[bookmark: _GoBack]Simulation studies for simple linear regression model

In Section 9, we learned how to use the least squares method to estimate a simple linear regression model. One important property of the least square estimators is the “unbiasedness”, i.e., and . This means that if many, many samples were taken from a population and the sample regression model was calculated each time, the average of the and values would be approximately 1 and 0. We also learned the variance formula of the least square estimators:

 &

In today’s lab, we will verify the unbiasedness and variance formula of and through simulation evidence.

Remember that E(Y) = 0 + 1x is the mean value of Y for a specific value of x. Let x be a fixed sample of size 30 drawn from 1 to 100. Then for each x value, we simulate Y values from a normal distribution with E(Y) = 0 + 1x and Var(Y) = , where 0 = 10, 1 = 2, and = 20. We intentionally chose a large value for so that we can see clearly the difference between the sample regression model and the population regression model. For other parameter values, the results should be similar in nature. The scatter plot of one simulated data set along with the sample regression model and the population regression model is:

> set.seed(1234)
> x <- sample(x = 100, size = 30, replace = TRUE)
> beta0 <- 10
> beta1 <- 2
> sigmae <- 20
> E.y <- beta0 + beta1 * x
> y <- rnorm(n=30, mean=E.y, sd=sigmae)
> plot(x = x, y = y, main = "Population and sample regression model",
 xlim = range(x), ylim = c(-20, 210),
 pch = 1, cex = 1.0, panel.first = grid(col = "gray", lty = "dotted"))
> mod.fit <- lm(formula = y ~ x)
> mod.fit

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

 -1.442 1.994
> curve(expr = mod.fit$coefficients[1] + mod.fit$coefficients[2]*x,
 from = min(x), to = max(x), col = "blue", add = TRUE, n = 1000,
 lwd = 1)
> curve(expr = beta0 + beta1 * x,
 from = min(x), to = max(x), col = "red", add = TRUE, n = 1000,
 lwd = 1)
[image:]

where the blue line corresponds to the sample regression model based on and , and the red line corresponds to the population regression model. Note that in the rnorm() function, the mean argument is set as a vector E.y. Each y value is then simulated using each element of E.y as its mean.

The plot is similar to the population and sample plots in the course notes. One can think of the y values here as samples from the normal distribution with mean E(Y) and variance Because there are “unsampled” values from the population, the sample regression model is different from the population regression model (the two lines do not overlap).
Next, using the same parameter values and x values, we simulate 10 data sets and estimate a sample regression model for each data set. Then we plot all 10 sample regression models as well as the population regression model in the same graph.

> sample.model <- function(y) {
 mod.fit <- lm(formula = y ~ x)
 beta0 <- mod.fit$coefficients[1]
 beta1 <- mod.fit$coefficients[2]
 curve(expr = beta0 + beta1 * x,
 from = min(x), to = max(x), col = "blue", add = TRUE, n = 1000,
 lwd = 1)
 c(beta0, beta1)
 }
> set.seed(2574)
> y <- matrix(rnorm(n = 30*10, mean = E.y, sd = sigmae), nrow = 10, byrow = TRUE)
> plot(x = x, y = y[1,], type = "n", ylab="y", main = "Population and sample
 regression model", col = "red", xlim = range(x), ylim = c(0, 210),
 panel.first = grid(col = "gray", lty = "dotted"))
> est <- apply(X = y, MARGIN = 1, FUN = sample.model)
> curve(expr = beta0 + beta1 * x,
 from = min(x), to = max(x), col = "red", add = TRUE, n = 1000,
 lwd = 1)
[image:]

We again use the matrix() function in simulating the data. Now each row of y contains a sample of size n = 30. We wrote the function sample.model() to calculate and for each sample and to add the regression model to the existing plot. Note in the plot() function, the type = "n" argument tells R to only construct the x and y axis without plotting the data. We used this option because we don’t want to display the original data points in this graph.
In the above plot, we can see that all the blue lines (sample regression model) tend to center around the red line (population regression model). Moreover, the object est now contains all the estimates from the 10 data sets, so we can use the apply() function to find the average of the two estimates.

> est
 [,1] [,2] [,3] [,4] [,5]
(Intercept) 10.476578 13.250562 4.314158 -3.952247 4.74179
x 1.934872 1.905524 2.093775 2.213230 1.98405
 [,6] [,7] [,8] [,9]
(Intercept) 11.92821 18.692647 13.594799 12.049811
x 1.89554 1.949663 1.971276 1.972253
 [,10]
(Intercept) 13.354199
x 2.037358

> apply(X = est, MARGIN = 1, FUN = mean)
(Intercept) x
 9.845051 1.995754

The average of and are relatively close to the true values 0 = 10 and 1 = 2, which is consistent with the plot.
We repeated the same process for 100 data sets. The results are:

> set.seed(2574)
> y <- matrix(rnorm(n = 30*100, mean = E.y, sd = sigmae), nrow = 100, byrow = TRUE)
> plot(x = x, y = y[1,], type = "n", ylab="y", main = "Population and sample
 regression model", col = "red", xlim = range(x), ylim = c(0, 210),
 panel.first = grid(col = "gray", lty = "dotted"))
> est <- apply(X = y, MARGIN = 1, FUN = sample.model)
> curve(expr = beta0 + beta1 * x,
 from = min(x), to = max(x), col = "red", add = TRUE, n = 1000,
 lwd = 1)
> apply(X=est, MARGIN=1, FUN=mean)
(Intercept) x
 10.002196 1.990451
[image:]

The sample regression models center around the population regression model. With increased number of samples, the average of and are much close to the true values 0 and 1. Our simulation evidence supports the unbiasedness property of the least square estimators.

