PAGE  
4.16

4.1 Joint estimation of (0 and (1 

Suppose separate 95% confidence intervals are constructed for (0 and (1.  What is the confidence level that BOTH confidence interval inferences are correct?  

NOT 95%!  

If these inferences were independent, then the probability of both being correct is 0.952=0.9025.  However, they are not independent, which makes the actual confidence level difficult to calculate.  

Family and statement (individual) confidence coefficients

A set of estimates or hypothesis tests of interest are called a “family”. 

If we are interested in inferences for (0 and (1 simultaneously, then they form a family.  

Each individual estimate or hypothesis test has a confidence level associated with it. 

For example, a 95% confidence interval for (1.  

The family confidence level corresponds to the level of confidence that all inferences are correct for the entire family.  

For example, a C% confidence level that both (0 and (1 are within their confidence interval limits.  

Bonferroni joint confidence intervals

Find an expression for the probability that both confidence intervals contain their corresponding parameters; i.e., find the family confidence level. 

Let A1 = the event that (0 is not in the C.I.

Let A2 = the event that (1 is not in the C.I.

The probability that at least one confidence interval does not contain (i is P(A1 or A2)  = P(A1 ( A2).  At least one means that A1 is true or A2 is true or A1 and A2 are true.

The probability that BOTH confidence intervals contain their corresponding parameters is 1-P(A1 ( A2) (use the complement).  

From the addition theorem of probability (p. 662 of KNN), 

P(A1 ( A2) = P(A1) + P(A2) – P(A1 ( A2)  

where P(A1 ( A2) = P(A1 and A2) = probability both confidence intervals do NOT contain their corresponding parameters.  

Thus, 1 - P(A1 ( A2) = 1 - P(A1) - P(A2) + P(A1 ( A2)  

( 1 - P(A1 ( A2) ( 1 - P(A1) - P(A2) 

In words: The probability that both confidence intervals contain their corresponding parameters is greater than or equal to 1 minus the probability (0 is not in its confidence interval minus the probability (1 is not in its confidence interval.

For a (1-()100% confidence interval, P(Ai)=( for i=1,2.

If 95% confidence intervals are formed for (0 and (1, then the probability that both intervals contain their corresponding parameters is ( 1 – 0.05 – 0.05 = 0.90.  

Suppose a family confidence level of at least 95% is desired.  Then using 97.5% confidence intervals for each gives the desired level.  

In general for a “Bonferroni” family confidence level of at least (1-()100%, the confidence levels for each of 2 C.I. are 1-(/2.  This is because 1-P(A1 ( A2) ( 1 - P(A1) - P(A2) = 1 - (/2 - (/2 = 1-(.  The C.I.s for (0 and (1 are: 
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For (1: 
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Example: HS and College GPA (HS_college_GPA_ch4.R)

Find C.I.s for (0 and (1 using a family confidence level of 95%.  

> #Read in the data

> gpa<-read.table(file = 
       "C:\\chris\\UNL\\STAT870\\Chapter1\\gpa.txt", 
       header=TRUE, sep = "")

> head(gpa)

  HS.GPA College.GPA

1   3.04         3.1

2   2.35         2.3

3   2.70         3.0

4   2.05         1.9

5   2.83         2.5

6   4.32         3.7

> mod.fit<-lm(formula = College.GPA ~ HS.GPA, data = gpa)

> sum.fit<-summary(mod.fit)

> sum.fit$coefficients

             Estimate Std. Error  t value     Pr(>|t|)

(Intercept) 0.7075776 0.19941429 3.548279 2.296706e-03

HS.GPA      0.6996584 0.07319166 9.559264 1.778933e-08 

> alpha<-0.05
> g<-2
> qt(p = 1-alpha/(2*g), df = mod.fit$df.residual)

[1] 2.445006

For (0: 
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For (1: 
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We are at least 95% confident that (0 is between 0.2200 and 1.1951 and (1 is between 0.5207 and 0.8787.  

