Introduction to R

None

Matrix algebra

Matrix multiplication:

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{bmatrix}$$

- Inverse: For $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $\mathbf{A}^{-1} = \frac{1}{a_{11}a_{22} a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$
- Trace: $tr(\mathbf{A}) = \sum_{i=1}^{p} a_{ii} = a_{11} + a_{22} + ... + a_{pp}$
- Determinant of 2×2 : $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} a_{12}a_{21}$
- Eigenvalues: Roots of the polynomial equation $|\mathbf{A} \lambda \mathbf{I}| = 0$ where **I** is an identity matrix
- Eigenvectors: Each eigenvalue of **A** has a corresponding nonzero vector **b** that satisfies $\mathbf{Ab} = \lambda \mathbf{b}$
- For eigenvalues λ_i of **A**: $tr(\mathbf{A}) = \sum\limits_{i=1}^p \lambda_i$ and $\left|\mathbf{A}\right| = \prod\limits_{i=1}^p \lambda_i = \lambda_1 \lambda_2 \cdots \lambda_p$
- Quadratic formula: The roots of the equation $ax^2 + bx + c = 0$ are $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- Vector length: $\sqrt{\sum_{i=1}^{p} a_i^2}$
- Positive definite matrices have all eigenvalues greater than 0 and positive semidefinite matrices are the same but with at least one eigenvalue equal to 0

Data, distributions, and correlation

•
$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} = \frac{\text{Cov}(x_i, x_j)}{\sqrt{\text{Var}(x_i)\text{Var}(x_j)}}$$

•
$$\mu = E(\mathbf{x}) = \begin{bmatrix} E(x_1) \\ \vdots \\ E(x_p) \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_p \end{bmatrix}$$

$$\bullet \quad \Sigma = \text{Cov}(\mathbf{x}) = \text{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})'] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}$$

$$\bullet \quad \Sigma = \mathsf{E}(\mathbf{x}\mathbf{x}') - \mu\mu'$$

•
$$\mathbf{P} = \mathbf{Corr}(\mathbf{x}) = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{21} & 1 & \cdots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{p1} & \rho_{p2} & \cdots & 1 \end{bmatrix}$$

Multivariate normal distribution, $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$: $f(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2} \left[(\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]}$ for $-\infty < x_i < \infty$,

i=1,...,p, and $|\Sigma|>0$

•
$$\hat{\mu} = \frac{1}{N} \sum_{r=1}^{N} x_r = \frac{1}{N} (x_1 + x_2 + ... + x_N)$$

$$\bullet \quad \hat{\Sigma} = \frac{1}{N-1} \sum_{r=1}^{N} (\mathbf{x}_r - \hat{\boldsymbol{\mu}}) (\mathbf{x}_r - \hat{\boldsymbol{\mu}})'$$

•
$$\hat{\sigma}_{ij} = \text{Cov}(x_i, x_j) = \frac{1}{N-1} \sum_{r=1}^{N} (x_{ri} - \overline{x}_i)(x_{rj} - \overline{x}_j)$$

$$\bullet \quad r_{ij} = Corr(x_i, x_j) = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}} = \frac{\frac{1}{N-1}\sum\limits_{r=1}^{N}(x_{ri} - \overline{x}_i)(x_{rj} - \overline{x}_j)}{\sqrt{\left[\frac{1}{N-1}\sum\limits_{r=1}^{N}(x_{ri} - \overline{x}_i)^2\right]\left[\frac{1}{N-1}\sum\limits_{r=1}^{N}(x_{rj} - \overline{x}_j)^2\right]}} = \frac{\sum\limits_{r=1}^{N}(x_{ri} - \overline{x}_i)(x_{rj} - \overline{x}_j)}{\sqrt{\left[\sum\limits_{r=1}^{N}(x_{ri} - \overline{x}_i)^2\right]\left[\sum\limits_{r=1}^{N}(x_{rj} - \overline{x}_j)^2\right]}}$$

$$\bullet \quad R = \begin{bmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{bmatrix}$$

$$\bullet \quad \ \ Z_{rj} = \frac{X_{rj} - \hat{\mu}_j}{\sqrt{\hat{\sigma}_{jj}}}$$

