## Introduction to R

- None


## Matrix algebra

- Matrix multiplication:

$$
\boldsymbol{A B}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]=\left[\begin{array}{ll}
a_{1} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{1}, b_{12}+a_{12} b_{22}+a_{13} b_{32} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{2} b_{12}+a_{22} b_{22}+a_{23} b_{32}
\end{array}\right]
$$

- Inverse: For $\mathbf{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right], \mathbf{A}^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right]$
- Trace: $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{p} a_{i i}=a_{11}+a_{22}+\ldots+a_{\text {pp }}$
- Determinant of $2 \times 2: \left\lvert\,\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} a_{22}-a_{12} a_{21}\right.$
- Eigenvalues: Roots of the polynomial equation $|\mathbf{A}-\lambda|=0$ where I is an identity matrix
- Eigenvectors: Each eigenvalue of $\mathbf{A}$ has a corresponding nonzero vector $\mathbf{b}$ that satisfies $\mathbf{A b}=\lambda \mathbf{b}$
- For eigenvalues $\lambda_{i}$ of $\mathbf{A}: \operatorname{tr}(\mathbf{A})=\sum_{i=1}^{p} \lambda_{i}$ and $|\mathbf{A}|=\prod_{i=1}^{p} \lambda_{i}=\lambda_{1} \lambda_{2} \cdots \lambda_{p}$
- Quadratic formula: The roots of the equation $a x^{2}+b x+c=0$ are $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- Vector length: $\sqrt{\sum_{i=1}^{\mathrm{D}} \mathrm{a}_{i}^{2}}$
- Positive definite matrices have all eigenvalues greater than 0 and positive semidefinite matrices are the same but with at least one eigenvalue equal to 0


## Data, distributions, and correlation

- $\rho_{\mathrm{ij}}=\frac{\sigma_{\mathrm{ij}}}{\sqrt{\sigma_{\mathrm{ii}} \sigma_{\mathrm{ij}}}}=\frac{\operatorname{Cov}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)}{\sqrt{\operatorname{Var}\left(\mathrm{x}_{\mathrm{i}}\right) \operatorname{Var}\left(\mathrm{x}_{\mathrm{j}}\right)}}$
- $\mu=E(\mathbf{x})=\left[\begin{array}{c}E\left(x_{1}\right) \\ \vdots \\ E\left(x_{p}\right)\end{array}\right]=\left[\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{p}\end{array}\right]$
- $\boldsymbol{\Sigma}=\operatorname{Cov}(\mathbf{x})=E\left[(\mathbf{x}-\mu)(\mathbf{x}-\mu)^{\prime}\right]=\left[\begin{array}{cccc}\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p 1} & \sigma_{p 2} & \cdots & \sigma_{p p}\end{array}\right]$
- $\boldsymbol{\Sigma}=\mathrm{E}\left(\mathbf{x x}^{\prime}\right)-\mu \mu^{\prime}$
- $\mathbf{P}=\operatorname{Corr}(\mathbf{x})=\left[\begin{array}{cccc}1 & \rho_{12} & \cdots & \rho_{1 p} \\ \rho_{21} & 1 & \cdots & \rho_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{p 1} & \rho_{\mathrm{p} 2} & \cdots & 1\end{array}\right]$
- Multivariate normal distribution, $\mathbf{x} \sim N_{p}(\mu, \Sigma): f(\mathbf{x} \mid \mu, \Sigma)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \mathrm{e}^{-\frac{1}{2}\left[(x-\mu) \Sigma^{-1}(\mathbf{x}-\mu)\right]}$ for $-\infty<x_{i}<\infty$, $\mathrm{i}=1, \ldots, \mathrm{p}$, and $|\Sigma|>0$
- $\hat{\mu}=\frac{1}{N} \sum_{r=1}^{N} \mathbf{x}_{r}=\frac{1}{N}\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\ldots+\mathbf{x}_{N}\right)$
- $\hat{\Sigma}=\frac{1}{N-1} \sum_{r=1}^{N}\left(\mathbf{x}_{r}-\hat{\mu}\right)\left(\mathbf{x}_{r}-\hat{\mu}\right)^{\prime}$
- $\hat{\sigma}_{\mathrm{ij}}=\operatorname{Cov}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\frac{1}{\mathrm{~N}-1} \sum_{\mathrm{r}=1}^{\mathrm{N}}\left(\mathrm{x}_{\mathrm{ri}}-\overline{\mathrm{x}}_{\mathrm{i}}\right)\left(\mathrm{x}_{\mathrm{rj}}-\overline{\mathrm{x}}_{\mathrm{j}}\right)$
- $r_{i j}=\operatorname{Corr}\left(x_{i}, x_{j}\right)=\frac{\hat{\sigma}_{i j}}{\sqrt{\hat{\sigma}_{i j} \hat{\sigma}_{j j}}}=\frac{\frac{1}{N-1} \sum_{r=1}^{N}\left(x_{r i}-\bar{x}_{i}\right)\left(x_{r j}-\bar{x}_{j}\right)}{\sqrt{\left[\frac{1}{N-1} \sum_{r=1}^{N}\left(x_{r i}-\bar{x}_{i}\right)^{2}\right]\left[\frac{1}{N-1} \sum_{r=1}^{N}\left(x_{r j}-\bar{x}_{j}\right)^{2}\right]}}=\frac{\sum_{r=1}^{N}\left(x_{r i}-\bar{x}_{i}\right)\left(x_{r j}-\bar{x}_{j}\right)}{\sqrt{\left[\sum_{r=1}^{N}\left(x_{r i}-\bar{x}_{i}\right)^{2}\right]\left[\sum_{r=1}^{N}\left(x_{r j}-\bar{x}_{j}\right)^{2}\right]}}$
- $\mathbf{R}=\left[\begin{array}{cccc}1 & r_{12} & \cdots & r_{1 p} \\ r_{21} & 1 & \cdots & r_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p 1} & r_{p 2} & \cdots & 1\end{array}\right]$
- $z_{r \mathrm{i}}=\frac{\mathrm{X}_{\mathrm{rj}}-\hat{\mu}_{\mathrm{j}}}{\sqrt{\hat{\sigma}_{\mathrm{ij}}}}$


