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3.11 Case Example 

Read example given in the book for this section.  

Example: HS and College GPA (GPA_3.11_example.R)
The following will be examined relative to the HS and College GPA data set: 

1) Diagnostics for predictor and response variable

2) Linearity of the regression model

3) Constant error variance

4) Independence of (i
5) Outliers

6) Normality of (i
7) Additional predictor variables

To help you out, I have written a function that automates many of the plots done before.  While this function will make your life a little easier, you are still responsible for understanding all parts of it.  Also, this function serves as a great example of how you can easily program your own function to do items in this class.  
The function called examine.mod.simple() is in the program examine.mod.simple.R.  Run this program once before running the corresponding function for any data set.  This needs to be done for each R session.  I recommend actually using the examine.mod.simple.R program instead of copying and pasting the code shown next into your own program!  

Code: 
    #########################################################

# NAME:  Chris Bilder                                                # DATE:                                                       

# UPDATE:                                                            

# Purpose: Automate part of the simple linear regression           

           diagnostic procedures into one function.                             

# NOTES: This function needs to be run just once before it 
         used. One needs to call the function with the 
         model fit object only. For example,                                                                                                                     
#  examine.mod.simple(mod.fit.obj = mod.fit)                                                                                           #

#        The seed for jittering can be changed with the 
         seed option.  Also, the Levene and Breusch-
         Pagan test can be performed if the const.var.test 
         option is change to TRUE.  Note that the 
         car and lmtest packages need to be loaded for 
         these tests. The X and Y optional values can be 
         used if a transformation of X or Y was used for 
         the model.  For example, if log(Y) was used, then 
         fit the model with log(Y) and include the Y = 
         log(original Y variable) when invoking this 
         function. The boxcox.find = TRUE option produces              
         an estimate for lambda.                                              ###########################################################

examine.mod.simple<-function(mod.fit.obj, seed = 9180, 
              const.var.test = FALSE, X = NULL, Y = NULL, 
                boxcox.find = FALSE) {

  n<-length(mod.fit.obj$residuals)
  if (is.null(X)) { X<-mod.fit.obj$model[,2]}

  if (is.null(Y)) { Y<-mod.fit.obj$model[,1]}
##########################################################

#Graph window #1 

    #Open a new plotting window 2x2

    win.graph(width = 6, height = 6, pointsize = 10)

    par(mfrow = c(2,2)) 

    set.seed(seed) 

    boxplot(x = X, col = "lightblue", main = "Box plot", 
            ylab = "Predictor variable", xlab = " ") #(1,1)
    stripchart(x = X, method = "jitter", vertical = TRUE, 
            pch = 1, main = "Dot plot", ylab = "Predictor 

            variable") 






 #(1,2)
    boxplot(x = Y, col = "lightblue", main = "Box plot", 
            ylab = "Response variable", xlab = " ") #(2,1)
    stripchart(x = Y, method = "jitter", vertical = TRUE, 
            pch = 1, main = "Dot plot", ylab = "Response 
  

   variable") 






 #(2,2)
    #Initial summary statistics

    summary.data<-summary(data.frame(Y,X))

    ##########################################################

#Graph window #2
    #Open a new plotting window 2x2

    win.graph(width = 6, height = 6, pointsize = 10)

    par(mfrow = c(2,2)) 

    sum.fit<-summary(mod.fit.obj)

    semi.stud.resid<- mod.fit.obj$residuals/sum.fit$sigma  

    #(1,1) - Scatter plot with sample model

    plot(x = X, y = Y, main = "Response vs. predictor",        

         xlab = "Predictor variable", ylab = "Response 
             variable", panel.first = grid(col = "gray", lty = 
             "dotted"))

    curve(expr = mod.fit.obj$coefficients[1] + 
                 mod.fit.obj$coefficients[2]*x, col = 
          "red", add = TRUE, xlim = c(min(X), max(X)))
    #(1,2) - e.i vs. X.i

    plot(x = X, y = mod.fit.obj$residuals, ylab = 
         "Residuals", main = "Residuals vs. predictor", 
         xlab = "Predictor variable", panel.first = 
         grid(col = "gray", lty = "dotted"))

    abline(h = 0, col = "red")