Graphics

None

- **<u>PCA</u>** $y_i = a'_j(x \mu)$ for j = 1, ..., p
- Total variance: $tr(\Sigma) = \sum_{i=1}^{p} \sigma_{ii} = \sigma_{11} + \sigma_{22} + ... + \sigma_{pp}$
- $\hat{\mathbf{y}}_i = \hat{\mathbf{a}}_i'(\mathbf{x} \hat{\mathbf{\mu}}) \text{ for } j = 1, ..., p$
- $\hat{\mathbf{y}}_{ri}^* = \hat{\mathbf{a}}_i^* \mathbf{z}_r$ and $\hat{\mathbf{y}}_{ri} = \hat{\mathbf{a}}_i' (\mathbf{x}_r \hat{\boldsymbol{\mu}})$ for j = 1, ..., p and r = 1, ..., N

- $x_j = \mu_j + \lambda_{j1}f_1 + \lambda_{j2}f_2 + \dots + \lambda_{jm}f_m + \eta_j$ for $j = 1, \dots, p$ $\tilde{x}_j = \lambda_{j1}f_1 + \lambda_{j2}f_2 + \dots + \lambda_{jm}f_m + \eta_j$ for $j = 1, \dots, p$; $\tilde{\mathbf{x}}_j = \mathbf{\Lambda}_{p \times m m \times 1} \mathbf{f}_{p \times 1} + \mathbf{\eta}_{p \times 1}$
- $z_j = \lambda_{j1}f_1 + \lambda_{j2}f_2 + ... + \lambda_{jm}f_m + \eta_j$ for j = 1, ..., p; $\mathbf{z} = \Lambda \mathbf{f} + \eta_{p \times 1} \mathbf{f}$
- $Var(ay_1+by_2) = a^2Var(y_1) + b^2Var(y_2) + 2abCov(y_1,y_2)$

- $\Sigma = \Lambda \Lambda' + \psi$; $Var(x_j) = \sum_{k=1}^{m} \lambda_{jk}^2 + \psi_j$ and $Cov(x_j, x_{j'}) = \sum_{k=1}^{m} \lambda_{jk} \lambda_{j'k}$
- With standardized variables, $\mathbf{P} = \Lambda \Lambda' + \psi$, $\sum_{k=1}^{m} \lambda_{jk}^2 + \psi_j = 1$, and $Corr(z_j, f_k) = \lambda_{jk}$
- LRT: $A = (N-1-(2p+4m+5)/6)log\left(\frac{|\hat{\Lambda}\hat{\Lambda}'+\hat{\Psi}|}{|[(N-1)/N]\hat{\Sigma}|}\right)$ can be approximated by $\chi^2_{[(p-m)^2-p-m]/2}$
- AIC: $-2\log(L(\tilde{\mathbf{x}} \mid \hat{\Lambda}, \hat{\Psi})) + 2(\text{degrees of freedom for model})$
- Orthogonal matrix: Individual columns within a matrix are orthogonal to each other
- $\mathbf{B} = \mathbf{\Lambda} \mathbf{T}$
- $V = \frac{1}{p^2} \sum_{q=1}^m \left(p \sum_{j=1}^p \frac{b_{jq}^4}{h_j^4} \left(\sum_{j=1}^p \frac{b_{jq}^2}{h_j^2} \right)^2 \right)$ where $h_j^2 = \sum_{k=1}^m \lambda_{jk}^2$
- Bartlett's method (a.k.a., weighted least-squares method): $\hat{\mathbf{f}}_r = (\hat{\boldsymbol{\Lambda}}'\hat{\boldsymbol{\Psi}}^{-1}\hat{\boldsymbol{\Lambda}})^{-1}\hat{\boldsymbol{\Lambda}}'\hat{\boldsymbol{\Psi}}^{-1}\mathbf{z}_r$
- Thompson's method (a.k.a., regression method): $\hat{\mathbf{f}}_r = \hat{\Lambda}'(\hat{\Lambda}\hat{\Lambda}' + \hat{\Psi})^{-1}\mathbf{z}_r$

<u>R functions</u> – These functions are listed mostly in the order they were introduced in the notes

