2402 3.5546 0.7890
[19,]  4.1620 1.9715 3.5546 0.1682
[20,]  2.8867 1.3674 3.5546 0.2800

> mean(save.results[,4] < 0.05)
[1] 0.05
[image: ]


When using  = 0.05, 1 out of 20 of the samples resulted in a rejection of the null hypothesis. Examine the plot where this rejection occurred.  


Extensions for one mean vector 

The testing procedure can be generalized to test linear combinations of the individual means in . Let H be a qp matrix that forms the linear combinations of the means. 

For example, suppose p = 3. Then linear combinations of interest may be 1 – 2 = 0 and 1 – 3 = 0. In this case, the linear combinations can be formed with the following matrix multiplications: 



  
where 




We can now specify a specific vector of hypothesized values for H, say h. 

For example, suppose h = [0, 0]. Notice this implies 1 – 2 = 0 and 1 – 3 = 0 along with 2 – 3 = 0. Thus, 1 = 2 = 3.    

A test of 

H0:H = h 
Ha:H  h  

can be tested using: 







Under the null hypothesis and multivariate normality for x, the test statistic has an  distribution.

Another commonly used form for H is to specify a linear trend among the means. For example, a test for linear trend involves:  

H0: 	1 – 2 = 2 – 3, 
2 – 3 = 3 – 4, 
…, 
p-2 – p-1 = p-1 – p 
Ha: At least one  	

Why is this linear trend? 

Equivalently,

H0: 	1 – 22 + 3 = 0, 
2 – 23 + 4 = 0, 
…, 
p-2 – 2p-1 + p = 0
Ha: At least one  to 0

This leads to an H matrix of 







where  and .  

Tests can also be constructed for quadratic, cubic, or other trends using the correct contrasts of the ’s.  





Inference procedures for two mean vectors

Independent samples with 1 = 2


Let xi1, …,  is i.i.d. Np(i,i) for i = 1, 2, where i are i unknown. We can test 

H0:1 = 2 
Ha:1  2

using 




where 





(assumes 1 = 2). Under the null hypothesis, multivariate normality, and 1 = 2, the test statistic has a  distribution. Large values of the test statistic result in rejection of the null hypothesis. 

Linear combinations of the individual means can also be found to construct tests of interest. The test statistic becomes  





Under the null hypothesis, multivariate normality, and 1 = 2, the test statistic has a  distribution.


Independent samples with 1  2

To test H0:1 = 2 vs. Ha:1  2, use the statistic 


 

For a large sample, this statistic can be approximated by a 2 random variable with p degrees of freedom.  


Paired samples

Similar to how this problem is approached for the univariate setting, one can convert the two sample multivariate problem into a one sample problem!  

Let dr = x1r – x2r for r = 1, …, N. Then the dr’s can be considered a sample from a population with mean  = 1 – 2. To test H0: = 0 vs. Ha:  0, use the same T2 statistic as given at the beginning of this set of notes. 





Multivariate Analysis of Variance (MANOVA)

MANOVA is the multivariate generalization of univariate analysis of variance

Univariate ANOVA

Test the following hypotheses: 

H0:1 = 2 =  = m 
Ha:Not all equal

where i is the mean for population i. Population “i” can be thought of as treatment “i”.

Consider a completely randomized design (CRD) with only 1 factor. The means model is 

xir = i + ir 

where xir is the response of the rth experimental unit for treatment i, i is the population mean of treatment i, and ir is the error term with ir ~ i.i.d. N(0,2).  

The ANOVA Table: 
	Source 
	d.f.
	SS
	MS
	F

	Treatments
	m-1
	SST
	MST
	F

	Error
	N-m
	SSE
	MSE
	

	Total
	N-1
	SS(total)
	
	



Notes:
· “Source” means the source of variation
· “Error” means the within treatment variation
· “Treatments” means the between treatment variation 
· SST = Sum of squares for treatments
· SSE = Sum of squared errors
· SS(total) = total sum of squares = SST + SSE
· MST = Mean sum of squares for treatments
· MSE = Mean sum of squared errors
· F is the test statistic for H0:1 = 2 = … = m vs. Ha:Not all equal

Formulas:
· Average variation between the treatments: 


MST = SST/(m-1) =  




where , , and 

·  Average variation within the treatments


MSE = SSE/(n-m) = 

· Total variation 


SS(total) = 

· F = MST/MSE which has a F-distribution with m – 1 and N – m degrees of freedom in the numerator and denominator, respectively, provided the null hypothesis is true.