    #(2,1) - e.i vs. Y.hat.i

    plot(x = mod.fit.obj$fitted.values, y = 
         mod.fit.obj$residuals, xlab = "Estimated mean 
         response", ylab = "Residuals", main = "Residuals 
         vs. estimated mean response", panel.first = 
         grid(col = "gray", lty = "dotted"))

    abline(h = 0, col = "red")

    #(2,2) - e.i.star vs. Y.hat.i

    plot(x = mod.fit.obj$fitted.values, y = 
         semi.stud.resid, xlab = "Estimated mean response", 

         ylab = "Semistud. residuals", main = 
         expression(paste(e[i]^{"*"}, " vs. estimated mean 
         response")), panel.first = grid(col = "gray", lty 
         = "dotted"), ylim = c(min(semi.stud.resid,-3), 
         max(semi.stud.resid,3)))

    abline(h = 0, col = "red")

    abline(h = c(-3,3), col = "red", lwd = 2)

    identify(x = mod.fit.obj$fitted.values, y = 
             semi.stud.resid)
  #########################################################

  #Graph window #3
    #Open a new plotting window 2x2 

    win.graph(width = 6, height = 6, pointsize = 10)

    par(mfrow = c(2,2)) 

    #e.i vs. obs. number

    plot(x = 1:n,, y = mod.fit.obj$residuals, xlab = 
         "Observation number", ylab = "Residuals", type = 
         "o", main = "Residuals vs. observation number", 
         panel.first = grid(col = "gray", lty = "dotted"))

    abline(h = 0, col = "red")

    #Histogram of the semi-studentized residuals with 
       normal distribution overlay

    hist(x = semi.stud.resid, main = "Histogram of semi-
         stud. residuals", xlab = "Semi-stud. residuals",

         freq = FALSE)

    curve(expr = dnorm(x, mean = mean(semi.stud.resid), sd 
          = sd(semi.stud.resid)), col = "red", add = TRUE)

    #QQ-plot done by R

    qqnorm(y = semi.stud.resid, ylab = "Semi-stud. 
           residuals", panel.first = grid(col = "gray", lty 
           = "dotted"))

    qqline(y = semi.stud.resid, col = "red")

  #Save all results so far

  save.res<-list(sum.data = summary.data, semi.stud.resid = 
                 round(semi.stud.resid,2))

     ##########################################################

#Levene and BP tests - Examine the residuals for 
     normality

  if (const.var.test) {

    library(car)     #The Levene's Test function is in the 
                      package for Fox's book

    group<-ifelse(test = X < median(X), yes = 1, no = 2)

    save.levene<-leveneTest(y = mod.fit$residuals, group = 
                             factor(group))

    library(lmtest)  #Location of BP test function

    save.bp<-bptest(formula = Y ~ X,  studentize = FALSE)  
                    #KNN Version of the test

    save.res$levene<-save.levene

    save.res$bp<-save.bp

  }

  ##########################################################

#Box-cox transformation

  if (boxcox.find) {

    library(MASS)     #Function is in the MASS library

    save.bc<-boxcox(object = mod.fit.obj, lambda = seq(from 
                     = -2, to = 2, by = 0.01))
    title(main = "Box-Cox transformation plot")

    lambda.hat<-save.bc$x[save.bc$y == max(save.bc$y)] 

    save.res$lambda.hat<-lambda.hat

  }

#########################################################

#Return results

    save.res

}

Notes:

1) The function just puts together much of the same code that we have seen before for this chapter!