Introduction to R

Function	Description
pnorm()	Finds a cumulative probability from a univariate
	normal distribution
qnorm()	Finds a quantile from a univariate normal
	distribution
ls() and objects()	List items in R's database
c()	Combine items into a vector
sd()	Calculate a standard deviation
var()	Calculate a variance
sqrt()	Calculate a square root
<pre>read.table(file =</pre>	Read in a text data file with variable names in the
"c:\\chris\\datafile.txt",	first row and spaces separating the variable names
header = TRUE, sep = "")	and their values.
read.csv(file =	Read in a comma delimited data file.
"c:\\chris\\datafile.csv")	
summary()	Summarize information in a data frame or list
head()	Print the first few rows of a data frame
<pre>write.table(x = set1, file =</pre>	Save data in a data frame to a file. The data was in
"C:\\out_file.csv", quote =	the data frame set1 and it will be written as a
FALSE, row.names =	comma delimited file named out file.csv.
FALSE, sep=",")	_
plot(x = x, y = y)	Plots y on the y-axis and x on the x-axis
$lm(formula = y \sim x, data = set1)$	Find the sample regression model with the
	response (dependent) variable y and explanatory
	(independent) variable x within set1
names()	Provide the names of items in a list
class()	State the class of an object
dev.new(width = 6, height = 6,	Opens a new graphics window that is 6"×6" with
pointsize = 10)	font size of 10
segments()	Draw a line segment on a plot
curve()	Plot a function of x, like $f(x) = x^2$
expression()	Can be used to put Greek letters and mathematical
	symbols on a plot
axis()	Allows for finer control of an x or y-axis on a plot
methods()	List the method or generic functions

Matrix algebra

matrix argebra	
Function	Description
matrix(data = c(1, 2, 3, 4, 5, 6),	Create a matrix of size 2×3 by row
nrow = 2, $ncol = 3$, $byrow =$	·
TRUE)	
t()	Transpose a matrix
A+B	Matrix addition for matrices A and B
A%*%B	Matrix multiplication for A and B
A*B	Elementwise multiplication for A and B

cbind()	Combine elements by column
solve(A)	Find the inverse of A
diag(A)	Extract the diagonal elements of A
sum(A)	Sum the elements of A
det(A)	Determinant of A
eigen(A)	Find the eigenvalues and eigenvectors of A
abline(h = y)	Plots a horizontal line at y. A vertical line is plotted
	with the argument v.
arrows()	Draw an arrow on a plot

Data, distributions, and correlation

Function	Description
cov2cor()	Calculate a correlation matrix from a covariance matrix
dmvnorm()	f(x) for a multivariate normal distribution; this is in the mytnorm package
seq()	Create a sequence of numbers
persp3d()	3D surface plot; this function is in the rgl package
contour()	Contour plot
cov()	Calculate estimated covariance matrix
cor()	Calculate estimated correlation matrix
colMeans()	Find the means of each column in a matrix
apply()	Apply a function to every row or column of a matrix
set.seed()	Set a seed number
rmvnorm()	Simulate random vectors from a multivariate normal distribution; this function is in the mytnorm package
points()	Add points to a plot
scale()	Standardize columns of data
expand.grid()	Create all possible combinations of items within separate vectors
par()	Graphics parameters; pty = "s" creates a
	square plot, $mfrow = c(2,2)$ creates a 2×2
	matrix of plots

Graphics

Oraphics	
Function	Description
pairs()	Side-by-side scatter plots
scatterplotMatrix()	Side-by-side scatter plots
symbols()	Bubble plot; circles argument specifies the third
	variable; inches argument controls the maximum
	size of the bubble
identify()	Interactively identifies points on a plot
text()	Puts text on a plot
plot3d()	3D scatter plot; this function is within the rgl
	package

grid3d()	Put gridlines on a plot created in the rgl package
stars()	Star plot
parcoord()	Parallel coordinate plot; this function is within the MASS package
reshape()	Changes a data frame from a wide to long format and vice versa
histogram()	Trellis histogram; this function is within the lattice package
xyplot()	Trellis scatter plot; this function is within the lattice package
cloud()	Trellis 3D scatter plot; this function is within the lattice package
equal.count()	Creates shingles for a trellis plot; this function is within the lattice package

PCA

Function	Description
princomp()	Performs PCA; cor argument specifies whether to
	use the covariance (FALSE) or correlation (TRUE)
	matrix
summary()	This function can be used to summarize the
	information with an object created by
	princomp(); the argument values of loadings
	= TRUE and cutoff = 0.0 will lead to the
	printing of all the values within the eigenvectors
screeplot()	Creates a scree plot; this can also be done with the
	plot() function
predict()	Computes PC scores when using an object
	created by princomp(); see my programs for
	how to calculate the scores correctly

FA

Function	Description
factanal()	<pre>Performs FA; the rotation = "varimax"</pre>
	argument specifies the varimax rotation method;
	the scores argument can be used to specify the
	<pre>type of scores ("regression" or "Bartlett")</pre>
	to be calculated
print()	This function can be used to summarize the
	information with an object created by
	<pre>factanal(); the argument value of cutoff =</pre>
	0.0 will lead to the printing of all common factor
	loadings