MANOVA

Test the following hypotheses: 

H0:1 = 2 =  = m 
Ha:Not all equal

where i = (i1,…,ip).

Notation:
· Let ij = mean response for variable j in treatment i for i = 1, …, m and j = 1, …, p. 
· Let xirj be the observed value of the jth response variable on the rth experimental unit from the ith treatment. These values can be put into a vector for the rth experimental unit in the ith population: xir = (xir1,…,xirp).  
· Let r = 1, …, Ni.  

The multivariate means model is 

xir = i + ir 

where ir = (ir1,…,irp) ~ independent Np(0,)  

Note that dependency is allowed for within an experimental unit. If the responses for the rth experimental unit were independent ( = 2I), then ANOVA methods could be used on each of the p variables.  

The error sums of squares and cross products matrix E plays the role of SSE in ANOVA. This matrix is often called the “within sum of squares” matrix. The matrix is 





where  and Ni = # of experimental units assigned to treatment i.  

The “between sums of squares” matrix H plays the role of SST in ANOVA. The matrix is: 


 


where .  

The “total sums squares” matrix is H + E: 


 

The MANOVA table is 

	Source 
	d.f.
	SS
	

	Treatments
	m-1
	H
	|E|/|H+E|

	Error
	N-m
	E
	

	Total
	N-1
	H+E
	



The  statistic tests H0: 1 = 2 =  = m vs. Ha: Not all equal. This can be seen to be similar to the F test in ANOVA by noting the following: 

Because F = MST/MSE and the null hypothesis is rejected when F is large, this is similar to saying reject the null hypothesis when SST/SSE is large.  Equivalently, reject the null hypothesis when 1+SST/SSE = (SSE+SST)/SSE is large. Taking the reciprocal produces a test of SSE/(SSE+SST) and reject the null hypothesis when this is small.  

Note that  is called Wilk’s lambda. It is actually a likelihood ratio test statistic where the main part of the statistic depends upon |E|/|H+E| (so this is why it is expressed this way instead of –2log(lik. ratio)). In the end, a somewhat complicated F-distribution approximation is used; see Johnson and Wichern’s textbook for details if you are interested. 

Questions:
· What if H0 is rejected? Examine which means are different by examining the variables one at a time using ANOVA methods.  
· What if H0 is not rejected? There is not a significant difference between the mean vectors. Johnson’s textbook recommends a conservative approach to still look for differences between means of variables. He says to use the Bonferroni procedure when looking for differences using ANOVA methods (i.e., use /p as the level of significance).  


Other testing procedures

Below are other testing procedures for H0: 1 = 2 =  = m vs. Ha: Not all equal

· Roy’s test: Based on the largest i of HE-1
· Lawley and Hotelling’s test: T = tr(HE-1)
· Pillai’s test: V = tr[H(H+E)-1] 

Notes: 
· In ANOVA, the uniformly most powerful unbiased (UMPU; see a mathematical statistics textbook for details) test for H0:1 = 2 =  = m vs. Ha:Not all equal is the F test. Unfortunately, no one testing procedure is UMPU in MANOVA.  
· Johnson recommends using Wilk’s likelihood ratio test, so I will only focus on this one. 
· When p = 1, all these tests and Wilk’s test are equivalent.


Example: CPT (CPT.R)

A pharmaceutical company is conducting safety clinical trials on a new drug used to treat schizophrenia patients. Healthy male volunteers were given 0, 3, 9, 18, 36, or 72mg of the drug. Before the drug was administered (time = 0) and at 1, 2, 3, 4 hours after, a psychometric test called the Continuous Performance Test (CPT) was administered. The CPT involves the following:
· A subject sits in front a computer screen.
· Randomly generated numbers from 0 to 9 appear on a computer screen.
· Each image is slightly blurred.
· One number appears every second for 480 seconds.
· Subjects are required to press a button whenever the number 0 appears.
· The response variable is the number of hits (i.e., the number of correct responses).