2) The identify() function allows one to interactively identify points on a plot.  I used this function with the 
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 plot to help identify outliers.  When this plot appears, simply left click the mouse next to the point that you want to identify.  R will put the observation number next to the point.  When you are done identifying observations, right click the mouse and select STOP.  

3) I stored the summary information for each variable and the semi-studentized residuals in a list object.  These items can be accessed then just like those from when the lm() function is used.    
4) The ei vs. observation number plot has not been shown before.  For the x-axis, I simply used x = 1:n to plot the residuals against.  The type = “o” option joins the points with a line.  
5) The Levene and Breusch-Pagan tests are optional.  By default, they will not be run.  If you want to run them, use the var.test = TRUE option in the call to examine.mod.simple().  Notice in the program how I use an if() function to implement these tests.

6) A good way to learn what every part of the function code does is to not run the function directly, but instead step through it.  For example, set mod.fit.obj<- ___  for your data of interest and then begin running each line of the function one at a time.  

Below is the code and output for the HS and College GPA data set: 
> mod.fit<-lm(formula = College.GPA ~ HS.GPA, data = gpa)

> save.it<-examine.mod.simple(mod.fit.obj = mod.fit, 
                              const.var.test = TRUE)

>   save.it
$sum.data

       Y               X        

 Min.   :1.400   Min.   :0.830  

 1st Qu.:1.975   1st Qu.:2.007  

 Median :2.400   Median :2.370  

 Mean   :2.505   Mean   :2.569  

 3rd Qu.:3.025   3rd Qu.:3.127  

 Max.   :3.800   Max.   :4.320  

$semi.stud.resid

    1     2     3     4     5     6     7     8     9    10    11    12    13 

 0.89 -0.17  1.36 -0.81 -0.63 -0.10  1.08  0.91  0.71  1.05 -1.28 -1.22  1.00 

   14    15    16    17    18    19    20 

-0.63  0.80 -1.16 -1.02  0.99 -0.35 -1.42
$levene

Levene's Test for Homogeneity of Variance

      Df F value Pr(>F)

group  1  0.0766 0.7851

      18               

$bp

        Breusch-Pagan test

data:  Y ~ X 

BP = 0.1959, df = 1, p-value = 0.658
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1) Diagnostics for predictor and response variable

There are no outlying values and the range of the X values are 0.83 to 4.32.  

2) Linearity of the regression model

Examine the plot of ei vs. Xi.  The points appear to be randomly scattered in the plot.  Therefore, there does not appear to be a transformation needed.  

3) Constant error variance

Examine the plot of ei vs. 
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.  The points appear to be randomly scattered in the plot.  The constant variance tests had large p-values.  Therefore, there does not appear to be a transformation needed.  

4) Independence of (i 
Examine a plot of ei vs. order of the observation.  The points appear to be randomly scattered in the plot.  Therefore, the (i do not appear to be dependent.  

5) Outliers

Examine a plot of 
[image: image6.wmf]i

e

*

 vs. 
[image: image7.wmf]i

ˆ

Y

 with reference lines at 
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=–3 and 
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=3.  There are no 
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>3 or <-3.  Therefore, there does not appear to be any outliers.  I did identify a few observations ONLY to demonstrate how it could be done.  Normally, you would want to identify only those outside of the -3 to 3 range .  
6) Normality of (i
Examine the histogram and QQ-plot of 
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.  Both plots show that there could be a problem with normality.  This is because the points on the QQ-plot tend to deviate from the straight line and the shape of the histogram is poorly approximated by the normal distribution curve.  Normality though is hard to assess with only a sample of size 20.  Transformations of the dependent variable will be considered to see if we can find an improvement over the current results.  

7) Additional predictor variables 
I will do this after seeing if we can find a fix for the potential normality problem.  

Investigate transformation of Y: 

Although regression analysis is robust to nonnormality, some transformations are investigated.  