More R code and output:

> mod.fit$coefficients[1]-qt(p = c(1-alpha/(2*g), 

           alpha/(2*g)), df = mod.fit$df.residual) 

           *sum.fit$coefficients[1,2]

[1] 0.2200086 1.1951467

> mod.fit$coefficients[2]-qt(p = c(1-alpha/(2*g), 

      alpha/(2*g)), df = mod.fit$df.residual) 

      *sum.fit$coefficients[2,2]

[1] 0.5207044 0.8786124
> #Another way

> confint(object = mod.fit, level = 1 - alpha/g) 

               1.25 %   98.75 %

(Intercept) 0.2200086 1.1951467

HS.GPA      0.5207044 0.8786124

Notes:

1. The Bonferroni (1-()100% family confidence level is a lower bound.  The actual family confidence level may be higher.  

2. This procedure of finding a lower bound can be extended to g simultaneous confidence intervals.  Instead of using 1-( for the individual confidence levels, 1-(/g is used to assure at least a (1-()100% family confidence level.  Thus, 1-(/(2g) needs to be used when finding the t-distribution quantile because a two-sided confidence interval is being found.  
3. It is best to use this procedure when g is small.  If g is large, the individual confidence levels become close to 1 which causes the confidence intervals to be very wide. 

4.2 Simultaneous estimation of mean responses

Remember that E(Yh) is the mean value of Yh at a specific Xh.  The (1-()100% C.I. for E(Yh) at Xh is (from Section 2.4): 
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Suppose we wanted to find C.I.s for E(Yh) at many different Xh values with a family confidence level of 1-(.  

Bonferroni procedure

To have a family confidence level of at least 1-(, the Bonferroni confidence limits are: 
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where g is the number of C.I.s in the family.  

Example: College and HS GPA (HS_college_GPA_ch4.R)
Find C.I.s for E(Yh) at Xh=2.0, 2.5, 3.0, 3.5, 4.0 with at least a 95% family confidence level. 

>   more.gpa<-data.frame(HS.GPA = c(2, 2.5, 3, 3.5, 4))

>   g<-nrow(more.gpa)

>   round(predict(object = mod.fit, newdata = more.gpa, 
          interval = "confidence", level = 1-alpha/g), 2)

   fit  lwr  upr

1 2.11 1.88 2.33

2 2.46 2.26 2.65

3 2.81 2.59 3.02

4 3.16 2.88 3.43

5 3.51 3.15 3.86

Note the confidence level used for each individual confidence interval above (1 – (/g = 1 – 0.05/5 = 0.99).

4.3 Simultaneous prediction intervals for a new observation

Suppose we want to estimate (or predict) the random variable, Yh.  Remember that Yh(new) is the notation of KNN to denote this value.  

The (1-()100% P.I. for Yh(new) at Xh is (from Section 2.5): 
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where 
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Suppose we wanted to find P.I.s for Yh(new) at many different Xh values with a family confidence level of 1-(.  

Bonferroni procedure

To have a family confidence level of at least 1-(, the Bonferroni confidence limits are: 


[image: image12.wmf]hh(new)

ˆˆ

Yt1,n2Var(Y)

2g

Ù

æö

a

±--

ç÷

èø


where g is the number of P.I.s in the family.  

Example: College and HS GPA (HS_college_GPA_ch4.R)

Continuing the example from Section 4.2, 
>   round(predict(object = mod.fit, newdata = more.gpa, 
          interval = "prediction", level = 1-alpha/g),2)

   fit  lwr  upr

1 2.11 1.22 2.99

2 2.46 1.58 3.33

3 2.81 1.93 3.69

4 3.16 2.26 4.05

5 3.51 2.58 4.43

Question: In Chapter 2, we found confidence and prediction interval bands for all E(Y) and Y within the appropriate range for X values.  
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Suppose we want to use the Bonferroni procedure here.  What should g be? 

4.4 Regression through the origin
Sometimes it may be known that when X is 0 Y must also be 0.  In this case, the population regression model may be taken to be Yi=(1Xi+(i.  This changes the least squares estimate for (1, MSE, and other estimates (see p. 162).  To use the lm() function in R, simply use “y ~ x – 1” or “y ~ 0 + x” in the formula option.  Most often, it is NOT known that the model goes through (0,0).  Therefore, it is safer to just leave (0 is the model.  If (0 is truly 0, then b0 should be close to 0 (differing only by sampling variability).  

4.5 Effects of measurement errors

The response and predictor variables may have errors in their recorded values.  

For example, suppose football players are timed with a stopwatch in the 40-yard dash.  Most likely the time recorded is not exactly correct (human error).  

If there are measurement errors for the response variable, these are absorbed by the model error term (. 

If there are measurement errors in the predictor variable, this generally causes problems with using the regression analysis methods discussed in this class.  See Fuller (1987) for one reference on the subject.  

4.6 Inverse Prediction

Use the regression model to make a prediction about X.

Suppose a new Y observation becomes available, Yh(new), and we want to predict the corresponding Xh(new) value.  This is like going in the opposite direction from what we have been doing all semester!  
Since the sample regression model is 
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.  Since Yh(new) is known and we want to predict X, the above can be rewritten as:
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The true value of X for Yh(new) is denoted by Xh(new).