Does the number of hits change after the drug is administered? If it does, this could mean:
· drug causes drowsiness
· drug causes blurred vision
· Some other effect

In data sets like this, one usually will see it in the following format:
 
	
	
	Hits at time

	Patient
	Dose
	0
	1
	2
	 3  
	4

	101
	0
	98
	101
	100
	98
	101

	
	
	
	
	
	
	

	504
	72
	97
	96
	90
	86
	89



Because the data is owned by the company, I cannot use the actual data in the clinical trial. Instead, I simulated the data with the following R code:

> mu.dose0 <- c(100, 100, 100, 100, 100)
> mu.dose3 <- c(100, 100,  98,  96,  96)
> mu.dose9 <- c(100,  98,  96,  95,  94)
> mu.dose18 <- c(100, 97,  95,  94,  93)
> mu.dose36 <- c(100, 95,  92,  91,  90)
> mu.dose72 <- c(100, 94,  90,  89,  89)
 
> #Set the covariance matrix - same for each group assume
> rho <- 0.5
> var.common <- 9
> sigma <- var.common*matrix(data =
     c(    1,   rho, rho^2, rho^3, rho^4,
         rho,     1,   rho, rho^2, rho^3,
       rho^2,   rho,     1,   rho, rho^2,
       rho^3, rho^2,   rho,     1,   rho,
       rho^4, rho^3, rho^2,   rho,     1),
         nrow = 5, ncol = 5)>   N <- 10
> p <- 5
 
> library(mvtnorm)
 
> set.seed(1710)
> dose0 <- round(rmvnorm(n = N, mean = mu.dose0, sigma = 
    sigma),0)
> dose3 <- round(rmvnorm(n = N, mean = mu.dose3, sigma = 
    sigma),0)
> dose9 <- round(rmvnorm(n = N, mean = mu.dose9, sigma = 
    sigma),0)
> dose18 <- round(rmvnorm(n = N, mean = mu.dose18, sigma = 
    sigma),0)
> dose36 <- round(rmvnorm(n = N, mean = mu.dose36, sigma = 
    sigma),0)
> dose72 <- round(rmvnorm(n = N, mean = mu.dose72, sigma = 
    sigma),0)
 
> temp1 <- rbind(dose0, dose3, dose9, dose18, dose36, dose72)
> patient.numb <- 1:60
> dose.levels <- c(0,3,9,18,36,72)
> dose <- rep(x = dose.levels, times = 1, each = 10)
> cpt <- data.frame(patient = patient.numb, dose = dose,
    time0 = temp1[,1], time1 = temp1[,2],
    time2 = temp1[,3], time3 = temp1[,4],
    time4 = temp1[,5])
> head(cpt)
  patient dose time0 time1 time2 time3 time4
1       1    0   100   101   103   104   104
2       2    0   100    99    98    97   101
3       3    0   104   103   105   105   104
4       4    0   101   100   103    99   100
5       5    0   100    99    98   101    99
6       6    0    96    99    99   101   102

The purpose here is to determine if there are differences in the means hits for the treatment groups: 

Ho:0 = 3 = 9 = 18 = 36 = 72 
Ha:Not all equal

where i = (i0, i1, i2, i3, i4) and ij = mean hits at time j for dose group i. 

Below is the R code and output.