## Graphics

- None


## PCA

- $y_{j}=\mathbf{a}_{j}^{\prime}(\mathbf{x}-\boldsymbol{\mu})$ for $\mathrm{j}=1, \ldots, p$
- Total variance: $\operatorname{tr}(\Sigma)=\sum_{i=1}^{p} \sigma_{i i}=\sigma_{11}+\sigma_{22}+\ldots+\sigma_{p p}$
- $\hat{y}_{j}=\hat{\mathbf{a}}_{j}^{\prime}(\mathbf{x}-\hat{\mu})$ for $j=1, \ldots, p$
- $\hat{y}_{r j}^{*}=\hat{\mathbf{a}}_{j}^{*} \mathbf{z}_{r}$ and $\hat{y}_{r j}=\hat{\mathbf{a}}_{j}^{\prime}\left(\mathbf{x}_{\mathrm{r}}-\hat{\mu}\right)$ for $\mathrm{j}=1, \ldots, p$ and $r=1, \ldots, N$


## FA

- $x_{j}=\mu_{j}+\lambda_{j 1} f_{1}+\lambda_{j 2} f_{2}+\ldots+\lambda_{j m} f_{m}+\eta_{j}$ for $j=1, \ldots, p$
- $\tilde{x}_{j}=\lambda_{j 1} f_{1}+\lambda_{j 2} f_{2}+\ldots+\lambda_{j m} f_{m}+\eta_{j}$ for $j=1, \ldots, p ; \underset{p \times 1}{\tilde{\mathbf{x}}}=\Lambda_{p \times m} \underset{m \times 1}{f}+\underset{p \times 1}{\eta}$
- $z_{j}=\lambda_{j 1} f_{1}+\lambda_{j 2} f_{2}+\ldots+\lambda_{j m} f_{m}+\eta_{j} f o r j=1, \ldots, p ;{\underset{p \times 1}{ }}_{\mathbf{z}}=\underset{p \times m}{\Lambda} \underset{m \times 1}{f}+\eta_{p \times 1}^{\eta}$
- $\operatorname{Var}\left(\mathrm{ay}_{1}+\mathrm{by}_{2}\right)=\mathrm{a}^{2} \operatorname{Var}\left(\mathrm{y}_{1}\right)+\mathrm{b}^{2} \operatorname{Var}\left(\mathrm{y}_{2}\right)+2 \mathrm{ab} \operatorname{Cov}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$
- $\Sigma=\Lambda \Lambda^{\prime}+\psi ; \operatorname{Var}\left(\mathrm{x}_{\mathrm{j}}\right)=\sum_{\mathrm{k}=1}^{m} \lambda_{\mathrm{jk}}^{2}+\psi_{\mathrm{j}}$ and $\operatorname{Cov}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}}\right)=\sum_{\mathrm{k}=1}^{m} \lambda_{\mathrm{j} k} \lambda_{\mathrm{jk}}$
- With standardized variables, $\mathbf{P}=\Lambda \Lambda^{\prime}+\psi, \sum_{k=1}^{m} \lambda_{\mathrm{jk}}^{2}+\psi_{\mathrm{j}}=1$, and $\operatorname{Corr}\left(\mathrm{z}_{\mathrm{j}}, f_{\mathrm{k}}\right)=\lambda_{\mathrm{jk}}$
- LRT: $A=(N-1-(2 p+4 m+5) / 6) \log \left(\frac{\left|\hat{\Lambda} \hat{\Lambda}^{\prime}+\hat{\Psi}\right|}{|[(N-1) / N] \hat{\Sigma}|}\right)$ can be approximated by $\chi_{\left([p-m)^{2}-p-m / 2\right.}^{2}$
- AIC: $-2 \log (L(\tilde{\mathbf{x}} \mid \hat{\Lambda}, \hat{\Psi}))+2($ degrees of freedom for model)
- Orthogonal matrix: Individual columns within a matrix are orthogonal to each other
- $\underset{p \times m}{\mathbf{B}}=\Lambda_{p \times m m \times m} \mathbf{T}$