The approximate (1-()100% C.I. for Xh(new) is:
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where  
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Inverse prediction is often used to calibrate a measurement taking instrument.  
Example: Calibrate a thermometer 
(calibrate.R)

Suppose a thermometer is being calibrated to determine if it is reliable enough for a physician to use with patients.  It is placed in a water bath at a known constant temperature X, and the corresponding temperature reading Y is recorded.  Below are the data: 

	Y
	X

	95.71
	96

	98.16
	98

	99.52
	100

	102.09
	102

	103.79
	104

	106.18
	106

	108.14
	108

	110.21
	110


The thermometer is later used to measure the temperature of a patient.  Suppose the temperature reading is Yh(new)=104.  Find a 95% C.I. for Xh(new). 

> #One way to enter the data into R

> set1<-data.frame(Y = c(95.71, 98.16, 99.52, 102.09, 
                         103.79, 106.18, 108.14, 110.21),

                   X = c(96,    98,    100,   102,        
                         104,    106,    108,    110))

> set1

       Y   X

1  95.71  96

2  98.16  98

3  99.52 100

4 102.09 102

5 103.79 104

6 106.18 106

7 108.14 108

8 110.21 110

> mod.fit<-lm(formula = Y ~ X, data = set1)

> sum.fit<-summary(mod.fit)

> sum.fit

Call:

lm(formula = Y ~ X, data = set1)

Residuals:

     Min       1Q   Median       3Q      Max 

-0.36429 -0.09381  0.01857  0.12202  0.33619 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) -3.13952    1.86490  -1.683    0.143    

X            1.03024    0.01809  56.957 1.97e-09 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.2344 on 6 degrees of freedom

Multiple R-Squared: 0.9982,     Adjusted R-squared: 0.9978 

F-statistic:  3244 on 1 and 6 DF,  p-value: 1.967e-09 

The sample regression model is 
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> Y.new<-104
> alpha<-0.05

> n<-nrow(set1)

> X.hat.new<-(Y.new - mod.fit$coefficients[1]) / 

              mod.fit$coefficients[2]
> as.numeric(X.hat.new)

[1] 103.9949
> sum.sq<-var(set1$X)*(n-1)

> var.X.hat.new<-sum.fit$sigma^2 / 
     mod.fit$coefficients[2]^2 * (1 + 1/n + (X.hat.new – 

     mean(set1$X))^2/sum.sq)

> save.ci<-X.hat.new-qt(p = c(1-alpha/2,alpha/2), df = 
           mod.fit$df.residual)*sqrt(var.X.hat.new)

> round(save.ci,2)

[1] 103.40 104.59

The 95% C.I. for Xh(new) is (103.40, 104.59).  

> #pty = "s": Use square plot here since both variables are 
              measured on the same scale - "m" is default

> #xaxs and yaxs = "i" forces the x and y-axes to be 
           exactly within the given range - "r" is default

> par(pty = "s", xaxs = "i", yaxs = "i")  

> plot(x = set1$X, y = set1$Y, xlab = "Water bath 
       temperature (X)", ylab = "Thermometer temperature 
       (Y)", main = "Thermometer temperature vs. Water bath 
       temperature", panel.first = grid(col = "gray", lty = 
       "dotted"), xlim = c(95, 112), ylim = c(95, 112))

> #Add tick marks without labels, side = 1 is x-axis, tcl 
       is length of tick mark
> axis(side = 1, at = seq(from = 95, to = 112, by = 1), 
       labels = FALSE, tcl = -0.25)  

> #Add tick marks without labels, side = 2 is y-axis
> axis(side = 2, at = seq(from = 95, to = 112, by = 1), 
       labels = FALSE, tcl = -0.25)  

> curve(expr = mod.fit$coefficients[1] + 
        mod.fit$coefficients[2]*x, col = "red", lty = 
        "solid", lwd = 1, add = TRUE, xlim = c(min(set1$X), 
        max(set1$X)))

> segments(x0 = 0, y0 = Y.new, x1 = X.hat.new, y1 = Y.new, 
           col = "darkgreen", lty = "dashed", lwd = 2)

> segments(x0 = X.hat.new, y0 = Y.new, x1 = X.hat.new, y1 = 
           0, col = "darkgreen", lty = "dashed", lwd = 2)

> points(x = save.ci, y = c(95.1, 95.1), pch = c("(", ")"), 
         col = "darkgreen")  #Plot C.I.
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4.7 Choice of X levels

Read on your own.  

�Not n = 20!  
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