> save <- manova(formula = cbind(time0, time1, time2, time3, time4) ~ factor(dose), data = cpt)
> summary(save, test = "Wilks")
             Df   Wilks approx F num Df den Df    Pr(>F)    
factor(dose)  5 0.13998   5.2258     25 187.24 9.423e-12 ***
Residuals    54                                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> save.means <- aggregate(formula = cbind(time0, time1, 
    time2, time3, time4) ~ dose, data = cpt, FUN = mean)
> save.means
  dose time0 time1 time2 time3 time4
1    0 100.1  98.7  98.8  99.7 100.8
2    3  99.3  99.9  96.9  96.3  96.6
3    9  99.8  98.6  97.1  94.3  92.8
4   18 100.2  97.3  94.5  93.7  93.2
5   36 100.1  95.4  91.2  91.2  90.1
6   72  98.8  93.2  88.6  86.0  87.6

> plot(x = 0:4, save.means[1,-1], main = "Means by 
    treatment over time", ylim = c(min(save.means[,-1]), 
    max(save.means[,-1])), panel.first = grid(), type = 
    "o", col = "black", xlab = "Time", ylab = "Mean hits")
> lines(x = 0:4, save.means[2,-1], type = "o", col = "red")
> lines(x = 0:4, save.means[3,-1], type = "o", col = 
    "blue")
> lines(x = 0:4, save.means[4,-1], type = "o", col = 
    "green")
> lines(x = 0:4, save.means[5,-1], type = "o", col = 
    "purple")
> lines(x = 0:4, save.means[6,-1], type = "o", col = 
    "orange")
> legend(x = 0, y = 94, legend = 
    levels(as.factor(cpt$dose)), col = c("black", "red", 
    "blue", "green", "purple", "orange"), lty = 1, bty = "n")
[image: ]

> mod.fit0 <- aov(formula = time0 ~ factor(dose), data = cpt)
> summary(mod.fit0)
             Df Sum Sq Mean Sq F value Pr(>F)
factor(dose)  5   15.5   3.097    0.39  0.853
Residuals    54  428.7   7.939
   
> mod.fit1 <- aov(formula = time1 ~ factor(dose), data = cpt)
> summary(mod.fit1)
             Df Sum Sq Mean Sq F value   Pr(>F)    
factor(dose)  5  307.5   61.50   8.797 3.74e-06 ***
Residuals    54  377.5    6.99                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
   
> mod.fit2 <- aov(formula = time2 ~ factor(dose), data = cpt)
> summary(mod.fit2)
             Df Sum Sq Mean Sq F value   Pr(>F)    
factor(dose)  5  767.1  153.42   13.45 1.59e-08 ***
Residuals    54  615.9   11.41                       
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
   
> mod.fit3 <- aov(formula = time3 ~ factor(dose), data = cpt)
> summary(mod.fit3)
             Df Sum Sq Mean Sq F value   Pr(>F)    
factor(dose)  5   1085  216.99   22.71 3.42e-12 ***
Residuals    54    516    9.56                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  
> mod.fit4 <- aov(formula = time4 ~ factor(dose), data = cpt)
> summary(mod.fit4)
             Df Sum Sq Mean Sq F value   Pr(>F)    
factor(dose)  5 1098.5  219.70   28.08 6.76e-14 ***
Residuals    54  422.5    7.82                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notes: 
· The test for the equality of the mean vectors has a very small p-value. Thus, there is sufficient evidence to indicate a difference among the mean hits for the dosage levels. 
· Because the null hypothesis is rejected, it is of interest to determine what caused the rejection (i.e., which means are different). ANOVA methods can be used for each time level to examine if there is a difference between means. For this data set, time 0 does not have a significant difference between mean hits. The remaining times do have significant differences.
· Remember that the means used to generate the data were:

mu.dose0 <- c(100, 100, 100, 100, 100)
mu.dose3 <- c(100, 100,  98,  96,  96)
mu.dose9 <- c(100,  98,  96,  95,  94)
mu.dose18 <- c(100, 97,  95,  94,  93)
mu.dose36 <- c(100, 95,  92,  91,  90)
mu.dose72 <- c(100, 94,  90,  89,  89)

· If the MANOVA null hypothesis of equality of mean vectors was NOT rejected, many people would suggest to stop the analysis there. Johnson suggests to go ahead and look at the individual means using a Bonferroni adjustment to the level of significance. If  = 0.05, then to examine for differences between the individual means using ANOVA, a level of significance of 0.05/5 = 0.01 could be used. 


The above example is for a one-way fixed effects MANOVA model. These type of models can be extended to other situations, such as for a two-way fixed effects MANOVA model.  
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