>   mod.fit2<-lm(formula = log(College.GPA) ~ HS.GPA, data 
                = gpa)

>   save.it2<-examine.mod.simple(mod.fit.obj = mod.fit2, 
              const.var.test = TRUE, Y = 
              log(gpa$College.GPA))
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>  mod.fit3<-lm(formula = sqrt(College.GPA) ~ HS.GPA, data 
                = gpa)

>  save.it3<-examine.mod.simple(mod.fit.obj = mod.fit3, 
              const.var.test = TRUE, Y = 
               sqrt(gpa$College.GPA))
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>  mod.fit4<-lm(formula = 1/College.GPA ~ HS.GPA, data = 
                gpa)

>  save.it4<-examine.mod.simple(mod.fit.obj = mod.fit4, 
              const.var.test = TRUE, Y = 1/gpa$College.GPA)
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Comments:

1. There are not any new problems that appear when using a transformed Y.  

2. The QQ-plots using log(Y) look to be the best.  While there are still some departures from normality, it looks like the log transformation did improve it some. 

3. The histograms still do not look like a normal distribution.  

4. Again with a sample size of only 20, it is difficult to assess the normality assumption of the regression model.  

5. If I did use a transformation, I would use the log transformation.  Given the robustness against normality problems and the difficulty with assessing normality with a sample of size 20, the log transformation or no transformations would be acceptable.  

6. If the log transformation model were used, the model would be expressed as: 
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log(Y)0.15180.2829X

=+

 where Y = College GPA and X = HS GPA.  Below is the summary() output for the model.  

>   summary(mod.fit2)

Call:

lm(formula = log(College.GPA) ~ HS.GPA, data = gpa)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.234085 -0.093411  0.003890  0.113817  0.182895 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.15184    0.08690   1.747   0.0976 .  

HS.GPA       0.28292    0.03189   8.871 5.46e-08 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.1294 on 18 degrees of freedom

Multiple R-Squared: 0.8138,     Adjusted R-squared: 0.8035 

F-statistic: 78.69 on 1 and 18 DF,  p-value: 5.462e-08

7) Additional predictor variables 

Would the model work better if an additional variable, pizza consumption, were added to the model?  If so, the model would be a “multiple” regression model of the form


E(Y) = (0 + (1X1 + (2X2 

where Y = College GPA, X1 = HS GPA, and X2 = Pizza consumption.  I am only going to consider the model without any transformations.    

In general, we can examine a plot of ei vs. the new variable to assess whether or not a new variable should be added to the model.  If there is a pattern, the variable should included.  If there is not a pattern, the variable should be not included.  Why?

These plots can be obtained with the following code: 

>  gpa2<-read.table(file = 
"C:\\chris\\UNL\\STAT870\\Chapter2\\data\\College_GPA_pizza.txt", header=TRUE, sep = "")

>   head(gpa2)

  pizza College.GPA

1     2         3.1

2     9         2.3

3     3         3.0

4     5         1.9

5     3         2.5

6     1         3.7

>   par(mfrow = c(1,1))

>   plot(x = gpa2$pizza, y = mod.fit$residuals, xlab = 
        "Times ate pizza", ylab = "Residual", main = 
        "Residual vs. Pizza consumption", panel.first = 
        grid(col = "gray", lty = "dotted"))

>   abline(h = 0, col = "red")
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The points appear to be randomly scattered in the plot.  Therefore, pizza consumption does not appear to be a useful additional variable.  

See p. 113 for another example of what these types of plots may look like.  If we plotted residual vs. X2 = 0 for company A and X2 = 1 for company B, our plot would look like





Again, a pattern can be seen so X2 should be included in the model.  X2 is called an indicator variable, which is used to include qualitative predictor variables (like, company) in a regression model.  We will discuss qualitative predictor variables in more detail later.  
3.10 Exploration of shape of regression function

Read on your own.  

�If there is a pattern, that says there is a relationship between e and X_2 (say).  This means that after accounting for X_1, there is still some information in Y that can be accounted for by X_2.  
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