- $V=\frac{1}{p^{2}} \sum_{q=1}^{m}\left(p \sum_{j=1}^{p} \frac{b_{i q}^{4}}{h_{j}^{4}}-\left(\sum_{j=1}^{p} \frac{b_{i q}^{2}}{h_{j}^{2}}\right)^{2}\right)$ where $h_{j}^{2}=\sum_{k=1}^{m} \lambda_{j k}^{2}$
- Bartlett's method (a.k.a., weighted least-squares method): $\hat{\mathbf{t}}_{\mathrm{t}}=\left(\hat{\Lambda}^{\prime} \hat{\Psi}^{-1} \hat{\Lambda}\right)^{-1} \hat{\Lambda}^{\prime} \hat{\Psi}^{-1} \mathbf{z}_{\mathrm{r}}$
- Thompson's method (a.k.a., regression method): $\hat{\mathbf{f}}_{\mathrm{r}}=\hat{\Lambda}^{\prime}\left(\hat{\Lambda} \hat{\Lambda}^{\prime}+\hat{\Psi}\right)^{-1} \mathbf{z}_{\mathrm{r}}$
$\underline{\mathbf{R} \text { functions }}$ - These functions are listed mostly in the order they were introduced in the notes


## Introduction to R

| Function | Description |
| :---: | :---: |
| pnorm() | Finds a cumulative probability from a univariate normal distribution |
| qnorm() | Finds a quantile from a univariate normal distribution |
| ls() and objects() | List items in R's database |
| c () | Combine items into a vector |
| sd() | Calculate a standard deviation |
| var () | Calculate a variance |
| sqrt() | Calculate a square root |
| read.table(file = "c: |  |
| chris |  |
| datafile.txt", header = TRUE, sep = "") | Read in a text data file with variable names in the first row and spaces separating the variable names and their values. |
| ```read.csv(file = "c:\\chris\\datafile.csv")``` | Read in a comma delimited data file. |
| summary () | Summarize information in a data frame or list |
| head() | Print the first few rows of a data frame |
| ```write.table(x = set1, file = "C:\\out_file.csv", quote = FALSE, row.names = FALSE, sep=",")``` | Save data in a data frame to a file. The data was in the data frame set 1 and it will be written as a comma delimited file named out file.csv. |
| plot ( $\mathrm{x}=\mathrm{x}, \mathrm{y}=\mathrm{y}$ ) | Plots y on the y -axis and x on the x -axis |
|  | Find the sample regression model with the response (dependent) variable y and explanatory (independent) variable x within set 1 |
| names () | Provide the names of items in a list |
| class() | State the class of an object |
| ```dev.new(width = 6, height = 6, pointsize = 10)``` | Opens a new graphics window that is $6 " \times 6$ " with font size of 10 |
| segments() | Draw a line segment on a plot |
| curve () | Plot a function of $x$, like $f(x)=x^{2}$ |
| expression() | Can be used to put Greek letters and mathematical symbols on a plot |
| axis() | Allows for finer control of an x or y -axis on a plot |
| methods() | List the method or generic functions |