In the above experiments, we can visualize the variability of and by plotting the estimated regression models from all the simulated data sets. More precisely, the variability can be measured by the sample variance of all and :

> apply(X = est, MARGIN = 1, FUN = var)
(Intercept) x
45.42252487 0.01238486

In real applications, we often will not be able to obtain more than one sample from the population, and we don’t know what the true parameters are. How can we still assess the variability of and ? We can use the following two formulas!

 &

If we substitute the x values and into the above formulas, we get = 0.017 012 and = 44.0488.467, whcich close to the sample variance estimates.

> sigmae^2/sum((x-mean(x))^2)
[1] 0.01201224
> sigmae^2*(1/30+mean(x)^2/sum((x-mean(x))^2))
[1] 44.04849

Obviously, in practice we will not know what the unknown population parameter is. Instead, we use the mean square error in the above formulas to get:

 &
where

For each data set, R will calculate and using the above formulas. In the previous example with 100 data sets, the 1st data set yields the following estimates:

> mod.fit <- lm(formula = y[1,] ~ x)
> summary(mod.fit)

Call:
lm(formula = y[1,] ~ x)

Residuals:
 Min 1Q Median 3Q Max
-42.700 -14.759 -2.706 14.217 50.775

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.477 7.451 1.406 0.171
x 1.935 0.123 15.726 1.99e-15 ***

Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.45 on 28 degrees of freedom
Multiple R-squared: 0.8983, Adjusted R-squared: 0.8947
F-statistic: 247.3 on 1 and 28 DF, p-value: 1.992e-15

Hence, = 0.1232 = 0.015 and = 7.4512 = 55.5174.
The 10th data set yields the following estimates:

> mod.fit<-lm(formula = y[10,] ~ x)
> summary(mod.fit)

Call:
lm(formula = y[10,] ~ x)

Residuals:
 Min 1Q Median 3Q Max
-43.294 -10.171 0.352 16.944 40.213

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.3542 7.0417 1.896 0.0683 .
x 2.0374 0.1163 17.520 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.45 on 28 degrees of freedom
Multiple R-squared: 0.9071, Adjusted R-squared: 0.9038
F-statistic: 273.4 on 1 and 28 DF, p-value: 5.58e-16

Hence, = 0.11632 = 0.014 and = 7.04172 = 49.59.

These numbers are relatively close to the population variances = 0.017 and = 48.467, given the scale of the estimates. Here we only looked at two data sets. Notice how and are different across different data sets, because each data set has its own .

Question: What do you expect will happen to and when the sample size of each data set increases (e.g., from 30 to 100)? Will they get closer or farther from the population variances (assuming we know what the true parameters are)?

2

image2.wmf
b=b

00

ˆ

E()

oleObject2.bin

image3.wmf
b

1

ˆ

oleObject3.bin

image4.wmf
b

0

ˆ

oleObject4.bin

image5.wmf
e

=

s

b=

-

å

2

1

n

2

i

i1

ˆ

Var()

(xx)

oleObject5.bin

image6.wmf
e

=

æö

b=s+

ç÷

-

ç÷

å

èø

2

2

0

n

2

i

i1

1x

ˆ

Var().

n

(xx)

oleObject6.bin

oleObject7.bin

image7.wmf
b

0

ˆ

oleObject8.bin

image8.wmf
e

s

2

oleObject9.bin

image9.wmf
e

s

oleObject10.bin

oleObject11.bin

image10.png
200

150

100

50

Population and sample regression model

20 40 60 80

100

oleObject12.bin

oleObject13.bin

image11.wmf
e

s

2

.

oleObject14.bin

image12.png
200

150

100

50

Population and sample regression model

20 40 60 80

100

oleObject15.bin

oleObject16.bin

oleObject17.bin

oleObject18.bin

image13.png
200

150

100

50

Population and sample regression model

20 40 60 80

100

oleObject19.bin

oleObject20.bin

oleObject21.bin

oleObject22.bin

oleObject23.bin

oleObject24.bin

oleObject25.bin

oleObject26.bin

oleObject27.bin

oleObject28.bin

image14.wmf
e

s

2

oleObject29.bin

image15.wmf
b

1

ˆ

Var()

oleObject30.bin

image16.wmf
b

0

ˆ

Var()

oleObject31.bin

oleObject32.bin

image17.wmf
e

2

s

oleObject33.bin

image18.wmf
·

e

=

b=

-

å

2

1

n

2

i

i1

s

ˆ

Var()

(xx)

oleObject34.bin

image19.wmf
·

e

=

æö

b=+

ç÷

-

ç÷

å

èø

2

2

0

n

2

i

i1

1x

ˆ

Var()s

n

(xx)

oleObject35.bin

image20.wmf
=

e

-

å

==

--

n

2

ii

2

i1

ˆ

(yy)

SSE

s.

n2n2

oleObject36.bin

image21.wmf
·

b

1

ˆ

Var()

oleObject37.bin

image22.wmf
·

b

0

ˆ

Var()

oleObject38.bin

oleObject39.bin

oleObject40.bin

oleObject41.bin

oleObject42.bin

oleObject43.bin

oleObject44.bin

oleObject45.bin

oleObject46.bin

oleObject47.bin

oleObject48.bin

oleObject49.bin

image1.wmf
b=b

11

ˆ

E()

oleObject1.bin