## Matrix algebra

| Function | Description |
| :--- | :--- |
| matrix $(\mathrm{data}=\mathrm{c}(1,2,3,4,5,6)$, <br> $\mathrm{nrow}=2, \mathrm{ncol}=3, \mathrm{byrow}=$ <br> $\mathrm{TRUE})$ | Create a matrix of size $2 \times 3$ by row |
| t() | Transpose a matrix |
| $\mathrm{A}+\mathrm{B}$ | Matrix addition for matrices $\mathbf{A}$ and $\mathbf{B}$ |
| $\mathrm{A} \% * \% \mathrm{~B}$ | Matrix multiplication for $\mathbf{A}$ and $\mathbf{B}$ |
| $\mathrm{A} * \mathrm{~B}$ | Elementwise multiplication for $\mathbf{A}$ and $\mathbf{B}$ |


| $\operatorname{cbind}()$ | Combine elements by column |
| :--- | :--- |
| $\operatorname{solve}(\mathrm{A})$ | Find the inverse of $\mathbf{A}$ |
| $\operatorname{diag}(\mathrm{A})$ | Extract the diagonal elements of $\mathbf{A}$ |
| $\operatorname{sum}(\mathrm{A})$ | Sum the elements of $\mathbf{A}$ |
| $\operatorname{det}(\mathrm{A})$ | Determinant of $\mathbf{A}$ |
| eigen $(\mathrm{A})$ | Find the eigenvalues and eigenvectors of $\mathbf{A}$ |
| $\operatorname{abline}(\mathrm{h}=\mathrm{y})$ | Plots a horizontal line at $y$. A vertical line is plotted <br> with the argument v. |
| $\operatorname{arrows}()$ | Draw an arrow on a plot |

## Data, distributions, and correlation

| Function | Description |
| :---: | :---: |
| cov2cor () | Calculate a correlation matrix from a covariance matrix |
| dmvnorm () | $f(\mathbf{x})$ for a multivariate normal distribution; this is in the mvtnorm package |
| seq () | Create a sequence of numbers |
| persp3d() | 3D surface plot; this function is in the rgl package |
| contour () | Contour plot |
| cov () | Calculate estimated covariance matrix |
| cor () | Calculate estimated correlation matrix |
| colMeans() | Find the means of each column in a matrix |
| apply() | Apply a function to every row or column of a matrix |
| set.seed() | Set a seed number |
| rmvnorm () | Simulate random vectors from a multivariate normal distribution; this function is in the mvtnorm package |
| points() | Add points to a plot |
| scale() | Standardize columns of data |
| expand.grid() | Create all possible combinations of items within separate vectors |
| par () | Graphics parameters; pty = "s" creates a square plot, mfrow $=c(2,2)$ creates a $2 \times 2$ matrix of plots |

## Graphics

| Function | Description |
| :--- | :--- |
| pairs() | Side-by-side scatter plots |
| scatterplotMatrix() | Side-by-side scatter plots |
| symbols() | Bubble plot; circles argument specifies the third <br> variable; inches argument controls the maximum <br> size of the bubble |
| identify() | Interactively identifies points on a plot |
| text() | Puts text on a plot |
| plot3d() | 3D scatter plot; this function is within the rgl <br> package |


| grid3d () | Put gridlines on a plot created in the rgl package |
| :--- | :--- |
| stars () | Star plot |
| parcoord() | Parallel coordinate plot; this function is within the <br> MASS package |
| reshape () | Changes a data frame from a wide to long format <br> and vice versa |
| histogram () | Trellis histogram; this function is within the <br> lattice package |
| xyplot () | Trellis scatter plot; this function is within the <br> lattice package |
| cloud () | Trellis 3D scatter plot; this function is within the <br> lattice package |
| equal. count () | Creates shingles for a trellis plot; this function is <br> within the lattice package |

PCA

| Function | Description |
| :--- | :--- |
| princomp () | Performs PCA; cor argument specifies whether to <br> use the covariance (FALSE) or correlation (TRUE) <br> matrix |
| summary () | This function can be used to summarize the <br> information with an object created by <br> princomp (); the argument values of loadings <br> = TRUE and cutoff $=0.0$ will lead to the <br> printing of all the values within the eigenvectors |
| screeplot () | Creates a scree plot; this can also be done with the <br> plot () function |
| predict () | Computes PC scores when using an object <br> created by princomp () ; see my programs for <br> how to calculate the scores correctly |

FA

| Function | Description |
| :--- | :--- |
| factanal () | Performs FA; the rotation = "varimax" <br> argument specifies the varimax rotation method; <br> the scores argument can be used to specify the <br> type of scores ("regression" or "Bartlett") <br> to be calculated |
| print() | This function can be used to summarize the <br> information with an object created by <br> factanal (); the argument value of cutoff $=$ <br> 0.0 will lead to the printing of all common factor <br> loadings |

